1
|
Chu XL, Zhao XX, Liu SY, Li YJ, Ding N, Liu MQ, Li QW, Li Q. Research progress in different physical therapies for treating peripheral nerve injuries. Front Neurol 2025; 16:1508604. [PMID: 40260135 PMCID: PMC12009707 DOI: 10.3389/fneur.2025.1508604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 04/23/2025] Open
Abstract
Physical therapy is gaining recognition as an effective therapeutic approach in the realm of peripheral nerve injury (PNI) research. This article seeks to provide a comprehensive review of the latest advancements, applications, and mechanisms of action of four physical therapy modalities-ultrasound, electrical stimulation, photobiomodulation, and aerobic exercise-in the context of PNI. Ultrasound, characterized by its mechanical and thermal effects, is widely regarded as an effective non-invasive or minimally invasive method for neural modulation. Electrical stimulation therapy, a prevalent technique in PNI treatment, entails the application of electric currents to stimulate nerve and muscle tissues, thereby facilitating nerve regeneration and mitigating muscle atrophy. Photobiomodulation, a process that influences cell metabolism through the absorption of photon energy, is closely associated with neural regeneration in the field of rehabilitation medicine. Additionally, aerobic exercise, a popular form of physical activity, serves to enhance blood circulation and improve neuronal function. The article discusses various physical therapy methods for peripheral nerve injuries, including hyperbaric oxygen therapy, magnetic therapy, and biofeedback therapy, in addition to traditional approaches. Despite advancements, challenges in nerve injury treatment persist, such as the need for standardized treatment protocols, consideration of individual variations, and assessment of long-term effectiveness. Future research is needed to address these issues. In summary, this article offers theoretical and empirical evidence supporting the utilization of physical therapy in the management of PNI. This research aims to promote further research and clinical practice in this field, contributing to enhancing patient quality of life and recovery outcomes.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Xiao-Xuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shuai-Yi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ya-Jie Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ning Ding
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Min-Qi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qing-Wen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
2
|
Hu K, Williams MCG, Kammien AJ, Canner J, Mukherjee T, Hill E, Colen D. Cost Comparison of Digital Nerve Repair Techniques. Plast Reconstr Surg 2025; 155:543e-552e. [PMID: 39085087 DOI: 10.1097/prs.0000000000011662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
BACKGROUND Direct cost comparisons of nerve allograft with other techniques for repairing short digital nerve gaps are lacking. This study compares the costs of various techniques for digital nerve repair, anticipating significant cost increases for allograft implants. METHODS The State Ambulatory Surgery and Services Databases for Florida, New York, and Wisconsin from 2015 through 2020 were used. Patients with primary repair, short autograft, conduit, and allograft were compared along total, surgical supply, operating room, and anesthesia charges. RESULTS Among 5009 patients, there were 2967 primary nerve repairs (59.2%), 77 autografts (1.5%), 1647 conduits (32.9%), and 318 allografts (6.3%). A total of 2886 patients were male (57.6%), and the mean patient age was 40.4 ± 16.3 years. Over the study period, primary repairs decreased (from 63.9% in 2015 to 56.3% in 2020), whereas allografts increased significantly (from 8.8% in 2018 to 12.6% in 2020). Median total charges varied significantly across procedures, with the most expensive being allograft ($35,295), followed by conduit ($25,717), autograft ($24,749), and primary repair ($18,767). On multivariable regression, allografts were significantly more expensive than autografts in total charges of $11,224 (95% CI, $4196 to $18,252) and supply charges of $10,484 (95% CI, $6073 to $14,896), but not in operating room or anesthesia charges. Flexor tendon repair was associated with greater total, operating room, and anesthesia charges, but had similar supply charges. CONCLUSIONS Nerve allografting is the most expensive digital nerve repair technique, most likely due to the cost of the implant. To minimize health care expenditure and ensure equitable patient access, surgeons should consider this cost along with clinical factors when choosing digital nerve repair techniques.
Collapse
Affiliation(s)
- Kevin Hu
- From the Division of Plastic and Reconstructive Surgery
| | | | | | | | | | - Elspeth Hill
- From the Division of Plastic and Reconstructive Surgery
| | - David Colen
- From the Division of Plastic and Reconstructive Surgery
| |
Collapse
|
3
|
Dy CJ, Horowitz RS, Brogan DM. Protocol to Develop a Core Outcomes Set for Peripheral Nerve Injury. J Hand Surg Asian Pac Vol 2025; 30:49-54. [PMID: 39376110 DOI: 10.1142/s2424835525500043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Background: Advances in treatment philosophies and microsurgical techniques for peripheral nerve injuries (PNI) have led to improved outcomes. However, lack of standardisation in the evaluation of clinical outcomes after PNI treatment precludes the ability to compare reconstruction methods, such as nerve transfer, nerve grafting, free functioning muscle transfers and tendon transfers. To this end, our goal is to work collaboratively to establish a core outcome set to evaluate outcomes after PNI. Methods: The protocol for this arc of work, delineated in this manuscript, consists of two phases: (1) conducting a systematic review of how outcomes are currently reported following PNI and (2) a Delphi process to gain consensus on the measures to include in the core outcome set for PNI. In the Delphi process, two online rounds will be used to gather consensus on the importance of each outcome measure. A final round will be conducted in person to discuss and resolve measures for which there is not yet consensus and to finalise the core outcomes set. Conclusions: Through this process, a common standard for reporting outcomes after PNI will be created, facilitating collaboration and future research.
Collapse
Affiliation(s)
- Christopher J Dy
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Roy S Horowitz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedics, Hadassah Medical Center, Jerusalem, Israel
| | - David M Brogan
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Daeschler SC, So KJ, Feinberg K, Manoraj M, Cheung J, Zhang J, Mirmoeini K, Santerre JP, Gordon T, Borschel GH. A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair. Neural Regen Res 2025; 20:291-304. [PMID: 38767493 PMCID: PMC11246136 DOI: 10.4103/nrr.nrr-d-22-01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/15/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00036/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal regeneration following surgical nerve repair is slow and often incomplete, resulting in poor functional recovery which sometimes contributes to lifelong disability. Currently, there are no FDA-approved therapies available to promote nerve regeneration. Tacrolimus accelerates axonal regeneration, but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery. The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site, with suitable properties for scalable production and clinical application, aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure. Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days. Size and drug loading are adjustable for applications in small and large caliber nerves, and the wrap degrades within 120 days into biocompatible byproducts. Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80% compared with systemic delivery. Given its surgical suitability and preclinical efficacy and safety, this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery.
Collapse
Affiliation(s)
- Simeon C. Daeschler
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
| | - Katelyn J.W. So
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Konstantin Feinberg
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marina Manoraj
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
| | - Jenny Cheung
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
| | - Jennifer Zhang
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada
| | - Kaveh Mirmoeini
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
| | - J. Paul Santerre
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Institute of Biomedical Engineering, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Tessa Gordon
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada
| | - Gregory H. Borschel
- SickKids Research Institute, Neuroscience and Mental Health Program, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Plastic and Reconstructive Surgery, the Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
5
|
Randall ZD, Navarro BJ, Brogan DM, Dy CJ. Insights Into the Epidemiology of Peripheral Nerve Injuries in the United States: Systematic Review. Hand (N Y) 2024:15589447241299050. [PMID: 39593266 PMCID: PMC11600415 DOI: 10.1177/15589447241299050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND Peripheral nerve injuries (PNI) range from mild neurapraxia to severe transection, leading to significant morbidity. Despite their impact, the societal implications of PNI in the United States are not well understood. This study aims to systematically review the literature on PNI epidemiology in the United States. We hypothesize that this review will reveal significant gaps in the understanding of PNI incidence, demographics, and economic impact. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we queried the literature for studies on PNI that reported at least one of the following: incidence rates, demographics, affected nerve distribution, injury mechanisms, surgical intervention rates, and associated direct costs. Exclusion criteria included non-English publications, abstracts, conference proceedings, reviews, or editorials, studies published before 2000, non-US studies, or studies focusing solely on digital nerves or plexus injuries. RESULTS Fifteen studies met the inclusion criteria. Data indicate a higher incidence of upper extremity nerve injuries compared with lower extremity injuries. The literature lacks comprehensive reporting on surgical intervention rates, with no recent data since 2013. There is a notable absence of nationwide epidemiological data on PNI mechanisms and recent cost data, with most information over a decade old and primarily focused on inpatient costs, neglecting outpatient visits, physical therapy, and medication expenses. CONCLUSION The epidemiological data on PNI are limited and outdated, highlighting the need for further research. Future studies should focus on recent trends in PNI incidence, injury mechanisms, and financial burden, including comprehensive reporting on surgical interventions, to inform strategies aimed at improving patient outcomes and health care resource allocation.
Collapse
|
6
|
Magnéli M, Axenhus M. Epidemiology and regional variance of traumatic peripheral nerve injuries in Sweden: A 15-year observational study. PLoS One 2024; 19:e0310988. [PMID: 39383132 PMCID: PMC11463750 DOI: 10.1371/journal.pone.0310988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION Traumatic peripheral nerve injuries pose significant challenges to healthcare systems and individuals, affecting sensory function, causing neuropathic pain, and impairing quality of life. Despite their impact, comprehensive studies on the epidemiology and regional variance of these injuries are scarce. Understanding the incidence, trends, and anatomical distribution of such injuries is essential for targeted interventions and resource allocation. METHODS This observational study utilized register-based data from the Swedish National Patient Register covering the period from 2008 to 2022. Incidence rates, trends, and anatomical distribution of traumatic peripheral nerve injuries were analyzed using descriptive statistics, Poisson regression modeling, and regional comparisons. RESULTS Higher incidences of peripheral nerve injuries were observed among men compared to women across all age groups. The hand and wrist were the most commonly affected sites. Regional variations in incidence rates were evident, with some regions consistently exhibiting higher rates compared to others. Notably, a decreasing trend in injuries was observed over the study period. CONCLUSION This study underscores the importance of targeted interventions and preventive strategies, considering sex, age, and regional disparities. Further research incorporating individual patient-level data is warranted to enhance our understanding and inform tailored interventions to reduce the burden of these injuries.
Collapse
Affiliation(s)
- Martin Magnéli
- Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Michael Axenhus
- Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm, Sweden
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Weeks DW, Brown RD. Nerve Versus Tendon Transfers in the Management of Isolated Upper Extremity Peripheral Nerve Injuries. Clin Plast Surg 2024; 51:473-483. [PMID: 39216934 DOI: 10.1016/j.cps.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Upper extremity peripheral nerve injuries present functional deficits that are amenable to management by tendon or nerve transfers. The principles of tendon and nerve transfers are discussed, with technical descriptions of preferred tendon and nerve transfers for radial, median, and ulnar nerve injuries.
Collapse
Affiliation(s)
- Dexter W Weeks
- Department of Orthopaedic Surgery, The Ohio State University Hand and Upper Extremity Center, 915 Olentangy River Road, Suite 3200, Columbus, OH 43210, USA
| | - Ronald D Brown
- Hand and Plastic Surgery, Department of Plastic and Reconstructive Surgery, The Ohio State University Hand and Upper Extremity Center, 915 Olentangy River Road, Suite 3200, Columbus, OH 43212, USA.
| |
Collapse
|
8
|
Leis A, Smetana BS, Strohl AB, Styron JF. Comparative Effectiveness Systematic Review and Meta-analysis of Peripheral Nerve Repair Using Direct Repair and Connector-assisted Repair. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5927. [PMID: 38983950 PMCID: PMC11233104 DOI: 10.1097/gox.0000000000005927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/01/2024] [Indexed: 07/11/2024]
Abstract
Background This clinical literature systematic review and meta-analysis were performed to assess differences in outcomes between nerves repaired with direct repair (DR) and connector-assisted repair (CAR). Methods A systematic literature review for DR and CAR was performed. Studies from 1980 through August 2023 were included if DR or CAR repairs were performed in upper extremities with nerve gaps less than 5 mm and reported sensory Medical Research Council Classification (MRCC) outcomes or equivalent. Comparative analyses were planned for meaningful recovery (MR) rate (at both S3 and S3+ or better), postsurgical neuroma, cold intolerance, altered sensation, pain, and revision rate. Results There were significant differences in MR rates for CAR and DR. At the MRCC S3 threshold, 96.1% of CAR and 81.3% of DR achieved MR (P < 0.0001). At the MRCC S3+ threshold, 87.1% of CAR and 54.2% of DR achieved this higher threshold of MR (P < 0.0001). There were no differences in neuroma rate or pain scores in our dataset. Altered sensation (dysesthesia, paresthesia, hyperesthesia, or hypersensitivity) was not discussed in any CAR studies, so no analysis could be performed. The revision rate for both procedures was 0%. The proportion of patients with cold intolerance was 46.2% in the DR studies, which was significantly higher than the 10.7% of patients in the CAR group. Conclusions Significantly more patients achieved sensory MR and fewer had cold intolerance when the CAR technique, instead of the DR technique, was performed to repair peripheral nerve injuries.
Collapse
Affiliation(s)
- Amber Leis
- From UCI Health, Orange, Calif
- Indiana Hand to Shoulder Center, Indianapolis, Ind
| | | | | | | |
Collapse
|
9
|
Felici N, Alban A. Timing of surgery in peripheral nerve injury of the upper extremity. J Hand Surg Eur Vol 2024; 49:712-720. [PMID: 38641934 DOI: 10.1177/17531934241240867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Peripheral nerve injuries present a complex clinical challenge, requiring a nuanced approach in surgical management. The consequences of injury vary, with sometimes severe disability, and a risk of lifelong pain for the individual. For late management, the choice of surgical techniques available range from neurolysis and nerve grafting to tendon and nerve transfers. The choice of technique utilized demands an in-depth understanding of the anatomy, patient demographics and the time elapsed since injury for optimized outcomes. This paper focuses on injuries to the radial, median and ulnar nerves, outlining the authors' approach to these injuries.Level of evidence: IV.
Collapse
Affiliation(s)
- Nicola Felici
- Department of Limb Reconstructive Surgery & Plastic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| | - Alice Alban
- Department of Limb Reconstructive Surgery & Plastic Surgery, San Camillo Forlanini Hospital, Rome, Italy
| |
Collapse
|
10
|
Zhang Z, Ma M. Strategies to enhance the ability of nerve guidance conduits to promote directional nerve growth. Biomed Eng Online 2024; 23:40. [PMID: 38582838 PMCID: PMC10998375 DOI: 10.1186/s12938-024-01233-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Severely damaged peripheral nerves will regenerate incompletely due to lack of directionality in their regeneration, leading to loss of nerve function. To address this problem, various nerve guidance conduits (NGCs) have been developed to provide guidance for nerve repair. However, their clinical application is still limited, mainly because its effect in promoting nerve repair is not as good as autologous nerve transplantation. Therefore, it is necessary to enhance the ability of NGCs to promote directional nerve growth. Strategies include preparing various directional structures on NGCs to provide contact guidance, and loading various substances on them to provide electrical stimulation or neurotrophic factor concentration gradient to provide directional physical or biological signals.
Collapse
Affiliation(s)
- Ziyue Zhang
- South China University of Technology School of Medicine, Guangzhou, China.
| | - Muyuan Ma
- South China University of Technology School of Medicine, Guangzhou, China
| |
Collapse
|
11
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
12
|
Doherty C, Lodyga M, Correa J, Di Ciano-Oliveira C, Plant PJ, Bain JR, Batt J. Utilization of the Rat Tibial Nerve Transection Model to Evaluate Cellular and Molecular Mechanisms Underpinning Denervation-Mediated Muscle Injury. Int J Mol Sci 2024; 25:1847. [PMID: 38339124 PMCID: PMC10855399 DOI: 10.3390/ijms25031847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Peripheral nerve injury denervates muscle, resulting in muscle paralysis and atrophy. This is reversible if timely muscle reinnervation occurs. With delayed reinnervation, the muscle's reparative ability declines, and muscle-resident fibro-adipogenic progenitor cells (FAPs) proliferate and differentiate, inducing fibro-fatty muscle degradation and thereby physical disability. The mechanisms by which the peripheral nerve regulates FAPs expansion and differentiation are incompletely understood. Using the rat tibial neve transection model, we demonstrated an increased FAPs content and a changing FAPs phenotype, with an increased capacity for adipocyte and fibroblast differentiation, in gastrocnemius muscle post-denervation. The FAPs response was inhibited by immediate tibial nerve repair with muscle reinnervation via neuromuscular junctions (NMJs) and sensory organs (e.g., muscle spindles) or the sensory protection of muscle (where a pure sensory nerve is sutured to the distal tibial nerve stump) with reinnervation by muscle spindles alone. We found that both procedures reduced denervation-mediated increases in glial-cell-line-derived neurotrophic factor (GDNF) in muscle and that GDNF promoted FAPs adipogenic and fibrogenic differentiation in vitro. These results suggest that the peripheral nerve controls FAPs recruitment and differentiation via the modulation of muscle GDNF expression through NMJs and muscle spindles. GDNF can serve as a therapeutic target in the management of denervation-induced muscle injury.
Collapse
Affiliation(s)
- Christina Doherty
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
| | - Monika Lodyga
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
| | - Judy Correa
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
| | - Caterina Di Ciano-Oliveira
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
| | - Pamela J. Plant
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
| | - James R. Bain
- Division of Plastic Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Jane Batt
- Keenan Research Center for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (C.D.); (M.L.); (J.C.); (C.D.C.-O.); (P.J.P.)
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
13
|
Fedyakov AG, Dreval ON, Gorozhanin AV, Grekov DN, Sidneva LA, Plieva ZK, Razin MA, Chapandze GN. [Combined use of biomaterials and revascularisation in autoplasty of ulnar nerve]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:87-92. [PMID: 39422688 DOI: 10.17116/neiro20248805187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Surgical treatment of peripheral nerve injuries is effective in only 50% of cases. This is primarily due to the significant extent of the diastasis between the fragments of the damaged nerve, in which autoplasty has to be performed. The drawbacks of this technique are the formation of scar tissue, possible necrotisation of the autograft, mismatch of the donor and recipient nerve diameters. In order to overcome these drawbacks and improve the efficiency of surgical intervention, the study presents a clinical case of successful multifascicular ulnar nerve autoplasty with the use of domestic biodegradable biomaterials SpheroGel and ElastoPob, revascularization of the autograft with a connective tissue flap on a vascular pedicle. A persistent regression of local pain syndrome was observed in the early postoperative period. The effectiveness of the performed surgical intervention was confirmed by ultrasound examination: there was no evidence of neuroma in the area of the operation, regeneration of nerve bundles was noted at the site of stitching. Positive dynamics was observed in the results of VAS, DN4, DASH questionnaires.
Collapse
Affiliation(s)
- A G Fedyakov
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - O N Dreval
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - A V Gorozhanin
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - D N Grekov
- Botkin City Clinical Hospital, Moscow, Russia
| | - L A Sidneva
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - Z Kh Plieva
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - M A Razin
- Botkin City Clinical Hospital, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - G N Chapandze
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| |
Collapse
|
14
|
Bagheri A, Akbari H, Akbari P. Evaluation and Diagnostic-Treatment Approaches of Brachial Plexus Injuries in Adults. World J Plast Surg 2024; 13:41-48. [PMID: 39665005 PMCID: PMC11629760 DOI: 10.61186/wjps.13.3.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Brachial plexus injury (BPI), as one of the most devastating injuries in adults, has various negative consequences such as profound functional impairment, debilitating pain, significant mental health consequences, and economic impacts. We aimed to review the evaluation and diagnostic-treatment Approaches of BPI in adults through a review study. Methods An electronic literature search was completed in Google Scholar, Springer, PubMed, and Science Direct databases from 1980 to 2023. Various keywords related to the purpose such as Brachial plexus, surgical strategy, adult were used. Results 1.2% of people with multiple traumas had BPIs. BPI is more common in young adult males. For brachial plexus palsy, preoperative evaluation of nerve root avulsion is helpful in surgical planning. . EMG is useful in confirming a diagnosis, localizing the lesion level, estimating the extent of axon loss, and determining whether the lesion is complete. There are different options available for BPI, such as coordinating care, rehabilitation and psychosocial support. In recent times, significant advancements have been made in surgical techniques for nerve repairs. Conclusion Although it is often not possible to prevent damage to the brachial plexus, it is possible to reduce the risk of further problems after the injury by taking some measures.
Collapse
Affiliation(s)
- Afsaneh Bagheri
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Akbari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Akbari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Steplewski A, Fertala J, Cheng L, Wang ML, Rivlin M, Beredjiklian P, Fertala A. Evaluating the Efficacy of a Thermoresponsive Hydrogel for Delivering Anti-Collagen Antibodies to Reduce Posttraumatic Scarring in Orthopedic Tissues. Gels 2023; 9:971. [PMID: 38131957 PMCID: PMC10742524 DOI: 10.3390/gels9120971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Excessive posttraumatic scarring in orthopedic tissues, such as joint capsules, ligaments, tendons, muscles, and peripheral nerves, presents a significant medical problem, resulting in pain, restricted joint mobility, and impaired musculoskeletal function. Current treatments for excessive scarring are often ineffective and require the surgical removal of fibrotic tissue, which can aggravate the problem. The primary component of orthopedic scars is collagen I-rich fibrils. Our research team has developed a monoclonal anti-collagen antibody (ACA) that alleviates posttraumatic scarring by inhibiting collagen fibril formation. We previously established the safety and efficacy of ACA in a rabbit-based arthrofibrosis model. In this study, we evaluate the utility of a well-characterized thermoresponsive hydrogel (THG) as a delivery vehicle for ACA to injury sites. Crucial components of the hydrogel included N-isopropylacrylamide, poly(ethylene glycol) diacrylate, and hyaluronic acid. Our investigation focused on in vitro ACA release kinetics, stability, and activity. Additionally, we examined the antigen-binding characteristics of ACA post-release from the THG in an in vivo context. Our preliminary findings suggest that the THG construct exhibits promise as a delivery platform for antibody-based therapeutics to reduce excessive scarring in orthopedic tissues.
Collapse
Affiliation(s)
- Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lan Cheng
- Department of Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark L. Wang
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michael Rivlin
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Pedro Beredjiklian
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
16
|
Wu Y, Barrere V, Han A, Andre MP, Orozco E, Cheng X, Chang EY, Shah SB. Quantitative evaluation of rat sciatic nerve degeneration using high-frequency ultrasound. Sci Rep 2023; 13:20228. [PMID: 37980432 PMCID: PMC10657462 DOI: 10.1038/s41598-023-47264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
In this study, we evaluated the utility of using high-frequency ultrasound to non-invasively track the degenerative process in a rat model of peripheral nerve injury. Primary analyses explored spatial and temporal changes in quantitative backscatter coefficient (BSC) spectrum-based outcomes and B-mode textural outcomes, using gray level co-occurrence matrices (GLCMs), during the progressive transition from acute to chronic injury. As secondary analyses, correlations among GLCM and BSC spectrum-based parameters were evaluated, and immunohistochemistry were used to suggest a structural basis for ultrasound outcomes. Both mean BSC spectrum-based and mean GLCM-based measures exhibited significant spatial differences across presurgical and 1-month/2-month time points, distal stumps enclosed proximity to the injury site being particularly affected. The two sets of parameters sensitively detected peripheral nerve degeneration at 1-month and 2-month post-injury, with area under the receiver operating charactersitic curve > 0.8 for most parameters. The results also indicated that the many BSC spectrum-based and GLCM-based parameters significantly correlate with each other, and suggested a common structural basis for a diverse set of quantitative ultrasound parameters. The findings of this study suggest that BSC spectrum-based and GLCM-based analysis are promising non-invasive techniques for diagnosing peripheral nerve degeneration.
Collapse
Affiliation(s)
- Yuanshan Wu
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093-0683, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Victor Barrere
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Aiguo Han
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael P Andre
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Elisabeth Orozco
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Xin Cheng
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093-0683, USA.
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
17
|
Lewis M, David G, Jacobs D, Kuczwara P, Woessner AE, Kim JW, Quinn KP, Song Y. Neuro-regenerative behavior of adipose-derived stem cells in aligned collagen I hydrogels. Mater Today Bio 2023; 22:100762. [PMID: 37600354 PMCID: PMC10433000 DOI: 10.1016/j.mtbio.2023.100762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Peripheral nerve injuries persist as a major clinical issue facing the US population and can be caused by stretch, laceration, or crush injuries. Small nerve gaps are simple to treat, and the nerve stumps can be reattached with sutures. In longer nerve gaps, traditional treatment options consist of autografts, hollow nerve guidance conduits, and, more recently, manufactured fibrous scaffolds. These manufactured scaffolds often incorporate stem cells, growth factors, and/or extracellular matrix (ECM) proteins to better mimic the native environment but can have issues with homogenous cell distribution or uniformly oriented neurite outgrowth in scaffolds without fibrous alignment. Here, we utilize a custom device to fabricate collagen I hydrogels with aligned fibers and encapsulated adipose-derived mesenchymal stem cells (ASCs) for potential use as a peripheral nerve repair graft. Initial results of our scaffold system revealed significantly less cell viability in higher collagen gel concentrations; 3 mg/mL gels showed 84.8 ± 7.3% viable cells, compared to 6 mg/mL gels viability of 76.7 ± 9.5%. Mechanical testing of the 3 mg/mL gels showed a Young's modulus of 6.5 ± 0.8 kPa nearly matching 7.45 kPa known to support Schwann cell migration. Further analysis of scaffolds coupled with stretching in vitro revealed heightened angiogenic and factor secretion, ECM deposition, fiber alignment, and dorsal root ganglia (DRG) neurite outgrowth along the axis of fiber alignment. Our platform serves as an in vitro testbed to assess neuro-regenerative potential of ASCs in aligned collagen fiber scaffolds and may provide guidance on next-generation nerve repair scaffold design.
Collapse
Affiliation(s)
- Mackenzie Lewis
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Gabriel David
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Danielle Jacobs
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Patrick Kuczwara
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
- Department of Biological & Agricultural Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Alan E. Woessner
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Jin-Woo Kim
- Department of Biological & Agricultural Engineering; University of Arkansas, Fayetteville, AR, USA
- Materials Science & Engineering Program; University of Arkansas, Fayetteville, AR, USA
| | - Kyle P. Quinn
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| | - Younghye Song
- Department of Biomedical Engineering; University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
18
|
Daeschler SC, Feinberg K, Harhaus L, Kneser U, Gordon T, Borschel GH. Advancing Nerve Regeneration: Translational Perspectives of Tacrolimus (FK506). Int J Mol Sci 2023; 24:12771. [PMID: 37628951 PMCID: PMC10454725 DOI: 10.3390/ijms241612771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries have far-reaching implications for individuals and society, leading to functional impairments, prolonged rehabilitation, and substantial socioeconomic burdens. Tacrolimus, a potent immunosuppressive drug known for its neuroregenerative properties, has emerged in experimental studies as a promising candidate to accelerate nerve fiber regeneration. This review investigates the therapeutic potential of tacrolimus by exploring the postulated mechanisms of action in relation to biological barriers to nerve injury recovery. By mapping both the preclinical and clinical evidence, the benefits and drawbacks of systemic tacrolimus administration and novel delivery systems for localized tacrolimus delivery after nerve injury are elucidated. Through synthesizing the current evidence, identifying practical barriers for clinical translation, and discussing potential strategies to overcome the translational gap, this review provides insights into the translational perspectives of tacrolimus as an adjunct therapy for nerve regeneration.
Collapse
Affiliation(s)
- Simeon C. Daeschler
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital, D-67071 Ludwigshafen, Germany
- Neuroscience and Mental Health Program, SickKids Research Institute, Toronto, ON M5G 1X8, Canada
| | - Konstantin Feinberg
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leila Harhaus
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital, D-67071 Ludwigshafen, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Department of Plastic and Hand Surgery, University of Heidelberg, BG Trauma Hospital, D-67071 Ludwigshafen, Germany
| | - Tessa Gordon
- Department of Surgery, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, Toronto, ON M5G 2C4, Canada
| | - Gregory H. Borschel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Salles M, Horikawa F, Allegrini Jr S, Zangrando D, Yoshimoto M, Shinohara E. Clinical evaluation of the perception of post-trauma paresthesia in the mandible, using a biomimetic material: A preliminary study in humans. Heliyon 2023; 9:e18304. [PMID: 37520975 PMCID: PMC10382299 DOI: 10.1016/j.heliyon.2023.e18304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
There is a great effort from numerous research groups in the development of materials and therapeutic strategies for the functional recovery of patients who have suffered peripheral nerve injuries (PNI). In an article in vivo, the formation of a nerve bridge was observed, reconnecting the distal and proximal stumps, in the sciatic nerve of rats, indicating the effective participation of the biomaterial in the recovery of peripheral nerve injuries. For the current pilot study, 15 cases of multiple fractures of the mandible, with involvement of the inferior alveolar nerve (IAN) were selected and studied: JC (control cases) n = 6 with conventional treatment, and JT (treated cases) n = 9, with the use of biomimetic biomaterial. The evaluation of the return to sensitivity was measured through a self-assessment, where the patients assigned scores from 0 to 10, where zero (0) represented the complete absence of sensitivity and ten (10) the normality of the perception of local sensitivity. Patients were evaluated from the preoperative period to the 360th day. The statistical results obtained by the t-Student, Shapiro-Wilk normality and non-parametric One-Way ANOVA tests indicated statistically significant differences (p < 0.005; 0.005 e 0.5 respectively), between the two treatments, which were reflected in the clinical results observed, we also calculate the size of the effect represented by ϵ2, calculated by Cohen's d. The results indicate a great difference between the treatments performed,ϵ2 = 1.00. In the 6 cases followed up in the JC group, four remained with a significant deficit until the end of the evaluations and two indicated the remission of the lack of sensitivity in this period. In the JT group, in 28 days, all cases indicated complete remission of the lack of sensitivity with healing concentration. In one of the cases where there was a complete rupture of the mental nerve, the (score-10) was observed in 60 days. The observed results indicate the existence of a statistical significance between the groups and an important relationship when using the biomimetic biomaterial during the recovery of the perception of sensitivity in polytraumatized patients, compatible with the results observed in laboratory animals, which may indicate its clinical feasibility in the reduction of sequelae in PNI.
Collapse
Affiliation(s)
| | - F.K. Horikawa
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| | - S. Allegrini Jr
- Program in Biodentistry, Ibirapuera University (UNIB), São Paulo, SP, 04661 100, Brazil
- Católica Portuguesa University (UCP), Viseu, Portugal
| | - D. Zangrando
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
- Department of Surgery Stomatology Pathology and Radiology of the Faculty of Dentistry of Bauru, University of São Paulo (FOB-USP) Bauru, São Paulo, Brazil
| | | | - E.H. Shinohara
- Depart. Oral and Maxillofac. Surg. Hospital Regional de Osasco SUS, São Paulo, Brazil
| |
Collapse
|
20
|
Topley M, Crotty AM, Boyle A, Peller J, Kawaja M, Hendry JM. Evaluation of motor and sensory neuron populations in a mouse median nerve injury model. J Neurosci Methods 2023; 396:109937. [PMID: 37531978 DOI: 10.1016/j.jneumeth.2023.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Peripheral nerves can regenerate and restore function after injury but this process is hindered by many factors including chronic denervation, motor end-plate resorption and Schwann cell senescence. Forelimb injury models in rodents are becoming increasingly popular as they more accurately reflect the physiology and biomechanics of upper extremity nerve injuries. However several aspects of this surgical model remain poorly characterized. NEW METHOD C57Bl/6 mice underwent enumeration of median nerve motor and sensory neuron pools using retrograde labeling with or without nerve transection. Distal histomorphometry of uninjured mouse median nerves was also examined. Baseline reference values of volitional forelimb grip strength measurements were determined and the rate of neural elongation was also estimated. RESULTS We identified 1363 ± 165 sensory and 216 ± 16 motor neurons within the uninjured dorsal root ganglia (DRG) and ventral spinal cord, respectively. Eight days following injury, approximately 34% of motoneurons had elongated a distance of 5 mm beyond the repair site 8 days following injury. Volitional grip strength decreased 50% with unilateral median nerve transection and was negligible with contralateral flexor tendon tenotomy. COMPARISON WITH EXISTING METHOD Our spinal cord and DRG harvesting technique presented here was technically straightforward and reliable. Estimates of motor and sensory neuron numbers for the mouse median nerve compared favourably with studies using intramuscular injection of retrograde neurotracer. Histomorphometry data was consistent with and reinforced reference values in the literature. CONCLUSIONS This study provides data that further develops an increasingly popular surgical model for studying peripheral nerve injury and repair.
Collapse
Affiliation(s)
- Max Topley
- Department of Surgery, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Canada
| | - Anne-Marie Crotty
- Department of Surgery, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Canada
| | - Amy Boyle
- Centre for Neuroscience Studies, Queen's University, Canada
| | - Jacob Peller
- Centre for Neuroscience Studies, Queen's University, Canada
| | - Michael Kawaja
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Canada
| | - J Michael Hendry
- Department of Surgery, Queen's University, Kingston, ON, Canada; Kingston Health Sciences Center, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada; Centre for Neuroscience Studies, Queen's University, Canada.
| |
Collapse
|
21
|
Zhao W, Tu H, Chen J, Wang J, Liu H, Zhang F, Li J. Functionalized hydrogels in neural injury repairing. Front Neurosci 2023; 17:1199299. [PMID: 37404462 PMCID: PMC10315583 DOI: 10.3389/fnins.2023.1199299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023] Open
Abstract
Repairing injuries to the nervous system has always been a prominent topic in clinical research. Direct suturing and nerve displacement surgery are the primary treatment options, but they may not be suitable for long nerve injuries and may require sacrificing the functionality of other autologous nerves. With the emergence of tissue engineering, hydrogel materials have been identified as a promising technology with clinical translation potential for repairing nervous system injuries due to their excellent biocompatibility and ability to release or deliver functional ions. By controlling their composition and structure, hydrogels can be Functionalized and almost fully matched with nerve tissue and even simulate nerve conduction function and mechanical properties. Thus, they are suitable for repairing injuries to both the central and peripheral nervous systems. This article provides a review of recent research progress in functionalized hydrogels for nerve injury repair, highlighting the design differences among various materials and future research directions. We strongly believe that the development of functionalized hydrogels has great potential for improving the clinical treatment of nerve injuries.
Collapse
Affiliation(s)
- Wenqian Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Hui Tu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jianxiao Chen
- Department of Nephrology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Wang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haoting Liu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jing Li
- Office of Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
22
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
23
|
Raizman NM, Endress RD, Styron JF, Emont SL, Cao Z, Park LI, Greenberg JA. Procedure Costs of Peripheral Nerve Graft Reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4908. [PMID: 37051208 PMCID: PMC10085508 DOI: 10.1097/gox.0000000000004908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 04/14/2023]
Abstract
Peripheral nerve injuries not repaired in an effective and timely manner may lead to permanent functional loss and/or pain. For gaps greater than 5 mm, autograft has been the gold standard. Allograft has recently emerged as an attractive alternative, delivering comparable functional recovery without risk of second surgical site morbidities. Cost is an important factor when considering surgical options, and with a paucity of nerve repair cost data, this study aimed to compare allograft and autograft procedure costs. Methods A retrospective cross-sectional observational study using the US all-payer PINC AI Healthcare Database examined facility procedure costs and cost drivers in patients undergoing allograft or autograft repair of an isolated single peripheral nerve injury between January 2018 and August 2020. Inpatient repairs were limited to nerve-specific DRGs. Multivariable regression evaluated risk-adjusted procedure cost differences. Results Peripheral nerve graft repairs (n = 1363) were more frequent in the outpatient setting, and more than half involved the use of allograft nerve. Procedure costs for allograft and autograft repair were not significantly different in the outpatient (P = 0.43) or inpatient (P = 0.71) setting even after controlling for other risk factors. Operating room cost was significantly higher for autograft in outpatient (P < 0.0001) but not inpatient (P = 0.46), whereas allograft implant cost was significantly higher in both settings (P < 0.0001). Conclusions No significant differences in procedure costs for autograft and allograft repair in inpatient and outpatient settings were found using real-world data. Future research should explore longer-term costs.
Collapse
Affiliation(s)
| | - Ryan D. Endress
- Swedish Medical Center, Burn and Reconstructive Center, Englewood, Colo
| | | | - Seth L. Emont
- PINC AI Applied Sciences, Premier Inc., Charlotte, N.C
| | - Zhun Cao
- PINC AI Applied Sciences, Premier Inc., Charlotte, N.C
| | | | | |
Collapse
|
24
|
Yeoh S, Warner WS, Bromberg M, Mahan MA. Retrograde labeling correlates with motor unit number estimation in rapid-stretch nerve injury. Muscle Nerve 2023; 67:169-176. [PMID: 36420650 DOI: 10.1002/mus.27756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION/AIMS Rapid-stretch nerve injuries represent a substantial treatment challenge. No study has examined motor neuron connection after rapid-stretch injury. Our objective in this study was to characterize the electrophysiological properties of graded rapid-stretch nerve injury and assess motor neuron health using retrograde labeling and muscle adenosine triphosphatase (ATPase) histology. METHODS Male C57BL/6 mice (n = 6 per group) were rapid-stretch injured at four levels of severity: sham injury, stretch within elastic modulus, inelastic deformation, and stretch rupture. Serial compound muscle action potential (CMAP) and motor unit number estimation (MUNE) measurements were made for 48 days, followed by retrograde labeling and muscle ATPase histology. RESULTS Elastic injuries showed no durable abnormalities. Inelastic injury demonstrated profound initial reduction in CMAP and MUNE (P < .036) on day 2, with partial recovery by day 14 after injury (CMAP: 40% baseline, P = .003; MUNE: 55% baseline, P = .033). However, at the experimental endpoint, CMAP had recovered to baseline with only limited improvement in MUNE. Inelastic injury led to reduced retrograde-labeled neurons and grouped fiber type histology. Rupture injury had severe and nonrecovering electrophysiological impairment, dramatically reducing labeled neurons (P = .005), and atrophic or type 1 muscle fibers. There was an excellent correlation between MUNE and retrograde-labeled tibial motor neurons across injury severities (R2 = 0.96). DISCUSSION There was no significant electrophysiological derangement in low-severity injuries but there was recoverable conduction block in inelastic injury with slow recovery, potentially due to collateral sprouting. Rupture injuries yielded permanent failure of injured axons to reinnervate. These results provide insight into the pathophysiology of clinical injuries and recovery.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Wesley S Warner
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Mark Bromberg
- Department of Neurology, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Brennan R, Carter J, Gonzalez G, Herrera FA. Primary Repair of Upper Extremity Peripheral Nerve Injuries: An NSQIP Analysis From 2010 to 2016. Hand (N Y) 2023; 18:154S-160S. [PMID: 34546145 PMCID: PMC9896278 DOI: 10.1177/15589447211044768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND To identify the rate of 30-day complications after primary repair of upper extremity peripheral nerve injuries, associated diagnoses, and postoperative complication rate. METHODS The American College of Surgeons National Surgical Quality Improvement Program database was reviewed from 2010 to 2016. Current Procedural Terminology codes consistent with primary nerve repair of the upper extremity were identified and included in the analysis. Patient demographics, comorbidities, type of procedure (elective/emergent), wound class, operative time, and 30-day complications were recorded. Patients with isolated upper extremity nerve injuries (isolated) were compared with those with peripheral nerve injuries in addition to bone, tendon, or soft tissue injuries (multiple). RESULTS In all, 785 patients were identified as having upper extremity nerve repairs (0.16%). Of them, 64% were men and 36% were women; the average patient age was 40 years. The most common indication for surgery was injury to the digits (54% of cases). Thirty-day adverse events occurred in 3% of all cases. Isolated nerve injury occurred in 43% of patients, whereas 57% had additional injuries. The multiple injury group had a significantly higher complication rate compared with the isolated group (1% vs 4.5%) (P = .007). Repair of tendon at forearm or wrist was the most common concurrent procedure performed. CONCLUSIONS Thirty-day complications among upper extremity peripheral nerve injuries are low, accounting for 3% of cases. Return to the operating room accounted for nearly half of all complications. Patients in the multiple injury group accounted for more than half of these and had a significantly higher complication rate compared with patients with isolated nerve injuries.
Collapse
Affiliation(s)
- Ryan Brennan
- University of Kansas School of
Medicine, Kansas City, USA
| | - Jordan Carter
- Texas Tech University Health Sciences
Center, El Paso, USA
| | | | - Fernando A. Herrera
- Medical University of South Carolina,
Charleston, USA
- Ralph H. Johnson VA Medical Center,
Charleston, SC, USA
| |
Collapse
|
26
|
Talukder MAH, Elfar J, Lee J, Karuman Z, Gurjar A, Govindappa P, Guddadarangaiah J, Manto K, Wandling G, Hegarty J, Waning D. Functional recovery and muscle atrophy in pre-clinical models of peripheral nerve transection and gap-grafting in mice: effects of 4-aminopyridine. Neural Regen Res 2023; 18:439-444. [PMID: 35900443 PMCID: PMC9396510 DOI: 10.4103/1673-5374.346456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We recently demonstrated a repurposing beneficial effect of 4-aminopyridine (4-AP), a potassium channel blocker, on functional recovery and muscle atrophy after sciatic nerve crush injury in rodents. However, this effect of 4-AP is unknown in nerve transection, gap, and grafting models. To evaluate and compare the functional recovery, nerve morphology, and muscle atrophy, we used a novel stepwise nerve transection with gluing (STG), as well as 7-mm irreparable nerve gap (G-7/0) and 7-mm isografting in 5-mm gap (G-5/7) models in the absence and presence of 4-AP treatment. Following surgery, sciatic functional index was determined weekly to evaluate the direct in vivo global motor functional recovery. After 12 weeks, nerves were processed for whole-mount immunofluorescence imaging, and tibialis anterior muscles were harvested for wet weight and quantitative histomorphological analyses for muscle fiber cross-sectional area and minimal Feret’s diameter. Average post-injury sciatic functional index values in STG and G-5/7 models were significantly greater than those in the G-7/0 model. 4-AP did not affect the sciatic functional index recovery in any model. Compared to STG, nerve imaging revealed more misdirected axons and distorted nerve architecture with isografting. While muscle weight, cross-sectional area, and minimal Feret’s diameter were significantly smaller in G-7/0 model compared with STG and G-5/7, 4-AP treatment significantly increased right TA muscle mass, cross-sectional area, and minimal Feret’s diameter in G-7/0 model. These findings demonstrate that functional recovery and muscle atrophy after peripheral nerve injury are directly related to the intervening nerve gap, and 4-AP exerts differential effects on functional recovery and muscle atrophy.
Collapse
|
27
|
Kim SJ, Kwon YM, Ahn SM, Lee JH, Lee CH. Epidemiology of upper extremity peripheral nerve injury in South Korea, 2008 to 2018. Medicine (Baltimore) 2022; 101:e31655. [PMID: 36482555 PMCID: PMC9726405 DOI: 10.1097/md.0000000000031655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries (PNIs) in the upper extremities is an important medical problem, causing significant morbidity at a relatively young age. The epidemiology of PNI in South Korea has not been comprehensively evaluated. The purpose of our study was to examine the incidence of upper extremity PNI in South Korea based on an analysis of nationwide data and to investigate the association between PNI and patients' demographic characteristics. Patient claims data from the Health Insurance Review and Assessment Service from 2008 to 2018 were collected. Demographic characteristics, such as the age, sex, region, admission route, length of hospital stay, healthcare facility level, and cost were evaluated. Annual incidence, body sites affected, damaged nerves, accompanying injuries, and surgical procedures were analyzed. Annual incidence trends, injured anatomical area, seasonal injury trends, and injury trend according to sex were also evaluated. A total of 57,209 cases were identified during the study period. Mean age was 39.7 ± 16.3 years. Of these cases, 51,651 (90.28%) were surgically treated. About 79% of accompanying injuries occurred in the hand area (hand lacerations, 69.5%; fractures or joint dislocations of the hands, 6.86%; crushing injuries of the hands, 2.67%). Overall, injuries to the digital nerve showed the greatest frequency (62.7%). In the upper arm and forearm, the ulnar nerve was most frequently injured; however, in the hand, radial nerve injuries were most common. The annual incidence rate per 100,000 persons decreased from 10.67 in 2008 to 7.88 in 2018. The annual incidence decreased by 0.98 times per year. PNI occurred 33.91 times more frequently in the finger than in the upper arm, and there were 1.16 times more PNIs in the summer and 2.14 times more in men. We investigated the incidence trend and epidemiologic characteristics of upper extremity peripheral nerve injury in South Korea from 2008 to 2018. A decreasing tendency of annual incidence was observed from 2013 onwards. Finger and digital nerve were most commonly injured, and the incidence of PNI was higher in the summer and in men.
Collapse
Affiliation(s)
- Sung Jae Kim
- Department of Orthopaedic Surgery, Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Young Min Kwon
- Department of Orthopaedic Surgery, Dongtan Sacred Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sang Min Ahn
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Jang Hoon Lee
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Chang-Hun Lee
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Seoul, Korea
- * Correspondence: Chang-Hun Lee, Department of Orthopaedic Surgery, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea (e-mail: )
| |
Collapse
|
28
|
Smith CS, Orkwis JA, Bryan AE, Xu Z, Harris GM. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity. Eur J Cell Biol 2022; 101:151277. [PMID: 36265214 DOI: 10.1016/j.ejcb.2022.151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022] Open
Abstract
Peripheral nervous system (PNS) injuries are an ongoing health care concern. While autografts and allografts are regarded as the current clinical standard for traumatic injury, there are inherent limitations that suggest alternative remedies should be considered for therapeutic purposes. In recent years, nerve guidance conduits (NGCs) have become increasingly popular as surgical repair devices, with a multitude of various natural and synthetic biomaterials offering potential to enhance the design of conduits or supplant existing technologies entirely. From a cellular perspective, it has become increasingly evident that Schwann cells (SCs), the primary glia of the PNS, are a predominant factor mediating nerve regeneration. Thus, the development of severe nerve trauma therapies requires a deep understanding of how SCs interact with their environment, and how SC microenvironmental cues may be engineered to enhance regeneration. Here we review the most recent advancements in biomaterials development and cell stimulation strategies, with a specific focus on how the microenvironment influences the behavior of SCs and can potentially lead to functional repair. We focus on microenvironmental cues that modulate SC morphology, proliferation, migration, and differentiation to alternative phenotypes. Promotion of regenerative phenotypic responses in SCs and other non-neuronal cells that can augment the regenerative capacity of multiple biomaterials is considered along with innovations and technologies for traumatic injury.
Collapse
Affiliation(s)
- Corinne S Smith
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jacob A Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrew E Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
29
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
30
|
Dong C, Ubogu EE. Pro-inflammatory cytokines and leukocyte integrins associated with chronic neuropathic pain in traumatic and inflammatory neuropathies: Initial observations and hypotheses. Front Immunol 2022; 13:935306. [PMID: 35983047 PMCID: PMC9378781 DOI: 10.3389/fimmu.2022.935306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Leukocyte infiltration and persistence within peripheral nerves have been implicated in chronic nociception pathogenesis in murine peripheral neuropathy models. Endoneurial cytokine and chemokine expression contribute to leukocyte infiltration and maintenance of a pro-inflammatory state that delays peripheral nerve recovery and promotes chronic pain behaviors in these mice. However, there has been a failure to translate murine model data into safe and effective treatments for chronic neuropathic pain in peripheral neuropathy patients, or develop reliable biomarkers that may help diagnose or determine treatment responses in affected patients. Initial work showed that persistent sciatic nerve CD11b+ CD45+ leukocyte infiltration was associated with disease severity in three mouse models of inflammatory and traumatic peripheral neuropathies, implying a direct contributing role in disease pathogenesis. In support of this, CD11b+ leukocytes were also seen in the sural nerve biopsies of chronic neuropathic pain patients with three different peripheral neuropathies. Systemic CD11b antagonism using a validated function-neutralizing monoclonal antibody effectively treated chronic nociception following unilateral sciatic nerve crush injury (a representative traumatic neuropathy model associated with axonal degeneration and increased blood-nerve barrier permeability) and does not cause drug addiction behaviors in adult mice. These data suggest that CD11b could be an effective molecular target for chronic neuropathic pain treatment in inflammatory and traumatic peripheral neuropathies. Despite known murine peripheral neuropathy model limitations, our initial work suggests that early expression of pro-inflammatory cytokines, such as tissue inhibitor of metalloproteinases-1 may predict subsequent chronic nociception development following unilateral sciatic nerve crush injury. Studies aligning animal model investigation with observational data from well-characterized human peripheral neuropathies, including transcriptomics and proteomics, as well as animal model studies using a human clinical trial design should foster the identification of clinically relevant biomarkers and effective targeted treatments with limited addiction potential for chronic neuropathic pain in peripheral neuropathy patients.
Collapse
|
31
|
Vallejo FA, Diaz A, Errante EL, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks SS, Levi AD. Systematic review of the therapeutic use of Schwann cells in the repair of peripheral nerve injuries: Advancements from animal studies to clinical trials. Front Cell Neurosci 2022; 16:929593. [PMID: 35966198 PMCID: PMC9372346 DOI: 10.3389/fncel.2022.929593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods The Cochrane Library and PubMed databases were searched using terms [(“peripheral nerve injury” AND “Schwann cell” AND “regeneration”) OR (“peripheral nerve injuries”)]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Diaz
- Department of Neurosurgery, University of Connecticut, Farmington, CT, United States
| | - Emily L. Errante
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Taylor Smartz
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Risset Silvera
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adriana E. Brooks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yee-Shuan Lee
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephen Shelby Burks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan D. Levi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Allan D. Levi
| |
Collapse
|
32
|
Heinzel JC, Oberhauser V, Keibl C, Schädl B, Swiadek NV, Längle G, Frick H, Slezak C, Prahm C, Grillari J, Kolbenschlag J, Hercher D. ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting. Biomedicines 2022; 10:biomedicines10081777. [PMID: 35892677 PMCID: PMC9394363 DOI: 10.3390/biomedicines10081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Core Facility Morphology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole V. Swiadek
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Cyrill Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Physics, Utah Valley University, Orem, UT 84058, USA
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
33
|
Shamoun F, Shamoun V, Akhavan A, Tuffaha SH. Target Receptors of Regenerating Nerves: Neuroma Formation and Current Treatment Options. Front Mol Neurosci 2022; 15:859221. [PMID: 35866159 PMCID: PMC9295905 DOI: 10.3389/fnmol.2022.859221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuromas form as a result of disorganized sensory axonal regeneration following nerve injury. Painful neuromas lead to poor quality of life for patients and place a burden on healthcare systems. Modern surgical interventions for neuromas entail guided regeneration of sensory nerve fibers into muscle tissue leading to muscle innervation and neuroma treatment or prevention. However, it is unclear how innervating denervated muscle targets prevents painful neuroma formation, as little is known about the fate of sensory fibers, and more specifically pain fiber, as they regenerate into muscle. Golgi tendon organs and muscle spindles have been proposed as possible receptor targets for the regenerating sensory fibers; however, these receptors are not typically innervated by pain fibers, as these free nerve endings do not synapse on receptors. The mechanisms by which pain fibers are signaled to cease regeneration therefore remain unknown. In this article, we review the physiology underlying nerve regeneration, the guiding molecular signals, and the target receptor specificity of regenerating sensory axons as it pertains to the development and prevention of painful neuroma formation while highlighting gaps in literature. We discuss management options for painful neuromas and the current supporting evidence for the various interventions.
Collapse
Affiliation(s)
- Feras Shamoun
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
| | - Valentina Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Arya Akhavan
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
| | - Sami H. Tuffaha
- Peripheral Nerve Lab, Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Sami H. Tuffaha,
| |
Collapse
|
34
|
Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules 2022; 12:820. [PMID: 35740945 PMCID: PMC9221261 DOI: 10.3390/biom12060820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Jaana Hartmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anton Stoiber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anna Daerr
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany
| | - David Hercher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| |
Collapse
|
35
|
Wiman K, Hulkkonen S, Miettunen J, Auvinen J, Karppinen J, Ryhänen J. Total, gender- and age-specific incidence rates of upper extremity nerve injuries in Finland. J Hand Surg Eur Vol 2022; 47:639-643. [PMID: 35172640 DOI: 10.1177/17531934221079230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to describe the epidemiology of nerve injuries of the upper extremity in the whole population of Finland (1998-2016). Data based on diagnosis codes were obtained from the Care Register for Health Care, including cases of median, radial, ulnar, musculocutaneous, axillary and digital nerves. Age- and gender-specific incidence rates, both crude and standardized (for the European normal population in 2011), were calculated. Our study included 13,440 patients with upper extremity nerve injury. The mean standardized annual incidence rate of any upper extremity nerve injury was 18.18 among men and 8.15 among women per 100,000 person-years over the study period. The incidence peaked among men at working age. Nerve injuries occurred most commonly in the fingers and thumb, with 5532 cases and mean standardized incidence rates per 100,000 person-years of 7.84 among men and 2.95 among women. The annual incidence did not change significantly over the study period.Level of evidence: III.
Collapse
Affiliation(s)
- Kirsi Wiman
- Department of Surgery, Lapland Central Hospital, Rovaniemi, Finland.,Department of Hand Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sina Hulkkonen
- Department of Hand Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jouko Miettunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaro Karppinen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Finnish Institute of Occupational Health, Oulu, Finland
| | - Jorma Ryhänen
- Department of Hand Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Yuan X, Balog BM, Lin DL, Hanzlicek B, Kuang M, Yan H, Majerus SJA, Damaser MS. Brain-Derived Neurotrophic Factor Is an Important Therapeutic Factor in Mesenchymal Stem Cell Secretions for Treatment of Traumatic Peripheral Pelvic Injuries. Front Cell Neurosci 2022; 16:866094. [PMID: 35663428 PMCID: PMC9157419 DOI: 10.3389/fncel.2022.866094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic neuromuscular injury to the pudendal nerve and urethra during childbirth does not regenerate well and contributes to stress urinary incontinence in women. Mesenchymal stem cells (MSCs) can improve neuroregeneration via their secretions, or secretome, which includes brain-derived neurotrophic factor (BDNF). In this study, we investigated whether BDNF is a key factor in the secretome of MSCs for the facilitation of functional recovery following a dual simulated childbirth injury. BDNF knockdown (KD) MSCs were created using an anti-BDNF shRNA lentivirus vector. A scrambled sequence was used as a transduction control (scrambled). Cells were cultured for 24 h before media was concentrated 50x to create concentrated conditioned media (CCM) containing MSC secretome. CCM of unmanipulated MSCs was screened for high BDNF expression (high BDNF CCM). Concentrated control media (CM) was created by concentrating media not conditioned by cells. Female Sprague-Dawley rats underwent bilateral pudendal nerve crush and vaginal distension (Injury) or sham injury. One hour and 1 week after injury, sham injured rats received CM, and injured rats received CM, high BDNF CCM, KD CCM, or scrambled CCM (300 μl intraperitoneally). Three weeks after injury, rats underwent leak point pressure (LPP) and pudendal nerve sensory branch potential (PNSBP) recordings. The urethra and pudendal nerve were harvested for anatomical assessment. ANOVA followed by the Student-Newman-Keuls test determined significant differences between groups (p < 0.05). BDNF KD CCM had significantly decreased BDNF concentration compared to scrambled CCM, while the concentration in high BDNF CCM was significantly increased. LPP was significantly decreased in CM and KD CCM treated animals compared to sham injury, but not with scrambled or high BDNF CCM. PNSBP firing rate showed a significant decrease with CM treatment compared to sham injury. Neuromuscular junctions in the urethral sphincter in KD CCM, scrambled CCM, and high BDNF CCM were healthier than CM treated rats. While anatomical and nerve function tests demonstrate regeneration of the pudendal nerve with any CCM treatment, LPP results suggest it takes longer to recover continence with reduced BDNF in CCM. BDNF in MSC CCM is an important factor for the acceleration of recovery from a dual nerve and muscle injury.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Brian M. Balog
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Department of Biology, University of Akron, Akron, OH, United States
| | - Dan Li Lin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Brett Hanzlicek
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Mei Kuang
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Hao Yan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Steve J. A. Majerus
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Margot S. Damaser
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
37
|
Adler M, Pellett S, Sharma SK, Lebeda FJ, Dembek ZF, Mahan MA. Preclinical Evidence for the Role of Botulinum Neurotoxin A (BoNT/A) in the Treatment of Peripheral Nerve Injury. Microorganisms 2022; 10:microorganisms10050886. [PMID: 35630331 PMCID: PMC9148055 DOI: 10.3390/microorganisms10050886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/17/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic peripheral nerve injuries tend to be more common in younger, working age populations and can lead to long-lasting disability. Peripheral nerves have an impressive capacity to regenerate; however, successful recovery after injury depends on a number of factors including the mechanism and severity of the trauma, the distance from injury to the reinnervation target, connective tissue sheath integrity, and delay between injury and treatment. Even though modern surgical procedures have greatly improved the success rate, many peripheral nerve injuries still culminate in persistent neuropathic pain and incomplete functional recovery. Recent studies in animals suggest that botulinum neurotoxin A (BoNT/A) can accelerate nerve regeneration and improve functional recovery after injury to peripheral nerves. Possible mechanisms of BoNT/A action include activation or proliferation of support cells (Schwann cells, mast cells, and macrophages), increased angiogenesis, and improvement of blood flow to regenerating nerves.
Collapse
Affiliation(s)
- Michael Adler
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd., Aberdeen Proving Ground, MD 21010, USA
- Correspondence: ; Tel.: +1-410-436-1913
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA;
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Frank J. Lebeda
- Biotechnology, Protein Bioinformatics, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Advanced Academic Programs, 9601 Medical Center Drive, Rockville, MD 20850, USA;
| | - Zygmunt F. Dembek
- Department of Military and Emergency Medicine, Uniformed Services University of Health Sciences, 3154 Jones Bridge Rd., Bethesda, MD 20814, USA;
| | - Mark A. Mahan
- Department of Neurosurgery, Clinical Neurosciences, University of Utah, 175 N Medical Drive East, Salt Lake City, UT 84132, USA;
| |
Collapse
|
38
|
Yeoh S, Warner WS, Merchant SS, Hsu EW, Agoston DV, Mahan MA. Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Front Surg 2022; 9:862478. [PMID: 35529911 PMCID: PMC9069240 DOI: 10.3389/fsurg.2022.862478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Wesley S. Warner
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Samer S. Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Edward W. Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Denes v. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Mark A. Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
39
|
Nan LP, Lin Z, Wang F, Jin XH, Fang JQ, Xu B, Liu SH, Zhang F, Wu Z, Zhou ZF, Chen F, Cao WT, Wang JG, Liu JJ. Ti3C2Tx MXene-Coated Electrospun PCL Conduits for Enhancing Neurite Regeneration and Angiogenesis. Front Bioeng Biotechnol 2022; 10:850650. [PMID: 35372318 PMCID: PMC8966647 DOI: 10.3389/fbioe.2022.850650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
An electrical signal is the key basis of normal physiological function of the nerve, and the stimulation of the electric signal also plays a very special role in the repair process of nerve injury. Electric stimulation is shown to be effective in promoting axonal regeneration and myelination, thereby promoting nerve injury repair. At present, it is considered that electric conduction recovery is a key aspect of regeneration and repair of long nerve defects. Conductive neural scaffolds have attracted more and more attention due to their similar electrical properties and good biocompatibility with normal nerves. Herein, PCL and MXene-PCL nerve guidance conduits (NGCs) were prepared; their effect on nerve regeneration was evaluated in vitro and in vivo. The results show that the NGCs have good biocompatibility in vitro. Furthermore, a sciatic nerve defect model (15 mm) of SD rats was made, and then the fabricated NGCs were implanted. MXene-PCL NGCs show similar results with the autograft in the sciatic function index, electrophysiological examination, angiogenesis, and morphological nerve regeneration. It is possible that the conductive MXene-PCL NGC could transmit physiological neural electric signals, induce angiogenesis, and stimulate nerve regeneration. This paper presents a novel design of MXene-PCL NGC that could transmit self-originated electric stimulation. In the future, it can be combined with other features to promote nerve regeneration.
Collapse
Affiliation(s)
- Li-Ping Nan
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zeng Lin
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xue-Han Jin
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia-Qi Fang
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bo Xu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shu-Hao Liu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhong Wu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zi-Fei Zhou
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Chen
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen-Tao Cao
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Wen-Tao Cao, ; Jian-Guang Wang, ; Jun-Jian Liu,
| | - Jian-Guang Wang
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Wen-Tao Cao, ; Jian-Guang Wang, ; Jun-Jian Liu,
| | - Jun-Jian Liu
- Department of Orthopedic, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Wen-Tao Cao, ; Jian-Guang Wang, ; Jun-Jian Liu,
| |
Collapse
|
40
|
Lee JI, Wandling GD, Talukder MAH, Govindappa PK, Elfar JC. A Novel Standardized Peripheral Nerve Transection Method and a Novel Digital Pressure Sensor Device Construction for Peripheral Nerve Crush Injury. Bio Protoc 2022; 12:e4350. [PMID: 35592596 PMCID: PMC8918208 DOI: 10.21769/bioprotoc.4350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is common in all walks of life, and the most common PNIs are nerve crush and nerve transection. While optimal functional recovery after crush injury occurs over weeks, functional recovery after nerve transection with microsurgical repair and grafting is poor, and associated with permanent disability. The gold-standard treatment for nerve transection injury is microsurgical tensionless end-to-end suture repair. Since it is unethical to do experimental PNI studies in humans, it is therefore indispensable to have a simple, reliable, and reproducible pre-clinical animal model for successful evaluation of the efficacy of a novel treatment strategy. The objective of this article is two-fold: (A) To present a novel standardized peripheral nerve transection method in mice, using fibrin glue for modeling peripheral nerve transection injury, with reproducible gap distance between the severed nerve ends, and (B) to document the step-wise description of constructing a pressure sensor device for crush injury pressure measurements. We have successfully established a novel nerve transection model in mice using fibrin glue, and demonstrated that this transection method decreases surgical difficulties and variability by avoiding microsurgical manipulations on the nerve, ensuring the reproducibility and reliability of this animal model. Although it is quite impossible to exactly mimic the pathophysiological changes seen in nerve transection with sutures, we hope that the close resemblance of our novel pre-clinical model with gold-standard suturing can be easily reproduced by any lab, and that the data generated by this method significantly contributes to better understanding of nerve pathophysiology, molecular mechanisms of nerve regeneration, and the development of novel strategies for optimal functional recovery. In case of peripheral nerve crush injury, current methods rely on inter-device and operator precision to limit the variation with applied pressure. While the inability to accurately quantify the crush pressure may result in reduced reproducibility between animals and studies, there is no documentation of a pressure monitoring device that can be readily used for real-time pressure measurements. To address this deficit, we constructed a novel portable device comprised of an Arduino UNO microcontroller board and force sensitive resistor (FSR) capable of reporting the real-time pressure applied to a nerve. This novel digital pressure sensor device is cheap, easy to construct and assemble, and we believe that this device will be useful for any lab performing nerve crush injury in rodents.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H089, Hershey, PA 17033, USA
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| | - Grant D. Wandling
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H089, Hershey, PA 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H089, Hershey, PA 17033, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H089, Hershey, PA 17033, USA
| | - John C. Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, 500 University Drive, Mail Code H089, Hershey, PA 17033, USA
| |
Collapse
|
41
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
42
|
Heinzel JC, Dadun LF, Prahm C, Winter N, Bressler M, Lauer H, Ritter J, Daigeler A, Kolbenschlag J. Beyond the Knife-Reviewing the Interplay of Psychosocial Factors and Peripheral Nerve Lesions. J Pers Med 2021; 11:jpm11111200. [PMID: 34834552 PMCID: PMC8624495 DOI: 10.3390/jpm11111200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Peripheral nerve injuries are a common clinical problem. They not only affect the physical capabilities of the injured person due to loss of motor or sensory function but also have a significant impact on psychosocial aspects of life. The aim of this work is to review the interplay of psychosocial factors and peripheral nerve lesions. By reviewing the published literature, we identified several factors to be heavily influenced by peripheral nerve lesions. In addition to psychological factors like pain, depression, catastrophizing and stress, social factors like employment status and worker's compensation status could be identified to be influenced by peripheral nerve lesions as well as serving as predictors of functional outcome themselves, respectively. This work sheds a light not only on the impact of peripheral nerve lesions on psychosocial aspects of life, but also on the prognostic values of these factors of functional outcome. Interdisciplinary, individualized treatment of patients is required to identify patient at risk for adverse outcomes and provide them with emotional support when adapting to their new life situation.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
- Correspondence: ; Tel.: +49-7071-6061038
| | - Lucy F. Dadun
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Natalie Winter
- Department of Neurology, Hertie Institute for Clinical Brain Research (HIH), University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany;
| | - Michael Bressler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (L.F.D.); (C.P.); (M.B.); (H.L.); (J.R.); (A.D.); (J.K.)
| |
Collapse
|
43
|
Nath RK, Somasundaram C. Incidence, Etiology, and Management of Long Thoracic and Accessory Nerve Injuries and Winging Scapula. EPLASTY 2021; 21:e11. [PMID: 35603020 PMCID: PMC9128739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Peripheral nerve injuries make up many upper extremity musculoskeletal disorders (UE-MSDs), as peripheral nerves in the upper extremities are susceptible to damage due to their superficial course and length. The health and economic burdens of peripheral nerve injuries are rising. Upper-limb peripheral nerve injuries caused by prone positioning in COVID-19 patients in intensive care have occurred during the current global pandemic. Understanding the incidence and causation of these injuries is essential, as these affect primarily young workers and athletes with skeletal immaturity and contribute to significant morbidity. METHODS AND PATIENTS A total of 789 patients, 481 of whom were male and 308 female, with limited upper-extremity movements, scapular winging, and pain due to upper brachial plexus, long thoracic and accessory nerve injuries (459 right, 282 left, and 48 bilateral) were included in the study. Patient age at the onset of injury ranged between 11 months and 68 years. RESULTS A total of 18 causes of peripheral nerve injury were identified among the 789 patients with UE-MSD. The most affected patients (12.7%) were involved in sports and related activities, with 20 different sports and related activities reported in this patient population. Weightlifting caused the most (10.9%) number of injuries in this group. Incidences in the least affected patients were due to massage and viral infection, at 0.6% and 0.6% respectively. CONCLUSIONS Sports and recreational-related physical activities are essential components of a healthy lifestyle, and may help decrease the incidence of obesity, diabetes, and cardiovascular diseases. Injury and fear of impairment, however, can be barriers in the participation of these activities. Surgery and other interventions can help maximize return to work and regular activities after UE-MSDs.
Collapse
Affiliation(s)
- Rahul K. Nath
- Texas Nerve and Paralysis Institute, Houston, Texas, 77030
| | | |
Collapse
|
44
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
45
|
Castanov V, Berger MJ, Ritsma B, Trier J, Hendry JM. Optimizing the timing of peripheral nerve transfers for functional re-animation in cervical spinal cord injury: a conceptual framework. J Neurotrauma 2021; 38:3365-3375. [PMID: 34715742 DOI: 10.1089/neu.2021.0247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Loss of upper extremity function following spinal cord injury (SCI) can have devastating consequences on quality of life. Peripheral nerve transfer surgery aims to restore motor control of upper extremities following cervical SCI and is poised to revolutionize surgical management in this population. The surgery involves dividing an expendable donor nerve above the level of the spinal lesion and coapting it to a recipient nerve arising from the lesional or infralesional segment of the injured cord. In order to maximize outcomes in this complex patient population, refinements in surgical technique need to be integrated with principles of spinal cord medicine and basic science. Deciding on the ideal timing of nerve transfer surgery is one aspect of care that is critical to maximizing recovery and has received very little attention to date in the literature. This complex topic is reviewed, with a focus on expectations for spontaneous recovery within upper motor neuron components of the injury, balanced against the need for expeditious reinnervation for lower motor neuron elements of the injury. The discussion also considers the case of a patient with C6 motor complete SCI where myotomes without electrodiagnostic evidence of denervation spontaneously improved by 6 months post-injury, thereby adjusting the surgical plan. The relevant concepts are integrated into a clinical algorithm with recommendations that consider maximal opportunity for spontaneous clinical improvement post-injury while avoiding excessive delays that may adversely affect patient outcomes.
Collapse
Affiliation(s)
- Valera Castanov
- Queen's University, 4257, School of Medicine, Kingston, Ontario, Canada;
| | - Michael James Berger
- The University of British Columbia, 8166, Division of Physical Medicine and Rehabilitation, Vancouver, British Columbia, Canada.,The University of British Columbia, 8166, International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada;
| | - Benjamin Ritsma
- Queen's University, 4257, Department of Physical Medicine and Rehabilitation, Kingston, Ontario, Canada.,Providence Care Hospital, 4256, Kingston, Ontario, Canada;
| | - Jessica Trier
- Queen's University, 4257, Department of Physical Medicine and Rehabilitation, Kingston, Ontario, Canada.,Providence Care Hospital, 4256, Kingston, Ontario, Canada;
| | - J Michael Hendry
- Queen's University, 4257, School of Medicine, Kingston, Ontario, Canada.,Queen's University, 4257, Division of Plastic Surgery, Department of Surgery, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, 71459, Kingston, Ontario, Canada;
| |
Collapse
|
46
|
Sayanagi J, Acevedo-Cintrón JA, Pan D, Schellhardt L, Hunter DA, Snyder-Warwick AK, Mackinnon SE, Wood MD. Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. J Bone Joint Surg Am 2021; 103:e80. [PMID: 34668879 DOI: 10.2106/jbjs.20.01965] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Clinical outcomes following nerve injury repair can be inadequate. Pulsed-current electrical stimulation (ES) is a therapeutic method that facilitates functional recovery by accelerating axon regeneration. However, current clinical ES protocols involve the application of ES for 60 minutes during surgery, which can increase operative complexity and time. Shorter ES protocols could be a strategy to facilitate broader clinical adoption. The purpose of the present study was to determine if a 10-minute ES protocol could improve outcomes. METHODS C57BL/6J mice were randomized to 3 groups: no ES, 10 minutes of ES, and 60 minutes of ES. In all groups, the sciatic nerve was transected and repaired, and, in the latter 2 groups, ES was applied after repair. Postoperatively, changes to gene expression from dorsal root ganglia were measured after 24 hours. The number of motoneurons regenerating axons was determined by retrograde labeling at 7 days. Histomorphological analyses of the nerve were performed at 14 days. Function was evaluated serially with use of behavioral tests up to 56 days postoperatively, and relative muscle weight was evaluated. RESULTS Compared with the no-ES group, both ES groups demonstrated increased regeneration-associated gene expression within dorsal root ganglia. The 10-minute and 60-minute ES groups demonstrated accelerated axon regeneration compared with the no-ES group based on increased numbers of labeled motoneurons regenerating axons (mean difference, 202.0 [95% confidence interval (CI), 17.5 to 386.5] and 219.4 [95% CI, 34.9 to 403.9], respectively) and myelinated axon counts (mean difference, 559.3 [95% CI, 241.1 to 877.5] and 339.4 [95% CI, 21.2 to 657.6], respectively). The 10-minute and 60-minute ES groups had improved behavioral recovery, including on grid-walking analysis, compared with the no-ES group (mean difference, 11.9% [95% CI, 3.8% to 20.0%] and 10.9% [95% CI, 2.9% to 19.0%], respectively). There was no difference between the ES groups in measured outcomes. CONCLUSIONS A 10-minute ES protocol accelerated axon regeneration and facilitated functional recovery. CLINICAL RELEVANCE The brief (10-minute) ES protocol provided similar benefits to the 60-minute protocol in an acute sciatic nerve transection/repair mice model and merits further studies.
Collapse
Affiliation(s)
- Junichi Sayanagi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yeoh S, Warner WS, Eli I, Mahan MA. Rapid-stretch injury to peripheral nerves: comparison of injury models. J Neurosurg 2021; 135:893-903. [PMID: 33157535 DOI: 10.3171/2020.5.jns193448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traditional animal models of nerve injury use controlled crush or transection injuries to investigate nerve regeneration; however, a more common and challenging clinical problem involves closed traction nerve injuries. The authors have produced a precise traction injury model and sought to examine how the pathophysiology of stretch injuries compares with that of crush and transection injuries. METHODS Ninety-five late-adolescent (8-week-old) male mice underwent 1 of 7 injury grades or a sham injury (n > 10 per group): elastic stretch, inelastic stretch, stretch rupture, crush, primary coaptation, secondary coaptation, and critical gap. Animals underwent serial neurological assessment with sciatic function index, tapered beam, and von Frey monofilament testing for 48 days after injury, followed by trichrome and immunofluorescent nerve histology and muscle weight evaluation. RESULTS The in-continuity injuries, crush and elastic stretch, demonstrated different recovery profiles, with more severe functional deficits after crush injury than after elastic stretch immediately following injury (p < 0.05). However, animals with either injury type returned to baseline performance in all neurological assessments, accompanied by minimal change in nerve histology. Inelastic stretch, a partial discontinuity injury, produced more severe neurological deficits, incomplete return of function, 47% ± 9.1% (mean ± SD) reduction of axon counts (p < 0.001), and partial neuroma formation within the nerve. Discontinuity injuries, including immediate and delayed nerve repair, stretch rupture, and critical gap, manifested severe, long-term neurological deficits and profound axonal loss, coupled with intraneural scar formation. Although repaired nerves demonstrated axon regeneration across the gap, rupture and critical gap injuries demonstrated negligible axon crossing, despite rupture injuries having healed into continuity. CONCLUSIONS Stretch-injured nerves present unique pathology and functional deficits compared with traditional nerve injury models. Because of the profound neuroma formation, stretch injuries represent an opportunity to study the pathophysiology associated with clinical injury mechanisms. Further validation for comparison with human injuries will require evaluation in a large-animal model.
Collapse
|
48
|
Rogers MJ, Stephens AR, Yoo M, Nelson RE, Kazmers NH. Optimizing Costs and Outcomes for Carpal Tunnel Release Surgery: A Cost-Effectiveness Analysis from Societal and Health-Care System Perspectives. J Bone Joint Surg Am 2021; 103:00004623-990000000-00322. [PMID: 34428186 PMCID: PMC8866519 DOI: 10.2106/jbjs.20.02126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND It is unclear which carpal tunnel release (CTR) strategy (i.e., which combination of surgical technique and setting) is most cost-effective. A cost-effectiveness analysis was performed to compare (1) open CTR in the procedure room (OCTR/PR), (2) OCTR in the operating room (OCTR/OR), and (3) endoscopic CTR in the operating room (ECTR/OR). METHODS A decision analytic model was used to compare costs and health utilities between treatment strategies. Utility and probability parameters were identified from the literature. Medical costs were estimated with Medicare ambulatory surgical payment data. Indirect costs were related to days out of work due to surgical recovery and complications. The effectiveness outcome was quality-adjusted life years (QALYs). Probabilistic sensitivity analyses and one-way sensitivity analyses were performed. Cost-effectiveness was assessed from the societal and health-care system perspectives with use of a willingness-to-pay threshold of $100,000/QALY. RESULTS In the base-case analysis, OCTR/PR was more cost-effective than OCTR/OR and ECTR/OR from the societal perspective. The mean total costs and QALYs per patient were $29,738 ± $4,098 and 0.88 ± 0.08 for OCTR/PR, $30,002 ± $4,098 and 0.88 ± 0.08 for OCTR/OR, and $41,311 ± $4,833 and 0.87 ± 0.08 for ECTR/OR. OCTR/PR was also the most cost-effective strategy from the health-care system perspective. These findings were robust in the probabilistic sensitivity analyses: OCTR/PR was the dominant strategy (greater QALYs at a lower cost) in 55% and 61% of iterations from societal and health-care system perspectives, respectively. One-way sensitivity analysis demonstrated that OCTR/PR and OCTR/OR remained more cost-effective than ECTR/OR from a societal perspective under the following conditions: $0 surgical cost of ECTR, 0% revision rate following ECTR, equalization of the return-to-work rate between OCTR and ECTR, or 0 days out of work following ECTR. OCTR/OR became more cost-effective than OCTR/PR with the median nerve injury rate tripling and doubling from societal and health-care system perspectives, respectively, or if surgical direct costs in the PR exceeded those in the OR. CONCLUSIONS Compared with OCTR/OR and ECTR/OR, OCTR/PR minimizes costs to the health-care system and society while providing favorable outcomes. LEVEL OF EVIDENCE Economic and Decision Analysis Level III. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Miranda J Rogers
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Andrew R Stephens
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | - Minkyoung Yoo
- Department of Economics, University of Utah, Salt Lake City, Utah
| | - Richard E Nelson
- VA Salt Lake City Health Care System, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Nikolas H Kazmers
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
49
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 PMCID: PMC8325644 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Dibbs RP, Ali K, Sarrami SM, Koshy JC. Revision Peripheral Nerve Surgery of the Upper Extremity. Semin Plast Surg 2021; 35:119-129. [PMID: 34121947 DOI: 10.1055/s-0041-1727290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve injuries of the upper extremity can result from a wide array of etiologies, with the two most common being compression neuropathy and traumatic injuries. These types of injuries are common and can be psychologically, functionally, and financially devastating to the patient. A detailed preoperative evaluation is imperative for appropriate management. Traumatic injuries can typically be treated with local burial techniques, targeted muscle reinnervation, and regenerative peripheral nerve interfaces. Median nerve compression is frequently managed with complete release of the antebrachial fascia/transverse carpal ligament and/or use of flap coverage such as the hypothenar fat pad flap and local muscle flaps. Ulnar nerve compression is commonly managed via submuscular transposition, subcutaneous transposition, neurolysis, and nerve wrapping. In this review, we discuss the preoperative evaluation, surgical techniques, and advantages and disadvantages of each treatment modality for patients with compressive and traumatic upper extremity nerve injuries.
Collapse
Affiliation(s)
- Rami P Dibbs
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Texas Children's Hospital, Texas
| | - Kausar Ali
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Texas Children's Hospital, Texas
| | - Shayan M Sarrami
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Texas Children's Hospital, Texas
| | - John C Koshy
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas.,Division of Plastic Surgery, Texas Children's Hospital, Texas
| |
Collapse
|