1
|
McGrath K, Frain M, Hey G, Rahman M. Complications following laser interstitial thermal therapy: a review. Neurochirurgie 2025; 71:101604. [PMID: 39413572 DOI: 10.1016/j.neuchi.2024.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Laser interstitial thermal therapy (LITT) is being performed more frequently for various lesions within neurosurgery, including epileptic foci, vascular malformations, and tumors. Though this technique generally has an excellent safety profile, it is important to be aware of potential complications. Thermal ablation of tissue leads to disruption of the blood brain barrier as well as an inflammatory response both of which cause the majority of complications from LITT. The most common complications of LITT include cerebral edema, focal neurologic deficits, and intracranial hemorrhage. Few studies have identified factors predicting development of these complications, but many of these are transient and resolve without intervention. Modifications to LITT technique that allows better visualization of patient anatomy along the tract, such as fusing vascular imaging with intraoperative MRI, reduce the risk of complications.
Collapse
Affiliation(s)
- Kyle McGrath
- College of Medicine, University of Florida, Gainesville, FL, United States.
| | - Matthew Frain
- Department of Medical Physics, University of Florida, Gainesville, FL, United States; Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Grace Hey
- College of Medicine, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States; Lillian S Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Giantini-Larsen AM, Pandey A, Garton ALA, Rampichini M, Winston G, Goldberg JL, Magge R, Stieg PE, Souweidane MM, Ramakrishna R. Therapeutic manipulation and bypass of the blood-brain barrier: powerful tools in glioma treatment. Neurooncol Adv 2025; 7:vdae201. [PMID: 39877748 PMCID: PMC11773386 DOI: 10.1093/noajnl/vdae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The blood-brain barrier (BBB) remains an obstacle for delivery of chemotherapeutic agents to gliomas. High grade and recurrent gliomas continue to portend a poor prognosis. Multiple methods of bypassing or manipulating the BBB have been explored, including hyperosmolar therapy, convection-enhanced delivery (CED), laser-guided interstitial thermal therapy (LITT), and Magnetic Resonance Guided Focused Ultrasound (MRgFUS) to enhance delivery of chemotherapeutic agents to glial neoplasms. Here, we review these techniques, currently ongoing clinical trials to disrupt or bypass the BBB in gliomas, and the results of completed trials.
Collapse
Affiliation(s)
- Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Abhinav Pandey
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Andrew L A Garton
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Margherita Rampichini
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Graham Winston
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Jacob L Goldberg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rajiv Magge
- Department of Neurology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Philip E Stieg
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10065, USA
| | - Rohan Ramakrishna
- Corresponding Author: Rohan Ramakrishna, MD, Chief, Neurological Surgery, New York Presbyterian Brooklyn Methodist Hospital, Weill Cornell Medical Center, 525 East 68 Street, New York, NY 10065, USA ()
| |
Collapse
|
3
|
Tomatis F, Rosa S, Simões S, Barão M, Jesus C, Novo J, Barth E, Marz M, Ferreira L. Engineering extracellular vesicles to transiently permeabilize the blood-brain barrier. J Nanobiotechnology 2024; 22:747. [PMID: 39623431 PMCID: PMC11613868 DOI: 10.1186/s12951-024-03019-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Drug delivery to the brain is challenging due to the restrict permeability of the blood brain barrier (BBB). Recent studies indicate that BBB permeability increases over time during physiological aging likely due to factors (including extracellular vesicles (EVs)) that exist in the bloodstream. Therefore, inspiration can be taken from aging to develop new strategies for the transient opening of the BBB for drug delivery to the brain. RESULTS Here, we evaluated the impact of small EVs (sEVs) enriched with microRNAs (miRNAs) overexpressed during aging, with the capacity to interfere transiently with the BBB. Initially, we investigated whether the miRNAs were overexpressed in sEVs collected from plasma of aged individuals. Next, we evaluated the opening properties of the miRNA-enriched sEVs in a static or dynamic (under flow) human in vitro BBB model. Our results showed that miR-383-3p-enriched sEVs significantly increased BBB permeability in a reversible manner by decreasing the expression of claudin 5, an important tight junction protein of brain endothelial cells (BECs) of the BBB, mediated in part by the knockdown of activating transcription factor 4 (ATF4). CONCLUSIONS Our findings suggest that engineered sEVs have potential as a strategy for the temporary BBB opening, making it easier for drugs to reach the brain when injected into the bloodstream.
Collapse
Affiliation(s)
- Francesca Tomatis
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana Rosa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
| | - Susana Simões
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
| | - Marta Barão
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos Jesus
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - João Novo
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Barth
- Bioinformatics Core Facility, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Manja Marz
- Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- FLI Leibniz Institute for Age Research, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Lino Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech Parque Tecnológico de Cantanhede, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Kurbanova B, Alisherov S, Ashikbayeva Z, Katrenova Z, Sametova A, Gaipov A, Molardi C, Blanc W, Tosi D, Utegulov Z. In-situ, real-time monitoring of thermo-mechanical properties of biological tissues undergoing laser heating and ablation. BIOMEDICAL OPTICS EXPRESS 2024; 15:6198-6210. [PMID: 39553871 PMCID: PMC11563316 DOI: 10.1364/boe.537374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/07/2024] [Indexed: 11/19/2024]
Abstract
In this work, Brillouin light-scattering spectroscopy and optical backscattering reflectometry (OBR) using Mg-silica-NP-doped distributed sensing fibers were employed for monitoring local GHz visco-elastic properties and surface temperature, respectively, during laser driven heating and ablation of chicken tissues. The spatial temperature distribution measured by OBR at various infrared laser heating powers and times was used to validate spatio-temporal local temperature variations modeled by the finite element method via solving Pennes' bioheat conduction equation. The reduction of viscosity and stiffness in chicken skin during its laser heating was attributed to water loss, protein denaturation and change in lipid phase behavior. These findings open avenues for the simultaneous real-time hybrid optical sensing of both viscoelasticity and local temperature in biological tissues undergoing denaturation and gelation during thermal ablation in clinical settings.
Collapse
Affiliation(s)
- Bayan Kurbanova
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Shakhrizat Alisherov
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zhannat Ashikbayeva
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, 010000 Astana, Kazakhstan
| | - Zhanerke Katrenova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Akbota Sametova
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, 010000 Astana, Kazakhstan
| | - Carlo Molardi
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Wilfried Blanc
- Université Ĉote d’Azur, INPHYNI, CNRS UMR7010, 17 rue Julien Lauprêtre, 06200 Nice, France
| | - Daniele Tosi
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 010000 Astana, Kazakhstan
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, 010000 Astana, Kazakhstan
| | - Zhandos Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| |
Collapse
|
5
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
6
|
Strauss I, Gabay S, Roth J. Laser interstitial thermal therapy (LITT) for pediatric low-grade glioma-case presentations and lessons learned. Childs Nerv Syst 2024; 40:3119-3127. [PMID: 38703238 PMCID: PMC11511763 DOI: 10.1007/s00381-024-06419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The surgical treatment of brain tumors has developed over time, offering customized strategies for patients and their specific lesions. One of the most recent advances in pediatric neuro-oncological surgery is laser interstitial thermal therapy (LITT). However, its effectiveness and indications are still being evaluated. The aim of this work is to review the current literature on LITT for pediatric low-grade gliomas (pLGG) and evaluate our initial results in this context. METHODS We retrospectively reviewed our pediatric neurosurgery database for patients who received LITT treatment between November 2019 and December 2023. We collected data on the indications for LITT, technical issues during the procedure, and clinical and radiological follow-up. RESULTS Three patients underwent 5 LITT procedures for pLGG. The lesion was thalamo-peduncular in one patient, cingulate in one, and deep parietal in one patient. Two patients had a previous open resection done and were diagnosed with pLGG. One patient underwent a stereotaxic biopsy during the LITT procedure that was non-diagnostic. The same patient underwent a later open resection of the tumor in the cingulate gyrus. There were no surgical complications and all patients were discharged home on the first post-operative day. The follow-up period was between 20 and 40 months. Radiological follow-up showed a progressive reduction of the tumor in patients with LGG. CONCLUSION Laser interstitial thermal therapy is a minimally invasive treatment that shows promise in treating deep-seated pLGG in children. The treatment has demonstrated a reduction in tumor volume, and the positive results continue over time. LITT can be used as an alternative treatment for tumors located in areas that are difficult to access surgically or in cases where other standard treatment options have failed.
Collapse
Affiliation(s)
- Ido Strauss
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Segev Gabay
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jonathan Roth
- Pediatric Neurosurgery and Pediatric Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Boop S, Shimony N, Boop F. How modern treatments have modified the role of surgery in pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3357-3365. [PMID: 38676718 PMCID: PMC11511694 DOI: 10.1007/s00381-024-06412-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Low-grade gliomas are the most common brain tumor of childhood, and complete resection offers a high likelihood of cure. However, in many instances, tumors may not be surgically accessible without substantial morbidity, particularly in regard to gliomas arising from the optic or hypothalamic regions, as well as the brainstem. When gross total resection is not feasible, alternative treatment strategies must be considered. While conventional chemotherapy and radiation therapy have long been the backbone of adjuvant therapy for low-grade glioma, emerging techniques and technologies are rapidly changing the landscape of care for patients with this disease. This article seeks to review the current and emerging modalities of treatment for pediatric low-grade glioma.
Collapse
Affiliation(s)
- Scott Boop
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nir Shimony
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, LeBonheur Children's Hospital, Memphis, TN, USA
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| | - Frederick Boop
- Department of Neurological Surgery, University of Tennessee Health Science Center, Memphis, TN, USA.
- Global Program, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Keefe DW, Christianson DT, Davis GW, Oya H, Howard MA, Petkov CI, Toor F. Modeling for neurosurgical laser interstitial thermal therapy with and without intracranial recording electrodes. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100139. [PMID: 39347540 PMCID: PMC11437873 DOI: 10.1016/j.crneur.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.
Collapse
Affiliation(s)
- Daniel W. Keefe
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - David T. Christianson
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Greyson W. Davis
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Matthew A. Howard
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Christopher I. Petkov
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Fatima Toor
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| |
Collapse
|
9
|
Yalamandala B, Chen YJ, Lin YH, Huynh TMH, Chiang WH, Chou TC, Liu HW, Huang CC, Lu YJ, Chiang CS, Chu LA, Hu SH. A Self-Cascade Penetrating Brain Tumor Immunotherapy Mediated by Near-Infrared II Cell Membrane-Disrupting Nanoflakes via Detained Dendritic Cells. ACS NANO 2024; 18:18712-18728. [PMID: 38952208 PMCID: PMC11256899 DOI: 10.1021/acsnano.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Immunotherapy can potentially suppress the highly aggressive glioblastoma (GBM) by promoting T lymphocyte infiltration. Nevertheless, the immune privilege phenomenon, coupled with the generally low immunogenicity of vaccines, frequently hampers the presence of lymphocytes within brain tumors, particularly in brain tumors. In this study, the membrane-disrupted polymer-wrapped CuS nanoflakes that can penetrate delivery to deep brain tumors via releasing the cell-cell interactions, facilitating the near-infrared II (NIR II) photothermal therapy, and detaining dendritic cells for a self-cascading immunotherapy are developed. By convection-enhanced delivery, membrane-disrupted amphiphilic polymer micelles (poly(methoxypoly(ethylene glycol)-benzoic imine-octadecane, mPEG-b-C18) with CuS nanoflakes enhances tumor permeability and resides in deep brain tumors. Under low-power NIR II irradiation (0.8 W/cm2), the intense heat generated by well-distributed CuS nanoflakes actuates the thermolytic efficacy, facilitating cell apoptosis and the subsequent antigen release. Then, the positively charged polymer after hydrolysis of the benzoic-imine bond serves as an antigen depot, detaining autologous tumor-associated antigens and presenting them to dendritic cells, ensuring sustained immune stimulation. This self-cascading penetrative immunotherapy amplifies the immune response to postoperative brain tumors but also enhances survival outcomes through effective brain immunotherapy.
Collapse
Affiliation(s)
- Bhanu
Nirosha Yalamandala
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Chen
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ya-Hui Lin
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Brain
Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Thi My Hue Huynh
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department
of Chemical Engineering, National Chung
Hsing University, Taichung 402, Taiwan
| | - Tsu-Chin Chou
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Heng-Wei Liu
- Department
of Neurosurgery, Shuang Ho Hospital, Taipei
Medical University, New Taipei
City 23561, Taiwan
- Taipei Neuroscience
Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chieh-Cheng Huang
- Institute
of Biomedical Engineering, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Yu-Jen Lu
- Department
of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- College
of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chi-Shiun Chiang
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Li-An Chu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Brain
Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shang-Hsiu Hu
- Department
of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute
of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
10
|
Xu D, Wang G. Fusion and Validation Method for Laser Interstitial Thermal Therapy Simulation Model and MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039544 DOI: 10.1109/embc53108.2024.10782299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this paper, we present a simulation program based on Monte Carlo simulation and bio-heat transfer models for laser interstitial thermal therapy (LITT). Additionally, we present a data fusion strategy that synchronizes MRI data with simulation results. The simulation model's validity was checked and proven by using this method to combine simulation calculations with MRI-measured temperature data from cases of brain lesions. For LITT treatment planning, the alignment fusion method and higher temporal-spatial resolution simulation model developed in this paper provide a clear three-dimensional visualization of the ablation temperature field displayed in situ on MRI images. This enables the preoperative planning of LITT to be conducted efficiently.
Collapse
|
11
|
Aubignat M, Tir M, Ouendo M, Boussida S, Constans JM, Lefranc M. Unilateral Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy Thalamotomy for Essential Tremor. Mov Disord 2024; 39:1006-1014. [PMID: 38532534 DOI: 10.1002/mds.29790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Essential tremor (ET) affects numerous adults, impacting quality of life (QOL) and often defying pharmacological treatment. Surgical interventions like deep brain stimulation (DBS) and lesional approaches, including radiofrequency, gamma-knife radiosurgery, and magnetic resonance imaging (MRI)-guided focused ultrasound, offer solutions but are not devoid of limitations. OBJECTIVES This retrospective, single-center, single-blinded pilot study aimed to assess the safety and efficacy of unilateral MRI-guided laser interstitial thermal therapy (MRIg-LITT) thalamotomy for medically intractable ET. METHODS Nine patients with ET, unresponsive to medications and unsuitable for DBS, underwent unilateral MRIg-LITT thalamotomy. We assessed tremor severity, QOL, cognitive function, and adverse events (AE) over a 12-month period. RESULTS Tremor severity significantly improved, with a reduction of 83.37% at 12 months post-procedure. QOL scores improved by 74.60% at 12 months. Reported AEs predominantly included transient dysarthria, proprioceptive disturbances, and gait balance issues, which largely resolved within a month. At 3 months, 2 patients (22%) exhibited contralateral hemiparesis requiring physiotherapy, with 1 patient (11%) exhibiting persistent hemiparesis at 12 months. No significant cognitive impairment was detected post-procedure. CONCLUSIONS Unilateral MRIg-LITT thalamotomy yielded substantial and enduring tremor alleviation and enhanced QOL in patients with ET that is resistant to medication. The AE profile was acceptable. Our findings support the need for additional research with expanded patient cohorts and extended follow-up to corroborate these outcomes and to refine the role of MRIg-LITT as a targeted and minimally invasive approach for ET management. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mickael Aubignat
- Department of Neurology and Movement Disorders, Amiens Picardie University Hospital, Amiens, France
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
| | - Mélissa Tir
- Department of Neurology and Movement Disorders, Amiens Picardie University Hospital, Amiens, France
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
| | - Martial Ouendo
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardie University Hospital, Amiens, France
| | - Salem Boussida
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE) Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
| | - Michel Lefranc
- Expert Center for Parkinson's Disease, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE) Research Team for Head & Neck, Institute Faire Faces, University of Picardie Jules Verne, Amiens, France
- Department of Neurosurgery, Amiens Picardie University Hospital, Amiens, France
- Research Unit in Robotic Surgery (GRECO), University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
Dabecco R, Gigliotti MJ, Mao G, Myers D, Xu L, Lee P, Ranjan T, Aziz K, Yu A. Laser interstitial thermal therapy (LITT) for intracranial lesions: a single-institutional series, outcomes, and review of the literature. Br J Neurosurg 2024; 38:632-638. [PMID: 34240676 DOI: 10.1080/02688697.2021.1947972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Laser interstitial thermal therapy (LITT) is a minimally invasive treatment method in managing primary brain neoplasms, brain metastases, radiation necrosis, and epileptogenic lesions, many of which are located in operative corridors that would be difficult to address. Although the use of lasers is not a new concept in neurosurgery, advances in technology have enabled surgeons to perform laser treatment with the aid of real-time MRI thermography as a guide. In this report, we present our institutional series and outcomes of patients treated with LITT. METHODS We retrospectively evaluated 19 patients (age range, 28-77 years) who underwent LITT at one or more targets from 2015 to 2019. Primary endpoint observed was mean progression free survival (PFS) and overall survival (OS). RESULTS Seven patients with glial neoplasms and 12 patients with metastatic disease were reviewed. Average hospitalization was 2.4 days. Median PFS was 7 and 4 months in the metastatic group and primary glial neoplasm group, respectively (p = 0.01). Median OS from time of diagnosis was 41 and 32 months (p = 0.02) and median OS after LITT therapy was 25 and 24 months (p = 0.02) for the metastatic and primary glial neoplasm groups, respectively. One patient experienced immediate post-procedural morbidity secondary to increased intracerebral edema peri-lesionally while one patient experienced post-operative mortality and expired secondary to hemorrhage 1-month post-procedure. Median follow-up was 10 months. CONCLUSION Laser interstitial thermal therapy (LITT) is a safe, minimally invasive treatment method that provides surgeons with cytoreductive techniques to treat neurosurgical conditions. Both PFS and OS appear to be more favorable after LITT in patients with metastatic disease. In properly selected patients, this modality offers improved survival outcomes in conjunction with other salvage therapies.
Collapse
Affiliation(s)
- Rocco Dabecco
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Michael J Gigliotti
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Gordon Mao
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Daniel Myers
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Linda Xu
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Philip Lee
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Tulika Ranjan
- Department of Radiology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Khaled Aziz
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Alexander Yu
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Wu H, Zhou F, Gao W, Chen P, Wei Y, Wang F, Zhao H. Current status and research progress of minimally invasive treatment of glioma. Front Oncol 2024; 14:1383958. [PMID: 38835394 PMCID: PMC11148461 DOI: 10.3389/fonc.2024.1383958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Glioma has a high malignant degree and poor prognosis, which seriously affects the prognosis of patients. Traditional treatment methods mainly include craniotomy tumor resection, postoperative radiotherapy and chemotherapy. Although above methods have achieved remarkable curative effect, they still have certain limitations and adverse reactions. With the introduction of the concept of minimally invasive surgery and its clinical application as well as the development and progress of imaging technology, minimally invasive treatment of glioma has become a research hotspot in the field of neuromedicine, including photothermal treatment, photodynamic therapy, laser-induced thermal theraphy and TT-Fields of tumor. These therapeutic methods possess the advantages of precision, minimally invasive, quick recovery and significant curative effect, and have been widely used in clinical practice. The purpose of this review is to introduce the progress of minimally invasive treatment of glioma in recent years and the achievements and prospects for the future.
Collapse
Affiliation(s)
- Hao Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Feng Zhou
- Department of Neurosurgery, The First Hospital of Yu Lin, Yulin, China
| | - Wenwen Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Peng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Yao Wei
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fenglu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Haikang Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
14
|
Hamade YJ, Dharnipragada R, Chen CC. The ClearPoint Array Frame: An MRI Compatible System that Supports Non-craniotomy, Multi-trajectory (NCMT) Stereotactic Procedures. World Neurosurg 2024; 184:e754-e764. [PMID: 38350598 DOI: 10.1016/j.wneu.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND With continued evolution in stereotactic techniques and an expanding armamentarium of surgical therapeutic options, non-craniotomy stereotactic procedures in neuro-oncology are becoming increasingly complex, often requiring multi-trajectory approaches. Here we demonstrate that the ClearPoint SmartFrame Array (Solana Beach, California, USA), a second-generation magnetic resonance imaging-compatible stereotactic frame, supports such non-craniotomy, multi-trajectory (NCMT) stereotactic procedures. METHODS We previously published case reports demonstrating the feasibility of NCMT through the ClearPoint SmartFrame Array. Here we prospectively followed the next 10 consecutive patients who underwent such multi-trajectory procedures to further establish procedural safety and clinical utility. RESULTS Ten patients underwent complex, multi-trajectory stereotactic procedures, including combinations of needle biopsy ± cyst drainage and laser interstitial thermal therapy targeting geographically distinct regions of neoplastic lesions under the same anesthetic event. The median maximal radial error of stereotaxis was 1.0 mm. In all cases, definitive diagnosis was achieved, and >90% of the intended targets were ablated. The average stereotaxis time for the multi-trajectory procedure was 119 ± 22.2 minutes, comparing favorably to our previously published results of single-trajectory procedures (80 ± 9.59 minutes, P = 0.125). There were no procedural complications. Post-procedure, the neurologic condition of 1 patient improved, while the remaining 9 patients remained stable. All patients were discharged home, with a median hospital stay of 1 day (range: 1-12 days). With a median follow-up of 376 days (range: 155-1438 days), there were no 30-day readmissions or wound complications. CONCLUSIONS Geographically distinct regions of brain cancer can be safely and accurately accessed through the ClearPoint Array frame in NCMT stereotactic procedures.
Collapse
Affiliation(s)
- Youssef J Hamade
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
15
|
Gandhi GR, Hillary VE, Athesh K, da Cruz Ramos MLC, de Oliveira Krauss GP, Jothi G, Sridharan G, Sivasubramanian R, Hariharan G, Vasconcelos ABS, Montalvão MM, Ceasar SA, da Silva Calisto VK, Gurgel RQ. The Use of Nanocarriers to Enhance the Anti-neuroinflammatory Potential of Dietary Flavonoids in Animal Models of Neurodegenerative Diseases: A Systematic Review. Mini Rev Med Chem 2024; 24:1293-1305. [PMID: 37691188 DOI: 10.2174/1389557523666230907093441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have become a common and growing cause of mortality and morbidity worldwide, especially in older adults. The natural flavonoids found in fruits and vegetables have been shown to have therapeutic effects against many diseases, including NDs; however, in general, flavonoids have limited bioavailability to the target cells. One promising strategy to increase bioavailability is to entrap them in nanocarriers. OBJECTIVE This article aims to review the potential role of nanocarriers in enhancing the antineuroinflammatory efficacy of flavonoids in experimentally induced ND. METHODS A literature search was conducted in the scientific databases using the keywords "neurodegenerative", "anti-neuroinflammatory", "dietary flavonoids," "nanoparticles", and "therapeutic mechanisms". RESULTS A total of 289 articles were initially identified, of which 45 articles reported on flavonoids. After completion of the selection process, five articles that met the criteria of the review were selected for analysis. Preclinical studies identified in this review showed that nanoencapsulated flavonoids attenuated cognitive impairment and seizure, improved behavioral patterns, and reduced levels of astrocytes. Importantly, they exhibited strong antioxidant properties, increasing the levels of antioxidant enzymes and reducing oxidative stress (OS) biomarkers. Moreover, nanocarrier-complexed flavonoids decreased the levels of the pro-inflammatory cytokines, interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nod-like receptor protein 3 inflammasome activation (NLRP3). They also had remarkable effects on important ND-related neurotransmitters, improved cognitive function via cholinergic neurotransmission, and increased prefrontal cortical and hippocampal norepinephrine (NE) and 5-hydroxytryptamine (5-HT). CONCLUSION Nanoencapsulated flavonoids should, therefore, be considered a novel therapeutic approach for the treatment of NDs.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Division of Phytochemistry and Drug-Design, Rajagiri College of Social Sciences (Autonomous), Kochi, 683104, India
| | - Varghese Edwin Hillary
- Department of Biosciences, Division of Phytochemistry and Drug-Design, Rajagiri College of Social Sciences (Autonomous), Kochi, 683104, India
- Department of Biosciences, Division of Plant Molecular Biology and Biotechnology, Rajagiri College of Social Sciences, Kochi 683104, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | | | | | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Rengaraju Sivasubramanian
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), affiliated to Bharathidasan University, Tiruchirapalli, 6200005, India
| | | | - Monalisa Martins Montalvão
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| | - Stanislaus Antony Ceasar
- Department of Biosciences, Division of Plant Molecular Biology and Biotechnology, Rajagiri College of Social Sciences, Kochi 683104, India
| | - Valdete Kaliane da Silva Calisto
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| | - Ricardo Queiroz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, Sergipe, 49060108, Brazil
| |
Collapse
|
16
|
Stamp MEM, Halwes M, Nisbet D, Collins DJ. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier. Fluids Barriers CNS 2023; 20:87. [PMID: 38017530 PMCID: PMC10683235 DOI: 10.1186/s12987-023-00489-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.
Collapse
Affiliation(s)
- Melanie E M Stamp
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Mormile C, Opriș O, Bellucci S, Lung I, Kacso I, Turza A, La Pietra M, Vacacela Gomez C, Stegarescu A, Soran ML. Enhanced Stability of Dopamine Delivery via Hydrogel with Integrated Graphene. J Funct Biomater 2023; 14:558. [PMID: 38132812 PMCID: PMC10744308 DOI: 10.3390/jfb14120558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The synthesis of graphene-based materials for drug delivery represents an area of active research, and the use of graphene in drug delivery systems is promising due to its unique properties. Thus, in the present work, we discuss the potential of few-layer graphene in a hydrogel system for dopamine release. The hydrogels are frequently used for these systems for their special physico-chemical properties, which can ensure that the drug is effectively released in time. However, the release from such structures is mostly determined by diffusion alone, and to overcome this restriction, the hydrogel can be "improved" with nanoscale fillers like graphene. The release kinetics of the composite obtained were analyzed to better understand how the use of graphene, instead of the more common graphene oxide (GO) and reduced graphene oxide (rGO), affects the characteristics of the system. Thus, the systems developed in this study consist of three main components: biopolymer, graphene, and dopamine. The hydrogels with graphene were prepared by combining two different solutions, one with polyacrylic acid and agarose and one with graphene prepared by the exfoliation method with microwave irradiation. The drug delivery systems were developed by adding dopamine to the obtained hydrogels. After 24 h of release, the presence of dopamine was observed, demonstrating that the system developed can slow down the drug's degradation because of the interactions with the graphene nanoplates and the polymer matrix.
Collapse
Affiliation(s)
- Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
- Faculty of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Stefano Bellucci
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Irina Kacso
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Matteo La Pietra
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
- Department of Information Engineering, Polytechnic University of Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Cristian Vacacela Gomez
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy; (M.L.P.); (C.V.G.)
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (C.M.); (O.O.); (I.K.); (A.T.); (A.S.); (M.-L.S.)
| |
Collapse
|
18
|
Kim S, Kim D, Oh S. Straightforward Magnetic Resonance Temperature Measurements Combined with High Frame Rate and Magnetic Susceptibility Correction. Bioengineering (Basel) 2023; 10:1299. [PMID: 38002423 PMCID: PMC10669085 DOI: 10.3390/bioengineering10111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Proton resonance frequency shift (PRFS) is an MRI-based simple temperature mapping method that exhibits higher spatial and temporal resolution than temperature mapping methods based on T1 relaxation time and diffusion. PRFS temperature measurements are validated against fiber-optic thermal sensors (FOSs). However, the use of FOSs may introduce temperature errors, leading to both underestimation and overestimation of PRFS measurements, primarily due to material susceptibility changes caused by the thermal sensors. In this study, we demonstrated susceptibility-corrected PRFS (scPRFS) with a high frame rate and accuracy for suitably distributed temperatures. A single-echo-based background removal technique was employed for phase variation correction, primarily owing to magnetic susceptibility, which enabled fast temperature mapping. The scPRFS was used to validate the temperature fidelity by comparing the temperatures of fiber-optic sensors and conventional PRFS through phantom-mimicked human and ex vivo experiments. This study demonstrates that scPRFS measurements in agar-gel are in good agreement with the thermal sensor readings, with a root mean square error (RMSE) of 0.33-0.36 °C in the phantom model and 0.12-0.16 °C in the ex vivo experiment. These results highlight the potential of scPRFS for precise thermal monitoring and ablation in both low- and high-temperature non-invasive therapies.
Collapse
Affiliation(s)
- Sangwoo Kim
- Department of Radiological Science, Daewon University College, Jecheon 27135, Republic of Korea
| | - Donghyuk Kim
- Neuroscience Research Institute, Gachon University, Incheon 21988, Republic of Korea
| | - Sukhoon Oh
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| |
Collapse
|
19
|
Cao P, Shi D, Li D, Zhu Z, Zhu J, Zhang J, Bai R. Modeling and in vivo experimental validation of 1,064 nm laser interstitial thermal therapy on brain tissue. Front Neurol 2023; 14:1237394. [PMID: 37869141 PMCID: PMC10588634 DOI: 10.3389/fneur.2023.1237394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Laser interstitial thermal therapy (LITT) at 1064 nm is widely used to treat epilepsy and brain tumors; however, no numerical model exists that can predict the ablation region with careful in vivo validation. Methods In this study, we proposed a model with a system of finite element methods simulating heat transfer inside the brain tissue, radiative transfer from the applicator into the brain tissue, and a model for tissue damage. Results To speed up the computation for practical applications, we also validated P1-approximation as an efficient and fast method for calculating radiative transfer by comparing it with Monte Carlo simulation. Finally, we validated the proposed numerical model in vivo on six healthy canines and eight human patients with epilepsy and found strong agreement between the predicted temperature profile and ablation area and the magnetic resonance imaging-measured results. Discussion Our results demonstrate the feasibility and reliability of the model in predicting the ablation area of 1,064 nm LITT, which is important for presurgical planning when using LITT.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Dingsheng Shi
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Ding Li
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Zhoule Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Junming Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ruiliang Bai
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Viozzi I, Overduin CG, Rijpma A, Rovers MM, Laan MT. MR-guided LITT therapy in patients with primary irresectable glioblastoma: a prospective, controlled pilot study. J Neurooncol 2023; 164:405-412. [PMID: 37505379 PMCID: PMC10522506 DOI: 10.1007/s11060-023-04371-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/29/2023]
Abstract
PURPOSE Laser interstitial thermal therapy (LITT) is increasingly being used in the treatment of brain tumors, whereas high-quality evidence of its effectiveness is lacking. This pilot examined the feasibility of conducting a randomized controlled trial (RCT) in patients with irresectable newly diagnosed glioblastoma (nGBM), and generated data on technical feasibility and safety. METHODS We included patients with irresectable nGBM with KPS ≥ 70 and feasible trajectories to ablate ≥ 70% of the tumor volume. Patients were initially randomized to receive either biopsy combined with LITT or biopsy alone, followed by chemoradiation (CRT). Randomization was stopped after 9 patients as the feasibility endpoint with respect to willingness to be randomized was met. Main endpoints were feasibility of performing an RCT, technical feasibility of LITT and safety. Follow-up was 3 months. RESULTS A total of 15 patients were included, of which 10 patients received a biopsy followed by LITT and 5 patients a biopsy. Most patients were able to complete the follow-up procedures (93% clinical, 86% questionnaires, 78% MRI). Patients were planned within 3 weeks after consultation (median 12 days, range 8-16) and no delay was observed in referring patients for CRT (median 37 days, range 28-61). Two CD ≥ 3 complications occurred in the LITT arm and none in the biopsy arm. CONCLUSION An RCT to study the effectiveness of LITT in patients with an irresectable nGBM seems feasible with acceptable initial safety data. The findings from this pilot study helped to further refine the design of a larger full-scale multicenter RCT in the Netherlands. Protocol and study identifier: The current study is registered at clinicaltrials.gov (EMITT pilot study, NTR: NCT04596930).
Collapse
Affiliation(s)
- Ilaria Viozzi
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Christiaan G Overduin
- Department of Radiology, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Maroeska M Rovers
- Department of Health Evidence, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Operating Rooms, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Neutel CLG, Viozzi I, Overduin CG, Rijpma A, Grutters JPC, Hannink G, van Eijsden P, Robe PA, Rovers MM, Ter Laan M. Study protocol for a multicenter randomised controlled trial on the (cost)effectiveness of biopsy combined with same-session MR-guided LITT versus biopsy alone in patients with primary irresectable glioblastoma (EMITT trial). BMC Cancer 2023; 23:788. [PMID: 37612610 PMCID: PMC10463911 DOI: 10.1186/s12885-023-11282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary, malignant brain tumour with a 5-year survival of 5%. If possible, a glioblastoma is resected and further treated with chemoradiation therapy (CRT), but resection is not feasible in about 30% of cases. Current standard of care in these cases is a biopsy followed by CRT. Magnetic resonance (MR) imaging-guided laser interstitial thermal therapy (LITT) has been suggested as a minimally invasive alternative when surgery is not feasible. However, high-quality evidence directly comparing LITT with standard of care is lacking, precluding any conclusions on (cost-)effectiveness. We therefore propose a multicenter randomized controlled study to assess the (cost-)effectiveness of MR-guided LITT as compared to current standard of care (EMITT trial). METHODS AND ANALYSIS The EMITT trial will be a multicenter pragmatic randomized controlled trial in the Netherlands. Seven Dutch hospitals will participate in this study. In total 238 patients will be randomized with 1:1 allocation to receive either biopsy combined with same-session MR-guided LITT therapy followed by CRT or the current standard of care being biopsy followed by CRT. The primary outcomes will be health-related quality of life (HR-QoL) (non-inferiority) using EORTC QLQ-C30 + BN20 scores at 5 months after randomization and overall survival (superiority). Secondary outcomes comprise cost-effectiveness (healthcare and societal perspective) and HR-QoL of life over an 18-month time horizon, progression free survival, tumour response, disease specific survival, longitudinal effects, effects on adjuvant treatment, ablation percentage and complication rates. DISCUSSION The EMITT trial will be the first RCT on the effectiveness of LITT in patients with glioblastoma as compared with current standard of care. Together with the Dutch Brain Tumour Patient association, we hypothesize that LITT may improve overall survival without substantially affecting patients' quality of life. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov (NCT05318612).
Collapse
Affiliation(s)
- Céline L G Neutel
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilaria Viozzi
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne Rijpma
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke P C Grutters
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerjon Hannink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter van Eijsden
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre A Robe
- Department of Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maroeska M Rovers
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Srinivasan ES, Liu Y, Odion RA, Chongsathidkiet P, Wachsmuth LP, Haskell-Mendoza AP, Edwards RM, Canning AJ, Willoughby G, Hinton J, Norton SJ, Lascola CD, Maccarini PF, Mariani CL, Vo-Dinh T, Fecci PE. Gold Nanostars Obviate Limitations to Laser Interstitial Thermal Therapy (LITT) for the Treatment of Intracranial Tumors. Clin Cancer Res 2023; 29:3214-3224. [PMID: 37327318 PMCID: PMC10425731 DOI: 10.1158/1078-0432.ccr-22-1871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 03/27/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Laser interstitial thermal therapy (LITT) is an effective minimally invasive treatment option for intracranial tumors. Our group produced plasmonics-active gold nanostars (GNS) designed to preferentially accumulate within intracranial tumors and amplify the ablative capacity of LITT. EXPERIMENTAL DESIGN The impact of GNS on LITT coverage capacity was tested in ex vivo models using clinical LITT equipment and agarose gel-based phantoms of control and GNS-infused central "tumors." In vivo accumulation of GNS and amplification of ablation were tested in murine intracranial and extracranial tumor models followed by intravenous GNS injection, PET/CT, two-photon photoluminescence, inductively coupled plasma mass spectrometry (ICP-MS), histopathology, and laser ablation. RESULTS Monte Carlo simulations demonstrated the potential of GNS to accelerate and specify thermal distributions. In ex vivo cuboid tumor phantoms, the GNS-infused phantom heated 5.5× faster than the control. In a split-cylinder tumor phantom, the GNS-infused border heated 2× faster and the surrounding area was exposed to 30% lower temperatures, with margin conformation observed in a model of irregular GNS distribution. In vivo, GNS preferentially accumulated within intracranial tumors on PET/CT, two-photon photoluminescence, and ICP-MS at 24 and 72 hours and significantly expedited and increased the maximal temperature achieved in laser ablation compared with control. CONCLUSIONS Our results provide evidence for use of GNS to improve the efficiency and potentially safety of LITT. The in vivo data support selective accumulation within intracranial tumors and amplification of laser ablation, and the GNS-infused phantom experiments demonstrate increased rates of heating, heat contouring to tumor borders, and decreased heating of surrounding regions representing normal structures.
Collapse
Affiliation(s)
- Ethan S. Srinivasan
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Yang Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Chemistry, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Ren A. Odion
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Pakawat Chongsathidkiet
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Lucas P. Wachsmuth
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - Ryan M. Edwards
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Aidan J. Canning
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Gavin Willoughby
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Joseph Hinton
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Stephen J. Norton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Christopher D. Lascola
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Paolo F. Maccarini
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Christopher L. Mariani
- Department of Clinical Sciences, NC State College of Veterinary Medicine, Raleigh, North Carolina
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
- Department of Chemistry, Duke University, Durham, North Carolina
- Fitzpatrick Institute of Photonics, Duke University, Durham, North Carolina
| | - Peter E. Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
23
|
Aubignat M, Tir M, Ouendo M, Constans JM, Lefranc M. Stereotactic robot-assisted MRI-guided laser interstitial thermal therapy thalamotomy for medically intractable Parkinson's disease tremor: technical note and preliminary effects on 2 cases. Acta Neurochir (Wien) 2023; 165:1453-1460. [PMID: 37140648 DOI: 10.1007/s00701-023-05614-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Medically intractable Parkinson's disease (PD) tremor is a common difficult clinical situation with major impact on patient's quality of life (QOL). Deep brain stimulation (DBS) is an effective therapy but is not an option for many patients. Less invasive lesional brain surgery procedures, such as thalamotomy, have proven to be effective in these indications. Here, we describe the technical nuances and advantages of stereotactic robot-assisted MRI-guided laser interstitial thermal therapy (MRIg-LITT) thalamotomy for medically intractable PD tremor. METHOD We describe 2 patients with medically intractable PD tremor treated with stereotactic robot-assisted MRIg-LITT thalamotomy performed under general anesthesia with intraoperative electrophysiological testing. Pre and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS). RESULTS At 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (75% for both). Patients also had substantial improvements in their QOL (32.54% and 38%) according to the 39-item PD questionnaire. Both patients underwent uncomplicated MRIg-LITT thalamotomy. CONCLUSIONS In patients with medically intractable PD tremor who are unsuitable candidates for DBS, thalamotomy utilizing a stereotactic robot, intraoperative electrophysiological testing, and laser ablation with real-time MRI guidance may be a viable treatment option. However, further studies with larger sample sizes and longer follow-up periods are necessary to confirm these preliminary results.
Collapse
Affiliation(s)
- Mickael Aubignat
- Department of Neurology and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens, France.
| | - Mélissa Tir
- Department of Neurology and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, 1 rue du Professeur Christian Cabrol, 80054, Amiens, France
| | - Martial Ouendo
- Department of Anaesthesiology and Critical Care Medicine, Amiens Picardie University Hospital, Amiens, France
| | - Jean-Marc Constans
- Department of Radiology, Amiens Picardie University Hospital, Amiens, France
- Research Unit UR-7516 (CHIMERE), Amiens Picardie University Hospital, Amiens, France
| | - Michel Lefranc
- Research Unit UR-7516 (CHIMERE), Amiens Picardie University Hospital, Amiens, France
- Department of Neurosurgery and Expert Center for Parkinson's disease, Amiens Picardie University Hospital, Amiens, France
- Research Unit in Robotic Surgery (GRECO), Amiens Picardie University Hospital, Amiens, France
| |
Collapse
|
24
|
Viozzi I, Rovers MM, Overduin CG, ter Laan M. Stereotactic laser ablation in neuro-oncology - A survey among European neurosurgeons. BRAIN & SPINE 2023; 3:101749. [PMID: 37383437 PMCID: PMC10293215 DOI: 10.1016/j.bas.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/30/2023]
Abstract
Introduction In the last decades, the application of stereotactic laser ablation (SLA) for the treatment of intracranial tumours has been growing, even though comparative trials are lacking. Our aim was to investigate the familiarity with SLA of neurosurgeons in Europe and their opinion regarding potential neuro-oncological indications. Furthermore, we investigated treatment preferences and variability for three exemplar neuro-oncological cases and willingness to refer for SLA. Material and methods A 26-questions survey was mailed to members of the EANS neuro-oncology section. We presented three clinical cases of respectively deep-seated glioblastoma, recurrent metastasis and recurrent glioblastoma. Descriptive statistics was applied to report results. Results 110 respondents completed all questions. Recurrent glioblastoma and recurrent metastases were regarded as the most feasible indications for SLA (chosen by 69% and 58% of the respondents) followed by newly diagnosed high-grade gliomas (31%). Seventy percent of respondents would refer patients for SLA. The majority of respondents would consider SLA as a treatment option for all three presented cases: 79% for the deep-seated glioblastoma case, 65% for the recurrent metastasis case and 76% for the recurrent glioblastoma case. Among respondents who wouldn't consider SLA, preference for standard treatment and lack of clinical evidence were reported as the main reasons. Conclusions Most of respondents considered SLA as a treatment option for recurrent glioblastoma, recurrent metastases and newly diagnosed deep-seated glioblastoma. At the moment the current evidence to support such a treatment is very low. Comparative prospective trials are needed to support the use of SLA and determine proper indications.
Collapse
Affiliation(s)
- Ilaria Viozzi
- Department of Neurosurgery, Radboud University Medical Center, Radboud Institute for Health Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Maroeska M. Rovers
- Department of Medical Imaging, Radboud University Medical Center, Radboud Institute for Health Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Christiaan G. Overduin
- Department of Medical Imaging, Radboud University Medical Center, Radboud Institute for Health Sciences, 6525 GA, Nijmegen, The Netherlands
| | - Mark ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Radboud Institute for Health Sciences, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Jensdottir M, Sandvik U, Jakola AS, Fagerlund M, Kits A, Guðmundsdóttir K, Tabari S, Majing T, Fletcher-Sandersjöö A, Chen CC, Bartek J. Learning Curve Analysis and Adverse Events After Implementation of Neurosurgical Laser Ablation Treatment: A Population-Based Single-Institution Consecutive Series. Neurosurg Clin N Am 2023; 34:259-267. [PMID: 36906332 DOI: 10.1016/j.nec.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
OBJECTIVE AND METHODS We conducted a retrospective review of the first 30 patients treated with stereotactic laser ablation (SLA) at our institution since the introduction of the technique in September 2019. We aimed to analyze our initial results and potential learning curve by investigating precision and lesion coverage and assessing the frequency and nature of adverse events according to the Landriel-Ibanez classification for neurosurgical complications. RESULTS Indications were de novo gliomas (23%), recurrent gliomas (57%), and epileptogenic foci (20%). There was a trend toward improvement of lesion coverage and target deviation, and a statistically significant improvement in entry point deviation, over time. Four patients (13.3%) experienced a new neurological deficit, where three patients had transient and one patient had permanent deficits, respectively. Our results show a learning curve on precision measures over the first 30 cases. Based on our results the technique can safely be implemented at centers with experience in stereotaxy.
Collapse
Affiliation(s)
- Margret Jensdottir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden.
| | - Ulrika Sandvik
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Asgeir S Jakola
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Blå stråket 7, plan 3, Sahlgrenska Universitetssjukhuset, 41345 Gothenburg, Sweden
| | - Michael Fagerlund
- Department of Neuroradiology, Karolinska University Hospital, ME Neuroradiologi, 171 76 Stockholm, Sweden
| | - Annika Kits
- Department of Neuroradiology, Karolinska University Hospital, ME Neuroradiologi, 171 76 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet
| | - Klara Guðmundsdóttir
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Sara Tabari
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Tomas Majing
- Funktionsenhet Neuro Operation, Perioperativ Medicin och Intensivvård (PMI), Karolinska Universitetssjukhuset Solna, 171 76 Stockholm Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden
| | - Clark C Chen
- Department Chair, Neurosurgery, University of Minnesota Medical School, D429 Mayo Memorial Building, 420 Delaware St. S. E., MMC96, Minneapolis, MN 55455, USA
| | - Jiri Bartek
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Hotellet Plan 4, 171 76 Stockholm, Sweden; Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
26
|
Abstract
Modern transcranial magnetic resonance-guided focused ultrasound is an incisionless, ablative treatment modality for a growing number of neurologic disorders. This procedure selectively destroys a targeted volume of cerebral tissue and relies on real-time MR thermography to monitor tissue temperatures. By focusing on a submillimeter target through a hemispheric phased array of transducers, ultrasound waves pass through the skull and avoid overheating and brain damage. High-intensity focused ultrasound techniques are increasingly used to create safe and effective stereotactic ablations for medication-refractory movement and other neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Jonathan Pomeraniec
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| | - W Jeffrey Elias
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA.
| | - Shayan Moosa
- Department of Neurosurgery, University of Virginia, School of Medicine, PO Box 800212, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Gardner PA, McDowell MM, Orhorhoro O, Snyderman CH, Gonzalez-Martinez J. A Novel Sublabial Anterior Transmaxillary Approach for Medically Refractory Mesial Temporal Lobe Epilepsy: A Comparative Anatomic Study. Oper Neurosurg (Hagerstown) 2023; 24:e92-e103. [PMID: 36637312 DOI: 10.1227/ons.0000000000000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Current approaches for mesial temporal lobe epilepsy may result in suboptimal seizure control and cognitive decline. An incomplete treatment of the epileptogenic zone and unnecessary violation of functional cortical and subcortical areas may contribute to suboptimal results. OBJECTIVE To describe and test the anatomic feasibility of a novel endoscopic anterior transmaxillary (ATM) approach to the temporal lobe and to compare the described technique to other transfacial approaches. METHODS Twenty-four cadaveric brain hemispheres fixed in formalin were used to study anterior temporal surface anatomy. Two additional hemispheres were fixed in formalin and then frozen for white matter dissections. Subsequently, bilateral dissections on 4 injected cadaveric heads were used to describe the endoscopic ATM approach and to evaluate various anterior endoscopic corridors for the temporal pole and mesial temporal lobe structures. RESULTS The ATM approach was considered superior because of direct visualization of the temporal pole and natural alignment with the mesial temporal structures. The mean exposure corridor covered 49.1° in the sagittal plane and 66.2° in the axial plane. The ATM allowed direct access lateral to the maxillary and mandibular nerves with an anterior-posterior trajectory aligned to the longitudinal axis of the hippocampus formation, allowing for a selective amygdalohippocampectomy with preservation of the trigeminal branches and the lateral temporal neocortex. CONCLUSION The ATM approach is anatomically feasible, providing a direct and selective approach for the temporal pole and mesial temporal lobe structures, with a substantial angle of visualization because of its direct alignment with the mesial temporal lobe structures.
Collapse
Affiliation(s)
- Paul A Gardner
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael M McDowell
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Omuvwie Orhorhoro
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Carl H Snyderman
- Department of Otolaryngology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
28
|
Hamade YJ, Mehrotra A, Chen CC. Stereotactic needle biopsy and laser ablation of geographically distinct lesions through a novel magnetic resonance imaging-compatible cranial stereotaxic frame: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2023; 5:CASE22448. [PMID: 36624633 PMCID: PMC9830414 DOI: 10.3171/case22448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Current technologies that support stereotactic laser ablation (SLA) of geographically distinct lesions require placement of multiple bolts or time-consuming, intertrajectory adjustments. OBSERVATIONS Two geographically distinct nodular lesions were safely biopsied and laser ablated in a 62-year-old woman with recurrent glioblastoma using the ClearPoint Array frame, a novel magnetic resonance imaging-compatible stereotactic frame designed to support independent parallel trajectories without intertrajectory frame adjustment. LESSONS Here, the authors provide a proof-of-principle case report demonstrating that geographically distinct lesions can be safely biopsied and ablated through parallel trajectories supported by the ClearPoint Array frame without intertrajectory adjustment.
Collapse
Affiliation(s)
- Youssef J. Hamade
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota; and
| | - Avanti Mehrotra
- Department of Oncology, North Memorial Health, Minneapolis, Minnesota
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota; and
| |
Collapse
|
29
|
Spacca B, Di Maurizio M, Grandoni M, Tempesti S, Genitori L. Laser interstitial thermal therapy (LITT) for pediatric patients affected by intracranial tumors. Front Neurol 2023; 14:1120286. [PMID: 37153686 PMCID: PMC10157164 DOI: 10.3389/fneur.2023.1120286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction The surgical treatment of brain tumors has evolved over time, offering different strategies tailored to patients and their specific lesions. Among these strategies, Laser Interstitial Thermal Therapy (LITT) is one of the most recent advances in pediatric neurooncological surgery, and its results and evolution are still under assessment. Methods We retrospectively analyzed data from six pediatric patients with deep-seated brain tumors treated with LITT at a single center between November 2019 and June 2022. A total of four patients underwent a stereotaxic biopsy during the same operating session. The indications and preparation for LITT, technical issues, clinical and radiological follow-up, impact on quality of life, and oncological treatment are discussed. Results The mean patient age eight years (ranging from 2 to 11 years). The lesion was thalamic in four patients, thalamo-peduncular in one, and occipital posterior periventricular in one. In total, two patients had been previously diagnosed with low-grade glioma (LGG). Biopsies revealed LGG in two patients, ganglioglioma grade I in one, and diffuse high-grade glioma (HGG) in one. Postoperatively, two patients presented with transient motor deficits. The mean follow-up period was 17 months (ranging from 5 to 32 months). Radiological follow-up showed a progressive reduction of the tumor in patients with LGG. Conclusion Laser interstitial thermal therapy is a promising, minimally invasive treatment for deep-seated tumors in children. The results of lesion reduction appear to be relevant in LGGs and continue over time. It can be used as an alternative treatment for tumors located at sites that are difficult to access surgically or where other standard treatment options have failed.
Collapse
Affiliation(s)
- Barbara Spacca
- Neurosurgery Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
- *Correspondence: Barbara Spacca,
| | | | - Manuela Grandoni
- Neurosurgery Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Sara Tempesti
- Radiology Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| | - Lorenzo Genitori
- Neurosurgery Unit, Meyer Children’s Hospital IRCCS, Florence, Italy
| |
Collapse
|
30
|
Laser interstitial thermal therapy using the Leksell Stereotactic System and a diagnostic MRI suite: how I do it. Acta Neurochir (Wien) 2023; 165:549-554. [PMID: 36585476 PMCID: PMC9922222 DOI: 10.1007/s00701-022-05461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a stereotactic neurosurgical procedure used to treat neoplastic and epileptogenic lesions in the brain. A variety of advanced technological instruments such as frameless navigation systems, robotics, and intraoperative MRI are often described in this context, although the surgical procedure can also be performed using a standard stereotactic setup and a diagnostic MRI suite. METHODS We report on our experience and a surgical technique using a Leksell stereotactic frame and a diagnostic MRI suite to perform LITT. CONCLUSION LITT can be safely performed using the Leksell frame and a diagnostic MRI suite, making the technique available even to neuro-oncology centers without advanced technological setup.
Collapse
|
31
|
Advances in the Treatment of Pediatric Brain Tumors. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010062. [PMID: 36670613 PMCID: PMC9856380 DOI: 10.3390/children10010062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Pediatric brain tumors are the most common solid malignancies in children. Advances in the treatment of pediatric brain tumors have come in the form of imaging, biopsy, surgical techniques, and molecular profiling. This has led the way for targeted therapies and immunotherapy to be assessed in clinical trials for the most common types of pediatric brain tumors. Here we review the latest efforts and challenges in targeted molecular therapy, immunotherapy, and newer modalities such as laser interstitial thermal therapy.
Collapse
|
32
|
Del Bene M, Carone G, Porto E, Barbotti A, Messina G, Tringali G, Rossi D, Lanteri P, Togni R, Demichelis G, Aquino D, Doniselli FM, DiMeco F, Casali C. Neurophysiology-Guided Laser Interstitial Thermal Therapy: A Synergistic Approach For Motor Function Preservation. Technical Note. World Neurosurg 2022; 168:165-172. [DOI: 10.1016/j.wneu.2022.09.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
33
|
Patil AA, de Joya J. Minimally invasive surgical techniques in patients with intractable epilepsy with CT-guided stereotactic cryoablation as a superior alternative: a systematic review. EGYPTIAN JOURNAL OF NEUROSURGERY 2022. [DOI: 10.1186/s41984-022-00174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Stereotactic cryoablation is a minimally invasive surgical technique that has been used to treat disorders of the brain in the past; however, in current practice, it is primarily used for the treatment of liver, kidney, lung, prostate, and breast neoplasms. In this paper, currently used surgical methods to treat medically refractory seizure disorder are reviewed, and a case is made for the use of stereotactic cryoablation.
Main body
Anterior temporal lobectomy is the gold standard for temporal. There are also several variations of this procedure. Since this is a resective surgery, it can result in neurological defects. To obviate this problem, minimally invasive surgical techniques such as radio frequency ablation and laser interstitial thermal therapy are currently being used for intracranial targets. Cryoablation offers certain advantages over thermal ablations. Cryoablation studies in brain, renal, breast, and other neoplasms have shown that cryoablation has superior abilities to monitor the ablation zone in real time via computerized tomography imaging and also has the capability to create lesions of both smaller and larger sizes. This allows for safer and more effective tumor destruction.
Short conclusion
Based on the review, the authors conclude that further investigation of the use of stereotactic cryoablation in patients with medically intractable epilepsy is needed.
Collapse
|
34
|
Riviere-Cazaux C, Bhandarkar AR, Rahman M, Zheng CR, Bauman MMJ, Naylor RM, Van Gompel JJ, Zimmerman RS, White JJ, Parney IF, Chaichana KL, Miller KJ, Lehman VT, Kaufmann TJ, Burns TC. Outcomes and Principles of Patient Selection for Laser Interstitial Thermal Therapy for Metastatic Brain Tumor Management: A Multisite Institutional Case Series. World Neurosurg 2022; 165:e520-e531. [PMID: 35760326 DOI: 10.1016/j.wneu.2022.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is an emerging treatment modality for both primary brain tumors and metastases. We report initial outcomes after LITT for metastatic brain tumors across 3 sites at our institution and discuss potential strategies for optimal patient selection and outcomes. METHODS International Classification of Diseases, Ninth Revision and Tenth Revision codes were used to identify patients with malignant brain tumors treated via LITT across all 3 Mayo Clinic sites with at least 6 months follow-up. Local control was based on radiologic and clinical evidence. Overall survival was measured from time of receiving LITT until death or end of the study period. RESULTS Twenty-three patients were treated for progression of a single (n = 21) or multiple (n = 2) previously radiated metastatic lesions and/or radiation necrosis. Median age was 56 years (interquartile range, 47-66.5 years). LITT achieved local control of the lesion in most patients with metastatic tumors or radiation necrosis (n = 18; 81.8%) for the duration of follow-up. One patient did not have local control data available. Thirteen (56.5%) patients remained alive at the end of the study period. No other patients died of their treated disease during the study period; 5 of 10 deaths were attributable to central nervous system progression outside the treated lesion. Although median survival for this cohort has not yet been reached, the current median survival is 16 months (interquartile range, 12-48.5 months) after LITT for metastatic/radiation necrosis lesions. CONCLUSIONS LITT was associated with sustained local control in 81.8% of patients treated for radiographic progression of metastatic central nervous system disease.
Collapse
Affiliation(s)
- Cecile Riviere-Cazaux
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
| | - Archis R Bhandarkar
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
| | - Masum Rahman
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Clark R Zheng
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
| | - Megan M J Bauman
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Mayo Clinic Alix School of Medicine, Rochester, Minnesota, USA
| | - Ryan M Naylor
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jaclyn J White
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kai J Miller
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vance T Lehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
35
|
Grabowski MM, Srinivasan ES, Vaios EJ, Sankey EW, Otvos B, Krivosheya D, Scott A, Olufawo M, Ma J, Fomchenko EI, Herndon JE, Kim AH, Chiang VL, Chen CC, Leuthardt EC, Barnett GH, Kirkpatrick JP, Mohammadi AM, Fecci PE. Combination Laser Interstitial Thermal Therapy Plus Stereotactic Radiotherapy (SRT) Increases Time to Progression for Biopsy-Proven Recurrent Brain Metastases. Neurooncol Adv 2022; 4:vdac086. [PMID: 35795470 PMCID: PMC9248774 DOI: 10.1093/noajnl/vdac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Improved survival for patients with brain metastases has been accompanied by a rise in tumor recurrence after stereotactic radiotherapy (SRT). Laser interstitial thermal therapy (LITT) has emerged as an effective treatment for SRT failures as an alternative to open resection or repeat SRT. We aimed to evaluate the efficacy of LITT followed by SRT (LITT+SRT) in recurrent brain metastases. Methods A multicenter, retrospective study was performed of patients who underwent treatment for biopsy-proven brain metastasis recurrence after SRT at an academic medical center. Patients were stratified by “planned LITT+SRT” versus “LITT alone” versus “repeat SRT alone.” Index lesion progression was determined by modified Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria. Results Fifty-five patients met inclusion criteria, with a median follow-up of 7.3 months (range: 1.0–30.5), age of 60 years (range: 37–86), Karnofsky Performance Status (KPS) of 80 (range: 60–100), and pre-LITT/biopsy contrast-enhancing volume of 5.7 cc (range: 0.7–19.4). Thirty-eight percent of patients underwent LITT+SRT, 45% LITT alone, and 16% SRT alone. Median time to index lesion progression (29.8, 7.5, and 3.7 months [P = .022]) was significantly improved with LITT+SRT. When controlling for age in a multivariate analysis, patients treated with LITT+SRT remained significantly less likely to have index lesion progression (P = .004). Conclusions These data suggest that LITT+SRT is superior to LITT or repeat SRT alone for treatment of biopsy-proven brain metastasis recurrence after SRT failure. Prospective trials are warranted to validate the efficacy of using combination LITT+SRT for treatment of recurrent brain metastases.
Collapse
Affiliation(s)
- Matthew M Grabowski
- Corresponding Author: Matthew M. Grabowski, MD, Cleveland Clinic, 9500 Euclid Ave. S4, Cleveland, OH 44195, USA ()
| | - Ethan S Srinivasan
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Balint Otvos
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daria Krivosheya
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Alex Scott
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Olufawo
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elena I Fomchenko
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gene H Barnett
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - John P Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Duke Center for Brain and Spine Metastasis, Durham, North Carolina, USA
| | - Alireza M Mohammadi
- Department of Neurosurgery, Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic & Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
- Duke Center for Brain and Spine Metastasis, Durham, North Carolina, USA
| |
Collapse
|
36
|
Lerner EC, Edwards RM, Wilkinson DS, Fecci PE. Laser ablation: Heating up the anti-tumor response in the intracranial compartment. Adv Drug Deliv Rev 2022; 185:114311. [PMID: 35489652 PMCID: PMC10589123 DOI: 10.1016/j.addr.2022.114311] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapies, such as immune checkpoint inhibition (ICI), have had limited success in treating intracranial malignancies. These failures are due partly to the restrictive blood-brain-barrier (BBB), the profound tumor-dependent induction of local and systemic immunosuppression, and immune evasion exhibited by these tumors. Therefore, novel approaches must be explored that aim to overcome these stringent barriers. LITT is an emerging treatment for brain tumors that utilizes thermal ablation to kill tumor cells. LITT provides an additional therapeutic benefit by synergizing with ICI and systemic chemotherapies to strengthen the anti-tumor immune response. This synergistic relationship involves transient disruption of the BBB and local augmentation of immune function, culminating in increased CNS drug penetrance and improved anti-tumor immunity. In this review, we will provide an overview of the challenges facing immunotherapy for brain tumors, and discuss how LITT may synergize with the endogenous anti-tumor response to improve the efficacy of ICI.
Collapse
Affiliation(s)
- Emily C Lerner
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Ryan M Edwards
- Duke Medical School, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Peter E Fecci
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
37
|
Johnson GW, Han RH, Smyth MD, Leuthardt EC, Kim AH. Laser Interstitial Thermal Therapy in Grade 2/3 IDH1/2 Mutant Gliomas: A Preliminary Report and Literature Review. Curr Oncol 2022; 29:2550-2563. [PMID: 35448183 PMCID: PMC9028957 DOI: 10.3390/curroncol29040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Laser interstitial thermal therapy (LITT) has become an increasingly utilized alternative to surgical resection for the treatment of glioma in patients. However, treatment outcomes in isocitrate dehydrogenase 1 and 2 (IDH1/2) mutant glioma, specifically, have not been reported. The objective of this study was to characterize a single institution’s cohort of IDH1/2 mutant grade 2/3 glioma patients treated with LITT. We collected data on patient presentation, radiographic features, tumor molecular profile, complications, and outcomes. We calculated progression-free survival (PFS) and tested factors for significant association with longer PFS. Overall, 22.7% of our cohort experienced progression at a median follow up of 1.8 years. The three- and five-year estimates of PFS were 72.5% and 54.4%, respectively. This is the first study to characterize outcomes in patients with IDH1/2 mutant glioma after LITT. Our results suggest that LITT is an effective treatment option for IDH1/2 mutant glioma.
Collapse
Affiliation(s)
- Gabrielle W. Johnson
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.W.J.); (R.H.H.); (E.C.L.)
| | - Rowland H. Han
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.W.J.); (R.H.H.); (E.C.L.)
| | - Matthew D. Smyth
- Department of Neurosurgery, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA;
| | - Eric C. Leuthardt
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.W.J.); (R.H.H.); (E.C.L.)
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albert H. Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA; (G.W.J.); (R.H.H.); (E.C.L.)
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
38
|
Sabahi M, Bordes SJ, Najera E, Mohammadi AM, Barnett GH, Adada B, Borghei-Razavi H. Laser Interstitial Thermal Therapy for Posterior Fossa Lesions: A Systematic Review and Analysis of Multi-Institutional Outcomes. Cancers (Basel) 2022; 14:cancers14020456. [PMID: 35053618 PMCID: PMC8773929 DOI: 10.3390/cancers14020456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Laser interstitial thermal therapy (LITT) has emerged as a treatment option for deep-seated primary and metastatic brain lesions; however, hardly any data exist regarding LITT for lesions of the posterior fossa. Methods: A quantitative systematic review was performed. Article selection was performed by searching MEDLINE (using PubMed), Scopus, and Cochrane electronic bibliographic databases. Inclusion criteria were studies assessing LITT on posterior fossa tumors. Results: 16 studies comprising 150 patients (76.1% female) with a mean age of 56.47 years between 2014 and 2021 were systematically reviewed for treatment outcomes and efficacy. Morbidity and mortality data could be extracted for 131 of the 150 patients. Death attributed to treatment failure, disease progression, recurrence, or postoperative complications occurred in 6.87% (9/131) of the pooled sample. Procedure-related complications, usually including new neurologic deficits, occurred in approximately 14.5% (19/131) of the pooled sample. Neurologic deficits improved with time in most cases, and 78.6% (103/131) of the pooled sample experienced no complications and progression-free survival at the time of last follow-up. Conclusions: LITT for lesions of the posterior fossa continues to show promising data. Future clinical cohort studies are required to further direct treatment recommendations.
Collapse
Affiliation(s)
- Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan 65141, Iran;
| | - Stephen J. Bordes
- Department of Surgery, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA;
| | - Edinson Najera
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
| | - Alireza M. Mohammadi
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; (A.M.M.); (G.H.B.)
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gene H. Barnett
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44195, USA; (A.M.M.); (G.H.B.)
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Badih Adada
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL 33331, USA; (E.N.); (B.A.)
- Correspondence: ; Tel.: +1-(954)-659-5630
| |
Collapse
|
39
|
Magnetic Resonance-guided Laser Interstitial Thermal Therapy (MRgLITT) for Brainstem Pathologies. World Neurosurg 2022; 161:e80-e89. [PMID: 35033695 DOI: 10.1016/j.wneu.2022.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Magnetic Resonance-guided Laser interstitial thermal therapy (MRgLITT) is a minimally invasive and effective treatment option that can potentially treat deep-seated pathologies in cases where there are no safe open surgical corridors. In this report, we present our experience using MRgLITT for brainstem pathologies. METHODS A retrospective chart analysis was conducted of all patients who underwent MRgLITT for pathologies within or closely surrounding the brainstem between 2011 and 2020. The patients underwent stereotactic laser placement in the operating suite and were transported to the MRI suite for laser ablation with real-time monitoring. Demographics, operative parameters and complications were recorded. RESULTS A total of twelve patients underwent MRgLITT for brainstem pathologies. The average age of the patients was 47.6 years old, ranging from 4 to 75. Pathologies included both primary and metastatic intracranial tumors. The average pre-ablation volume of the targets was 2.4cm3 ±SEM=0.50. The average time of ablation was 324.3± 60.7 seconds and average post-ablation volume was 2.92±0.53 cm3. There was one perioperative mortality directly related to the procedure and seven cases of post-operative deficits. Two patients had recurrence after MRgLITT and opted to undergo additional alternative treatments. CONCLUSION The brainstem represents formidable territory even for minimally invasive procedures. The overall morbidity and mortality remains high, and the probability of achieving a meaningful outcome needs to be carefully assessed.
Collapse
|
40
|
Robot assisted laser-interstitial thermal therapy with iSYS1 and Visualase: how I do it. Acta Neurochir (Wien) 2021; 163:3465-3471. [PMID: 34148147 DOI: 10.1007/s00701-021-04883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Laser-interstitial thermal therapy (LITT) is an ablative treatment based on a surgically implanted laser-emitting catheter to induce a focal ablation of the pathological tissue. The main indications in neurosurgery are primary brain tumors, metastases, radiation necrosis, and pediatric brain tumors. Several approaches have been proposed to implant the laser-emitting catheter, both in frameless and frame-based conditions. METHODS We report our approach for Robot assisted laser-interstitial thermal therapy of brain lesions with iSYS1 and Visualase (Medtronic). CONCLUSIONS iSYS1 represents a significant adjunct to LITT procedures and may be safely implemented in routine laser-catheter positioning.
Collapse
|
41
|
Flynn SC, Eli IM, Ghogawala Z, Yew AY. Minimally Invasive Surgery for Spinal Metastasis: A Review. World Neurosurg 2021; 159:e32-e39. [PMID: 34861449 DOI: 10.1016/j.wneu.2021.11.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Minimally invasive surgery (MIS) techniques have advanced the treatment of metastatic diseases to the spine. The objective of this review is to describe clinical outcomes, benefits, and complications of these techniques. METHODS All relevant clinical studies describing the role of MIS, computer-assisted navigation (CAN), robot-assisted (RA) procedures, and laser interstitial thermal therapy (LITT) in the treatment of metastatic spine diseases were identified from PubMed, MEDLINE, and relevant article bibliographies. RESULTS For MIS articles, we filtered 1480 results and identified 26 studies. For CAN, we searched 464 articles to identify 18 articles for review. For RA, we searched 321 results to identify 7 studies for review. For LITT, we identified 21 articles for review. CONCLUSIONS MIS for the treatment of spine metastasis has significant potential benefits in reducing surgical site infections, hospital stay, and blood loss without compromising instrument accuracy or overall outcomes. Overall, MIS and its adjuncts have the potential to reduce the risks involved in the treatment of patients with metastatic disease to the spinal column without compromising the benefits of decompression and stabilization of the spine.
Collapse
Affiliation(s)
- Scott C Flynn
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ilyas M Eli
- Department of Neurosurgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA; Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
| | - Zoher Ghogawala
- Department of Neurosurgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA
| | - Andrew Y Yew
- Department of Neurosurgery, Lahey Clinic Medical Center, Burlington, Massachusetts, USA.
| |
Collapse
|
42
|
Modulation of the Blood-Brain Barrier for Drug Delivery to Brain. Pharmaceutics 2021; 13:pharmaceutics13122024. [PMID: 34959306 PMCID: PMC8708282 DOI: 10.3390/pharmaceutics13122024] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) precisely controls brain microenvironment and neural activity by regulating substance transport into and out of the brain. However, it severely hinders drug entry into the brain, and the efficiency of various systemic therapies against brain diseases. Modulation of the BBB via opening tight junctions, inhibiting active efflux and/or enhancing transcytosis, possesses the potential to increase BBB permeability and improve intracranial drug concentrations and systemic therapeutic efficiency. Various strategies of BBB modulation have been reported and investigated preclinically and/or clinically. This review describes conventional and emerging BBB modulation strategies and related mechanisms, and safety issues according to BBB structures and functions, to try to give more promising directions for designing more reasonable preclinical and clinical studies.
Collapse
|
43
|
Ghanbari M, Rezazadeh G. Thermo-vibrational analyses of skin tissue subjected to laser heating source in thermal therapy. Sci Rep 2021; 11:22633. [PMID: 34799649 PMCID: PMC8605001 DOI: 10.1038/s41598-021-02006-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Laser-induced thermal therapy, due to its applications in various clinical treatments, has become an efficient alternative, especially for skin ablation. In this work, the two-dimensional thermomechanical response of skin tissue subjected to different types of thermal loading is investigated. Considering the thermoelastic coupling term, the two-dimensional differential equation of heat conduction in the skin tissue based on the Cattaneo–Vernotte heat conduction law is presented. The two-dimensional differential equation of the tissue displacement coupled with the two-dimensional hyperbolic heat conduction equation in the tissue is solved simultaneously to analyze the thermal and mechanical response of the skin tissue. The existence of mixed complicated boundary conditions makes the problem so complex and intricate. The Galerkin-based reduced-order model has been utilized to solve the two-sided coupled differential equations of vibration and heat transfer in the tissue with accompanying complicated boundary conditions. The effect of various types of heating sources such as thermal shock, single and repetitive pulses, repeating sequence stairs, ramp-type, and harmonic-type heating, on the thermomechanical response of the tissue is investigated. The temperature distribution in the tissue along depth and radial direction is also presented. The transient temperature and displacement response of tissue considering different relaxation times are studied, and the results are discussed in detail.
Collapse
Affiliation(s)
- Mina Ghanbari
- Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran.
| | - Ghader Rezazadeh
- Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran.,South Ural State University, Lenin prospect 76, Chelyabinsk, Russian Federation, 454080
| |
Collapse
|
44
|
Luther E, Lu VM, Morell AA, Elarjani T, Mansour S, Echeverry N, Gaztanaga W, King H, McCarthy D, Eichberg DG, Shah A, Burks J, Kaur G, Ivan ME, Komotar RJ. Supralesional Ablation Volumes Are Feasible in the Posterior Fossa and May Provide Enhanced Symptomatic Relief. Oper Neurosurg (Hagerstown) 2021; 21:418-425. [PMID: 34528092 DOI: 10.1093/ons/opab332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/18/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) for posterior fossa lesions remains rare as the small size of the infratentorial compartment, proximity to the brainstem, and thickness/angulation of the occipital bone creates barriers to procedural success. Furthermore, evaluation of the effect of ablation volume on outcomes is limited. OBJECTIVE To analyze our institutional experience with LITT in the posterior fossa stratifying perioperative and long-term outcomes by ablation volumes. METHODS Seventeen patients with posterior fossa lesions treated with LITT from 2013 to 2020 were identified. Local progression-free survival (PFS), overall survival, steroid dependence, and edema reduction were evaluated with Kaplan-Meier analysis grouped by ablation volume. Preoperative, postoperative, and last known Karnofsky Performance Status (KPS) were compared using a matched paired t test. RESULTS No differences in pathology, preoperative KPS, or preoperative lesion volume were found between patients with total (100%-200% increase in pre-LITT lesion volume) versus radical (>200% increase in pre-LITT lesion volume) ablations. Patients who underwent radical ablation had a higher postoperative KPS (93 vs 82, P = .02) and higher KPS (94 vs 87, P = .04) and greater reduction in perilesional edema at last follow-up (P = .01). Median follow-up was 80.8 wk. CONCLUSION Despite obvious anatomical challenges, our results demonstrate that radical ablations are both feasible and safe in the posterior fossa. Furthermore, radical ablations may lead to greater decreases in perilesional edema and improved functional status both immediately after surgery and at last follow-up. Thus, LITT should be considered for patients with otherwise unresectable or radioresistant posterior fossa lesions.
Collapse
Affiliation(s)
- Evan Luther
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Victor M Lu
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Alexis A Morell
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Turki Elarjani
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Samuel Mansour
- Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Nikolas Echeverry
- Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Wendy Gaztanaga
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Hunter King
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - David McCarthy
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Daniel G Eichberg
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Ashish Shah
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Joshua Burks
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Gurvinder Kaur
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA
| | - Michael E Ivan
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA.,Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| | - Ricardo J Komotar
- University of Miami Miller School of Medicine, Department of Neurological Surgery, Miami, Florida, USA.,Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida, USA
| |
Collapse
|
45
|
Zeller S, Kaye J, Jumah F, Mantri SS, Mir J, Raju B, Danish SF. Current applications and safety profile of laser interstitial thermal therapy in the pediatric population: a systematic review of the literature. J Neurosurg Pediatr 2021; 28:360-367. [PMID: 34214984 DOI: 10.3171/2021.2.peds20721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/08/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Laser interstitial thermal therapy (LITT) provides a minimally invasive alternative to open brain surgery, making it a powerful neurosurgical tool especially in pediatric patients. This systematic review aimed to highlight the indications and complications of LITT in the pediatric population. METHODS In line with the PRISMA guidelines, the authors conducted a systematic review to summarize the current applications and safety profiles of LITT in pediatrics. PubMed and Embase were searched for studies that reported the outcomes of LITT in patients < 21 years of age. Retrospective studies, case series, and case reports were included. Two authors independently screened the articles by title and abstract followed by full text. Relevant variables were extracted from studies that met final eligibility, and results were pooled using descriptive statistics. RESULTS The selection process captured 303 pediatric LITT procedures across 35 studies. Males comprised approximately 60% of the aggregate sample, with a mean age of 10.5 years (range 0.5-21 years). The LITT technologies used included Visualase (89%), NeuroBlate (9%), and Multilase 2100 (2%). The most common indication was treatment of seizures (86%), followed by brain tumors (16%). The mean follow-up duration was 15.6 months (range 1.3-48 months). The overall complication rate was 15.8%, which comprised transient neurological deficits, cognitive and electrolyte disturbances, hemorrhage, edema, and hydrocephalus. No deaths were reported. CONCLUSIONS As of now, LITT's most common applications in pediatrics are focused on treating medically refractory epilepsy and brain tumors that can be difficult to resect. The safety of LITT can provide an attractive alternative to open brain surgery in the pediatric population.
Collapse
Affiliation(s)
- Sabrina Zeller
- 1Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick
| | - Joel Kaye
- 1Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick
| | - Fareed Jumah
- 1Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick
| | - Shilpa S Mantri
- 2Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Jamshaid Mir
- 3College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Bharath Raju
- 1Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick
| | - Shabbar F Danish
- 1Department of Neurosurgery, Rutgers-Robert Wood Johnson Medical School and Robert Wood Johnson University Hospital, New Brunswick
| |
Collapse
|
46
|
Inglut CT, Gray KM, Vig S, Jung JW, Stabile J, Zhang Y, Stroka KM, Huang HC. Photodynamic Priming Modulates Endothelial Cell-Cell Junction Phenotype for Light-activated Remote Control of Drug Delivery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7200311. [PMID: 33519171 PMCID: PMC7839980 DOI: 10.1109/jstqe.2020.3024014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yuji Zhang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Munier SM, Desai AN, Patel NV, Danish SF. Effects of Intraoperative Magnetic Resonance Thermal Imaging Signal Artifact During Laser Interstitial Thermal Therapy on Thermal Damage Estimate and Postoperative Magnetic Resonance Imaging Ablative Area Concordance. Oper Neurosurg (Hagerstown) 2021; 18:524-530. [PMID: 31313811 DOI: 10.1093/ons/opz182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/11/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive procedure that utilizes intraoperative magnetic resonance thermal imaging (MRTI) to generate a thermal damage estimate (TDE) of the ablative area. In select cases, the MRTI contains a signal artifact or defect that distorts the ablative region. No study has considered the impact of this artifact on TDE accuracy. OBJECTIVE To determine the effect of intraoperative MRTI signal artifact on postoperative magnetic resonance imaging (MRI)-predicted ablative area. METHODS All ablations were performed using the Visualase MRI-Guided Laser Ablation System (Medtronic). Patients were grouped based on whether the intraoperative MRTI contained signal artifact that distorted the ablative region. Cross-sectional area of the ablative lesion from the MRI image was measured, and the difference between intraoperative TDE and postoperative MRI cross-sectional area was calculated and compared between groups with and without intraoperative MRTI artifact. RESULTS A total of 91 patients undergoing MRgLITT for various surgical indications were examined. MRTI artifact was observed in 43.9% of cases overall. The mean absolute difference between TDE and the postoperative MRI cross-sectional area was 94.8 mm2 (SEM = 11.6) in the group with intraoperative MRTI artifact and 54.4 mm2 (SEM = 5.5) in the nonartifact group. CONCLUSION MRTI signal artifact is common during LITT. The presence of signal artifact during intraoperative MRTI results in higher variation between intraoperative TDE and postoperative MRI cross-sectional ablative area. In cases in which intraoperative MRTI artifact is observed, there may be a larger degree of variation between observed intraoperative TDE and measured postoperative MRTI ablative area.
Collapse
Affiliation(s)
- Sean M Munier
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Akshay N Desai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Nitesh V Patel
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Shabbar F Danish
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
48
|
Shaari H, Kevrić J, Jukić S, Bešić L, Jokić D, Ahmed N, Rajs V. Deep Learning-Based Studies on Pediatric Brain Tumors Imaging: Narrative Review of Techniques and Challenges. Brain Sci 2021; 11:brainsci11060716. [PMID: 34071202 PMCID: PMC8230188 DOI: 10.3390/brainsci11060716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Brain tumors diagnosis in children is a scientific concern due to rapid anatomical, metabolic, and functional changes arising in the brain and non-specific or conflicting imaging results. Pediatric brain tumors diagnosis is typically centralized in clinical practice on the basis of diagnostic clues such as, child age, tumor location and incidence, clinical history, and imaging (Magnetic resonance imaging MRI / computed tomography CT) findings. The implementation of deep learning has rapidly propagated in almost every field in recent years, particularly in the medical images’ evaluation. This review would only address critical deep learning issues specific to pediatric brain tumor imaging research in view of the vast spectrum of other applications of deep learning. The purpose of this review paper is to include a detailed summary by first providing a succinct guide to the types of pediatric brain tumors and pediatric brain tumor imaging techniques. Then, we will present the research carried out by summarizing the scientific contributions to the field of pediatric brain tumor imaging processing and analysis. Finally, to establish open research issues and guidance for potential study in this emerging area, the medical and technical limitations of the deep learning-based approach were included.
Collapse
Affiliation(s)
- Hala Shaari
- Department of Information Technologies, Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Jasmin Kevrić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Samed Jukić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Larisa Bešić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Dejan Jokić
- Faculty of Engineering and Natural Sciences, International BURCH University, 71000 Sarajevo, Bosnia and Herzegovina; (J.K.); (S.J.); (L.B.); (D.J.)
| | - Nuredin Ahmed
- Control Department, Technical Computer College Tripoli, Tripoli 00218, Libya;
| | - Vladimir Rajs
- Department of Power, Electronics and Telecommunication Engineering, Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence:
| |
Collapse
|
49
|
Remick M, McDowell MM, Gupta K, Felker J, Abel TJ. Emerging indications for stereotactic laser interstitial thermal therapy in pediatric neurosurgery. Int J Hyperthermia 2021; 37:84-93. [PMID: 32672117 DOI: 10.1080/02656736.2020.1769868] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Surgical treatment of deep or difficult to access lesions represents a unique and significant challenge for pediatric neurosurgeons. The introduction of stereotactic magnetic resonance-guided laser interstitial thermal therapy (LITT) over the last decade has had a dramatic impact on the landscape of pediatric neurosurgery. LITT provides a safe and effective option for children with epilepsy from hypothalamic hamartoma that represents a ground-breaking new therapy for a condition which was historically very difficult to treat with previous neurosurgical techniques. LITT has also been used as an alternative surgical technique for mesial temporal sclerosis, focal cortical dysplasia, MR-negative epilepsy, cavernoma-related epilepsy, insular epilepsy, and corpus callosotomy among other epilepsy etiologies. In some cases, LITT has been associated with improved cognitive outcomes compared to standard techniques, as in mesial temporal lobe epilepsy. Initial experiences with LITT for neuro-oncologic processes are also promising. LITT is often attractive to patients and providers as a minimally invasive approach, but the differences in safety and clinical outcome between LITT and traditional approaches are still being studied. In this review, we examine the emerging indications and clinical evidence for LITT in pediatric neurosurgery.
Collapse
Affiliation(s)
- Madison Remick
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael M McDowell
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kanupriya Gupta
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James Felker
- Department of Pediatric Neuro-Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Mansouri A, Beyn ME, Pancholi A, Chow CT, Wang R, Boutet A, Elias GJB, Germann J, Loh A, Voisin MR, Lozano AM, Chiocca EA, Vogelbaum MA, Zadeh G. Evolution of the Neurosurgeon's Role in Clinical Trials for Glioblastoma: A Systematic Overview of the Clinicaltrials.Gov Database. Neurosurgery 2021; 89:196-203. [PMID: 33989408 DOI: 10.1093/neuros/nyab169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The therapeutic challenge of glioblastoma (GBM) has catalyzed the development of clinical trials to evaluate novel interventions. With increased understanding of GBM biology and technological advances, the neurosurgeon's role in neuro-oncology has evolved. OBJECTIVE To evaluate the current landscape of procedure-based clinical trials for GBM to characterize this evolution, gain insight into past failures, and accordingly outline implications for future research and practice that may inform future studies. METHODS The ClinicalTrials.gov database was searched for surgical/procedural trials in individuals with GBM. Demographics, specific intervention, trial phase, and main outcome measures were abstracted. RESULTS A total of 224 of 2311 GBM trials (9.7%) were identified as procedural, with the majority being based in the United States (155/224, 69.2%), single-center (155/224, 69.2%), and not randomized (176/224, 78.6%). Primary and recurrent GBMs were evenly addressed. The leading interventions were local delivery of therapeutics (50.0%), surgical techniques (33.9%), such as image-guided surgery, and novel device applications (14.3%). Phase I designs predominated (82/224, 36.6%). The top primary outcome was safety/tolerability/feasibility (88/224, 39.3%), followed by survival (46/224, 20.5%). Approximately 17% of studies were terminated, withdrawn, or suspended. Fifty-two linked publications were identified, among which 42 were classified as having a positive result. CONCLUSION Procedural interventions comprised ∼10% of all registered GBM trials. Local delivery of therapeutics, use of surgical imaging techniques and novel device applications, predominantly through phase I designs, represent the evolved role of the neurosurgeon in neuro-oncology. Improved reporting of trial designs, outcomes, and results are needed to better inform the field and increase efficiency.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA.,Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | | | | | | | - Ryan Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Boutet
- University Health Network, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Aaron Loh
- University Health Network, Toronto, Ontario, Canada
| | - Mathew R Voisin
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - E Antonio Chiocca
- Harvey W. Cushing Neuro-Oncology Laboratories (HCNL), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.,MacFeeters Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Institute of Medical Science, Toronto, Ontario, Canada
| |
Collapse
|