1
|
Ma Z, Wen X, Zhang Y, Ai Z, Zhao X, Dong N, Dou X, Shan A. Thymol Alleviates Colitis by Modulating Intestinal Barrier Damage, Gut Microbiota, and Amino Acid Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7211-7227. [PMID: 40077957 DOI: 10.1021/acs.jafc.4c10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Thymol (THY) is a phenolic monoterpene compound that has garnered attention due to its various biological properties, including antioxidant, anti-inflammatory, and immune-regulatory effects. The purpose of this study was to determine the therapeutic and protective effects of THY in colitic mice, with a particular focus on the mechanisms involving gut microbiota. The results showed that early intervention with THY (40 and 80 mg/kg) not only alleviated the clinical symptoms and colonic damage in mice with dextran sodium sulfate (DSS)-induced colitis but also suppressed the colonic production of inflammatory cytokines (IL-1β, IL-6, and IL-18) and enhanced the expression of mucins (MUC1 and MUC2) and trefoil factor family 3 (TFF3), thereby improving the integrity of the intestinal epithelial barrier. In addition, THY altered the composition of the gut microbiota in colitis mice by increasing the abundance of Bacteroides and reducing the abundance of Proteobacteria. Fecal microbial transplantation (FMT) results demonstrated that FM from THY donor mice significantly improved symptoms of inflammatory bowel disease (IBD), confirming the crucial role of the gut microbiota. Metagenomic and untargeted metabolomic studies found that the characteristic microbiota of THY is Prevotellaceae, and THY significantly upregulated the amino acid metabolic pathways related to arginine and proline metabolism, arginine biosynthesis, and glycerophospholipid metabolism. In summary, THY holds significant potential as a functional additive to enhance host intestinal activity.
Collapse
Affiliation(s)
- Ziwen Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xin Wen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yahan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zichun Ai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinyi Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiujing Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
2
|
Rodiño-Janeiro BK, Khannous-Lleiffe O, Pigrau M, Willis JR, Salvo-Romero E, Nieto A, Expósito E, Fortea M, Pardo-Camacho C, Albert-Bayo M, González-Castro AM, Guagnozzi D, Martínez C, Lobo B, Vicario M, Santos J, Gabaldón T, Alonso-Cotoner C. Acute stress triggers sex-dependent rapid alterations in the human small intestine microbiota composition. Front Microbiol 2025; 15:1441126. [PMID: 39881982 PMCID: PMC11778178 DOI: 10.3389/fmicb.2024.1441126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Background/aims Digestive disorders of gut-brain interaction (DGBI) are very common, predominant in females, and usually associated with intestinal barrier dysfunction, dysbiosis, and stress. We previously found that females have increased susceptibility to intestinal barrier dysfunction in response to acute stress. However, whether this is associated with changes in the small bowel microbiota remains unknown. We have evaluated changes in the small intestinal microbiota in response to acute stress to better understand stress-induced intestinal barrier dysfunction. Methods Jejunal biopsies were obtained at baseline and 90 min after cold pain or sham stress. Autonomic (blood pressure and heart rate), hormonal (plasma cortisol and adrenocorticotropic hormone) and psychological (Subjective Stress Rating Scale) responses to cold pain and sham stress were monitored. Microbial DNA from the biopsies was analyzed using a 16S metabarcoding approach before and after cold pain stress and sham stress. Differences in diversity and relative abundance of microbial taxa were examined. Results Cold pain stress was associated with a significant decrease in alpha diversity (P = 0.015), which was more pronounced in females, along with significant sex differences in the abundance of specific taxa and the overall microbiota composition. Microbiota alterations significantly correlated with changes in psychological responses, hormones, and gene expression in the intestinal mucosal. Cold pain stress was also associated with activation of autonomic, hormonal and psychological response, with no differences between sexes. Conclusions Acute stress elicits rapid alterations in bacterial composition in the jejunum of healthy subjects and these changes are more pronounced in females. Our results may contribute to the understanding of female predominance in DGBI.
Collapse
Affiliation(s)
- Bruno K. Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olfat Khannous-Lleiffe
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jesse R. Willis
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marina Fortea
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercé Albert-Bayo
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Renal Physiopathology Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - María Vicario
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Translational Mucosal Immunology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Liu M, Li S, Cao S, Liu C, Han Y, Cheng J, Zhang S, Zhao J, Shi Y. Let food be your medicine - dietary fiber. Food Funct 2024; 15:7733-7756. [PMID: 38984439 DOI: 10.1039/d3fo05641d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Dietary fiber (DF) cannot be digested and absorbed by the digestive tract, nor can it provide the energy needed to be burned for metabolic activities. Therefore, from the 1950s to the 1980s, DF received little attention in nutrition studies. With in-depth research and developments in global nutrition, people have gradually paid attention to the fact that DF occupies an essential position in the structure of nutrition, and it can ensure the healthy development of human beings. As early as 390 B.C., the ancient Greek physician Hippocrates proposed, "Let your food be your medicine, and your medicine be your food". This concept has been more systematically validated in modern scientific research, with numerous epidemiological studies showing that the dietary intake of DF-rich foods such as whole grains, root vegetables, legumes, and fruits has the potential to regulate the balance of the gut microbiota and thereby prevent diseases. However, the crosstalk between different types of DF and the gut microbiota is quite complex, and the effects on the organism vary. In this paper, we discuss research on DF and the gut microbiota and related diseases, aiming to understand the relationship between all three better and provide a reference basis for the risk reduction of related diseases.
Collapse
Affiliation(s)
- Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Cong Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Yao Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiawen Cheng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, Henan, 450002, China
| |
Collapse
|
4
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Lai TT, Liou CW, Tsai YH, Lin YY, Wu WL. Butterflies in the gut: the interplay between intestinal microbiota and stress. J Biomed Sci 2023; 30:92. [PMID: 38012609 PMCID: PMC10683179 DOI: 10.1186/s12929-023-00984-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.
Collapse
Affiliation(s)
- Tzu-Ting Lai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Chia-Wei Liou
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yu-Hsuan Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Yuan-Yuan Lin
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan
| | - Wei-Li Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
Seton KA, Defernez M, Telatin A, Tiwari SK, Savva GM, Hayhoe A, Noble A, de Carvalho-KoK ALS, James SA, Bansal A, Wileman T, Carding SR. Investigating Antibody Reactivity to the Intestinal Microbiome in Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Feasibility Study. Int J Mol Sci 2023; 24:15316. [PMID: 37895005 PMCID: PMC10607161 DOI: 10.3390/ijms242015316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystemic disease of unknown aetiology that is characterised by disabling chronic fatigue and involves both the immune and gastrointestinal (GI) systems. Patients display alterations in GI microbiome with a significant proportion experiencing GI discomfort and pain and elevated blood biomarkers for altered intestinal permeability compared with healthy individuals. To investigate a possible GI origin of ME/CFS we designed a feasibility study to test the hypothesis that ME/CFS pathogenesis is a consequence of increased intestinal permeability that results in microbial translocation and a breakdown in immune tolerance leading to generation of antibodies reactive to indigenous intestinal microbes. Secretory immunoglobulin (Ig) A and serum IgG levels and reactivity to intestinal microbes were assessed in five pairs of severe ME/CFS patients and matched same-household healthy controls. For profiling serum IgG, we developed IgG-Seq which combines flow-cytometry based bacterial cell sorting and metagenomics to detect mucosal IgG reactivity to the microbiome. We uncovered evidence for immune dysfunction in severe ME/CFS patients that was characterised by reduced capacity and reactivity of serum IgG to stool microbes, irrespective of their source. This study provides the rationale for additional studies in larger cohorts of ME/CFS patients to further explore immune-microbiome interactions.
Collapse
Affiliation(s)
- Katharine A. Seton
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | - Marianne Defernez
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | - Andrea Telatin
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | - Antonietta Hayhoe
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | | | - Ana L. S. de Carvalho-KoK
- Experimental Arthritis Treatment Centre for Children, University of Liverpool, Liverpool L12 2AP, UK;
| | - Steve A. James
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
| | | | - Thomas Wileman
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Simon R. Carding
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (K.A.S.); (A.T.); (S.K.T.); (G.M.S.); (A.H.); (S.A.J.); (T.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
7
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
8
|
Abstract
All cells in the body are exposed to physical force in the form of tension, compression, gravity, shear stress, or pressure. Cells convert these mechanical cues into intracellular biochemical signals; this process is an inherent property of all cells and is essential for numerous cellular functions. A cell's ability to respond to force largely depends on the array of mechanical ion channels expressed on the cell surface. Altered mechanosensing impairs conscious senses, such as touch and hearing, and unconscious senses, like blood pressure regulation and gastrointestinal (GI) activity. The GI tract's ability to sense pressure changes and mechanical force is essential for regulating motility, but it also underlies pain originating in the GI tract. Recent identification of the mechanically activated ion channels Piezo1 and Piezo2 in the gut and the effects of abnormal ion channel regulation on cellular function indicate that these channels may play a pathogenic role in disease. Here, we discuss our current understanding of mechanically activated Piezo channels in the pathogenesis of pancreatic and GI diseases, including pancreatitis, diabetes mellitus, irritable bowel syndrome, GI tumors, and inflammatory bowel disease. We also describe how Piezo channels could be important targets for treating GI diseases.
Collapse
|
9
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
11
|
Xia P, Hou T, Jin H, Meng Y, Li J, Zhan F, Geng F, Li B. A critical review on inflammatory bowel diseases risk factors, dietary nutrients regulation and protective pathways based on gut microbiota during recent 5 years. Crit Rev Food Sci Nutr 2023; 64:8805-8821. [PMID: 37096497 DOI: 10.1080/10408398.2023.2204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
12
|
Jang J, Hwang S, Oh AR, Park S, Yaseen U, Kim JG, Park S, Jung Y, Cha JY. Fructose malabsorption in ChREBP-deficient mice disrupts the small intestine immune microenvironment and leads to diarrhea-dominant bowel habit changes. Inflamm Res 2023; 72:769-782. [PMID: 36813915 DOI: 10.1007/s00011-023-01707-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The mechanism by which incompletely absorbed fructose causes gastrointestinal symptoms is not fully understood. In this study, we investigated the immunological mechanisms of bowel habit changes associated with fructose malabsorption by examining Chrebp-knockout mice exhibiting defective fructose absorption. METHODS Mice were fed a high-fructose diet (HFrD), and stool parameters were monitored. The gene expression in the small intestine was analyzed by RNA sequencing. Intestinal immune responses were assessed. The microbiota composition was determined by 16S rRNA profiling. Antibiotics were used to assess the relevance of microbes for HFrD-induced bowel habit changes. RESULTS Chrebp-knockout (KO) mice fed HFrD showed diarrhea. Small-intestine samples from HFrD-fed Chrebp-KO mice revealed differentially expressed genes involved in the immune pathways, including IgA production. The number of IgA-producing cells in the small intestine decreased in HFrD-fed Chrebp-KO mice. These mice showed signs of increased intestinal permeability. Chrebp-KO mice fed a control diet showed intestinal bacterial imbalance, which the HFrD exaggerated. Bacterial reduction improved diarrhea-associated stool parameters and restored the decreased IgA synthesis induced in HFrD-fed Chrebp-KO mice. CONCLUSIONS The collective data indicate that gut microbiome imbalance and disrupting homeostatic intestinal immune responses account for the development of gastrointestinal symptoms induced by fructose malabsorption.
Collapse
Affiliation(s)
- Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Ah-Reum Oh
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea.,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Uzma Yaseen
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - Jae Gon Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea
| | - Sangbin Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea.
| | - Ji-Young Cha
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science and Technology, Gachon University, Inchon, Korea. .,Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon, 21999, Korea. .,Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
13
|
Yu J, Liu T, Guo Q, Wang Z, Chen Y, Dong Y. Disruption of the Intestinal Mucosal Barrier Induced by High Fructose and Restraint Stress Is Regulated by the Intestinal Microbiota and Microbiota Metabolites. Microbiol Spectr 2023; 11:e0469822. [PMID: 36719201 PMCID: PMC10100858 DOI: 10.1128/spectrum.04698-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Environmental (restraint stress) and dietary (high fructose) factors are key triggers for flares of inflammatory bowel disease; however, the mechanisms involved in this phenomenon are not fully elucidated. This study aimed to investigate the mechanisms by which restraint stress and high fructose damage the intestinal mucosal immune barrier. The feces of C57BL/6J mice were subjected to 16S rRNA and untargeted metabolome sequencing, and the intestinal histological structure was analyzed by immunohistochemistry and immunofluorescence staining. The mRNA and protein levels of the intestinal protein were analyzed by reverse transcription-PCR (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). The metabolites of the microbiota were tested in vitro, and Akkermansia muciniphila was used for colonization in vivo. Dietary fructose exacerbated the development of restraint stress, with an extensive change in the composition of the gut microbiota and microbial metabolites. The disturbance of the microbiota composition led to an increase in the abundance of histamine and a decrease in the abundance of taurine, which inhibited the expression of tight junction and MUC2 proteins, destroyed the function of NLRP6, and reduced intestinal autophagy level; this in turn disrupted the function of colonic goblet cells to secrete mucus, leading to defects in the intestinal mucosal barrier, which ultimately codrives colon autoinflammation. However, A. muciniphila supplementation counteracted damage to the intestinal mucosal barrier by high fructose and restraint stress. Therefore, the gut microbiota and microbiota metabolites play an important role in maintaining microenvironment homeostasis of the intestinal mucosal barrier. IMPORTANCE A high-fructose diet aggravated restraint stress-induced changes in the composition of the intestinal microbiome, in which the abundance of A. muciniphila was significantly increased. The high-fructose diet exacerbated restraint stress-induced the changes in the composition of the microbial metabolites, with taurine abundance being downregulated and histamine abundance upregulated. High fructose and restraint stress induced colonic mucosal immune barrier damage, possibly due to changes in the abundance of the microbial metabolites taurine and histamine. Colonization with A. muciniphila stimulated the expression of the NLRP6 inflammasome and activated autophagy in goblet cells, thereby producing more new mucins, which could protect the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Jiayu Yu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Tianlong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qingyun Guo
- Milu Conservation Research Unit, Beijing Milu Ecological Research Center, Beijing, People’s Republic of China
| | - Zixu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yaoxing Chen
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
14
|
DuPont HL, Jiang ZD, Alexander AS, DuPont AW, Brown EL. Intestinal IgA-Coated Bacteria in Healthy- and Altered-Microbiomes (Dysbiosis) and Predictive Value in Successful Fecal Microbiota Transplantation. Microorganisms 2022; 11:microorganisms11010093. [PMID: 36677385 PMCID: PMC9862469 DOI: 10.3390/microorganisms11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
IgA-coated bacteria in the gut (IgA-biome) provide a homeostatic function in healthy people through inhibition of microbial invaders and by protecting the epithelial monolayer of the gut. The laboratory methods used to detect this group of bacteria require flow cytometry and DNA sequencing (IgA-Seq). With dysbiosis (reduced diversity of the microbiome), the IgA-biome also is impaired. In the presence of enteric infection, oral vaccines, or an intestinal inflammatory disorder, the IgA-biome focuses on the pathogenic bacteria or foreign antigens, while in other chronic diseases associated with dysbiosis, the IgA-biome is reduced in capacity. Fecal microbiota transplantation (FMT), the use of fecal product from well-screened, healthy donors administered to patients with dysbiosis, has been successful in engrafting the intestine with healthy microbiota and metabolites leading to improve health. Through FMT, IgA-coated bacteria have been transferred to recipients retaining their immune coating. The IgA-biome should be evaluated in FMT studies as these mucosal-associated bacteria are more likely to be associated with successful transplantation than free luminal organisms. Studies of the microbiome pre- and post-FMT should employ metagenomic methods that identify bacteria at least at the species level to better identify organisms of interest while allowing comparisons of microbiota data between studies.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
- Correspondence: ; Tel.: +1-713-500-9366
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
15
|
Takeuchi T, Ohno H. IgA in human health and diseases: Potential regulator of commensal microbiota. Front Immunol 2022; 13:1024330. [PMID: 36439192 PMCID: PMC9685418 DOI: 10.3389/fimmu.2022.1024330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
Gut microbiota has extensive and tremendous impacts on human physiology and pathology. The regulation of microbiota is therefore a cardinal problem for the mutualistic relationship, as both microbial overgrowth and excessive immune reactions toward them could potentially be detrimental to host homeostasis. Growing evidence suggests that IgA, the most dominant secretory immunoglobulin in the intestine, regulates the colonization of commensal microbiota, and consequently, the microbiota-mediated intestinal and extra-intestinal diseases. In this review, we discuss the interactions between IgA and gut microbiota particularly relevant to human pathophysiology. We review current knowledge about how IgA regulates gut microbiota in humans and about the molecular mechanisms behind this interaction. We further discuss the potential role of IgA in regulating human diseases by extrapolating experimental findings, suggesting that IgA can be a future therapeutic strategy that functionally modulates gut microbiota.
Collapse
Affiliation(s)
- Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
16
|
Xia B, Zhong R, Wu W, Luo C, Meng Q, Gao Q, Zhao Y, Chen L, Zhang S, Zhao X, Zhang H. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model. MICROBIOME 2022; 10:139. [PMID: 36045454 PMCID: PMC9429786 DOI: 10.1186/s40168-022-01326-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/13/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Post-weaning diarrhea in piglets reduces growth performance and increases mortality, thereby causing serious economic losses. The intestinal epithelial cells and microbiota reciprocally regulate each other in order to maintain intestinal homeostasis and control inflammation. However, a relative paucity of research has been focused on the host-derived regulatory network that controls mucin O-glycans and thereby changes gut microbiota during diarrhea in infancy. At the development stage just after birth, the ontogeny of intestinal epithelium, immune system, and gut microbiota appear similar in piglets and human infants. Here, we investigated the changes of mucin O-glycans associated with gut microbiota using a diarrheal post-weaned piglet model. RESULTS We found that diarrhea disrupted the colonic mucus layer and caused aberrant mucin O-glycans, including reduced acidic glycans and truncated glycans, leading to an impaired gut microenvironment. Subsequently, the onset of diarrhea, changes in microbiota and bacterial translocation, resulting in compromised epithelial barrier integrity, enhanced susceptibility to inflammation, and mild growth faltering. Furthermore, we found the activation of NLRP3 inflammasome complexes in the diarrheal piglets when compared to the healthy counterparts, triggered the release of proinflammatory cytokines IL-1β and IL-18, and diminished autophagosome formation, specifically the defective conversion of LC3A/B I into LC3A/B II and the accumulation of p62. Additionally, selective blocking of the autophagy pathway by 3-MA led to the reduction in goblet cell-specific gene transcript levels in vitro. CONCLUSIONS We observed that diarrheal piglets exhibited colonic microbiota dysbiosis and mucosal barrier dysfunction. Our data demonstrated that diarrhea resulted in the activation of inflammasomes and autophagy restriction along with aberrant mucin O-glycans including reduced acidic glycans and truncated glycans. The results suggested the mucin O-glycans-microbiota axis is likely associated with diarrheal pathogenesis. Our study provides novel insights into the pathophysiology of early-weaning-induced diarrheal disease in piglets and potentially understanding of disease mechanisms of diarrhea for human infants. Understanding the molecular pathology and pathogenesis of diarrhea is a prerequisite for the development of novel and effective therapies. Our data suggest that facilitating O-glycan elongation, modifying the microbiota, and developing specific inhibitors to some key inflammasomes could be the options for therapy of diarrhea including human infants. Video abstract.
Collapse
Affiliation(s)
- Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206 China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Chengzeng Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY 14853 USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec H9X3V9 Canada
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
17
|
Efrain Molotla-Torres D, Mario Hernández-Soto L, Guzmán-Mejía F, Godínez-Victoria M, Elisa Drago-Serrano M, Félix Aguirre-Garrido J. Oral bovine lactoferrin modulation on fecal microbiota of mice underwent immobilization stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
18
|
Yu J, Liu T, Gao Z, Liu R, Wang Z, Chen Y, Cao J, Dong Y. Akkermansia muciniphila Colonization Alleviating High Fructose and Restraint Stress-Induced Jejunal Mucosal Barrier Disruption. Nutrients 2022; 14:nu14153164. [PMID: 35956340 PMCID: PMC9370786 DOI: 10.3390/nu14153164] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a mucin-degrading bacterium that resides in the mucus layer, but its potential in intestinal inflammatory diseases has sparked controversy. It is well known that both the consumption of fructose-containing beverages and psychological stress increase the risk of intestinal disease. Our results revealed that a high-fructose diet aggravated the damage to the jejunal mucosal barrier caused by restraint stress, reduced tight junction protein expression and the intestinal digestion and absorption capacity, disrupted the ability of Paneth cells to secrete antimicrobial peptides, and promoted the expression of inflammatory cytokines. A. muciniphila colonization enhanced the defense function of the mucosal barrier by enhancing the function of the NLRP6, promoting autophagy, maintaining the normal secretion of antimicrobial peptides in Paneth cells, promoting the expression of tight junction proteins, negatively regulating the NF-kB signaling pathway and inhibiting the expression of inflammatory cytokines. Our work indicates that A. muciniphila ameliorates the disruption of the intestinal mucosal barrier under high fructose and restraint stress. These results provided a rationale for the development of probiotic colonization for the prevention or treatment of intestinal diseases.
Collapse
|
19
|
Mucosal Plasma Cell Activation and Proximity to Nerve Fibres Are Associated with Glycocalyx Reduction in Diarrhoea-Predominant Irritable Bowel Syndrome: Jejunal Barrier Alterations Underlying Clinical Manifestations. Cells 2022; 11:cells11132046. [PMID: 35805133 PMCID: PMC9265332 DOI: 10.3390/cells11132046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a disorder of brain-gut interaction characterised by abdominal pain and changes in bowel habits. In the diarrhoea subtype (IBS-D), altered epithelial barrier and mucosal immune activation are associated with clinical manifestations. We aimed to further evaluate plasma cells and epithelial integrity to gain understanding of IBS-D pathophysiology. One mucosal jejunal biopsy and one stool sample were obtained from healthy controls and IBS-D patients. Gastrointestinal symptoms, stress, and depression scores were recorded. In the jejunal mucosa, RNAseq and gene set enrichment analyses were performed. A morphometric analysis by electron microscopy quantified plasma cell activation and proximity to enteric nerves and glycocalyx thickness. Immunoglobulins concentration was assessed in the stool. IBS-D patients showed differential expression of humoral pathways compared to controls. Activation and proximity of plasma cells to nerves and IgG concentration were also higher in IBS-D. Glycocalyx thickness was lower in IBS-D compared to controls, and this reduction correlated with plasma cell activation, proximity to nerves, and clinical symptoms. These results support humoral activity and loss of epithelial integrity as important contributors to gut dysfunction and clinical manifestations in IBS-D. Additional studies are needed to identify the triggers of these alterations to better define IBS-D pathophysiology.
Collapse
|
20
|
Karolkiewicz J, Nieman DC, Cisoń T, Szurkowska J, Gałęcka M, Sitkowski D, Szygula Z. No effects of a 4-week post-exercise sauna bathing on targeted gut microbiota and intestinal barrier function, and hsCRP in healthy men: a pilot randomized controlled trial. BMC Sports Sci Med Rehabil 2022; 14:107. [PMID: 35710395 PMCID: PMC9202095 DOI: 10.1186/s13102-022-00497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022]
Abstract
Background Body temperature fluctuations induced by acute exercise bouts may influence the intestinal barrier with related effects on epithelial permeability, immune responses, and release of metabolites produced by the gut microbiota. This study evaluated the effects of post-exercise sauna bathing in young men undergoing endurance training on gut bacteria inflammation and intestinal barrier function. Methods Fifteen (15) untrained males aged 22 ± 1.5 years were randomly assigned to exercise training (ET) with or without post-exercise sauna treatments (S). Participants in the group ET + S (n = 8) exercised 60 min, 3 times per week, on a bicycle ergometer followed by a 30-min dry Finish sauna treatment. The control group (ET, n = 7) engaged in the same exercise training program without the sauna treatments. Blood and stool samples were collected before and after the 4-week training program. Blood samples were analysed for the concentration of high-sensitivity C-reactive protein (hsCRP) and complete blood counts. Stool samples were analysed for pH, quantitative and qualitative measures of targeted bacteria, zonulin, and secretory immunoglobulin A. Results Interaction effects revealed no differences in the pattern of change over time between groups for the abundance of selected gut microbiome bacteria and stool pH, zonulin, sIgA, and hsCRP. Pre- and post-study fecal concentrations of Bifidobacterium spp., Faecalibacterium prausnitzii, and Akkermansia muciniphila were below reference values for these bacteria in both groups. Conclusions The combination of 4-weeks exercise followed by passive heat exposure did not have a measurable influence on targeted gut microbiota, intestinal barrier function, and hsCRP levels in young males. Trial registration The study was retrospectively registered in the clinical trials registry (Clinicaltrials.gov) under the trial registration number: NCT05277597. Release Date: March 11, 2022.
Collapse
Affiliation(s)
- Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland.
| | - David C Nieman
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Tomasz Cisoń
- Department of Physiotherapy, Institute of Physical Education, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| | - Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, Poznań, Poland
| | | | - Dariusz Sitkowski
- Department of Physiology, Institute of Sport - National Research Institute PL, Warsaw, Poland
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
21
|
Chuang DJ, Pethaperumal S, Siwakoti B, Chien HJ, Cheng CF, Hung SC, Lien TS, Sun DS, Chang HH. Activating Transcription Factor 3 Protects against Restraint Stress-Induced Gastrointestinal Injury in Mice. Cells 2021; 10:3530. [PMID: 34944038 PMCID: PMC8700235 DOI: 10.3390/cells10123530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/11/2022] Open
Abstract
Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.
Collapse
Affiliation(s)
- Dun-Jie Chuang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| |
Collapse
|
22
|
Haykin H, Rolls A. The neuroimmune response during stress: A physiological perspective. Immunity 2021; 54:1933-1947. [PMID: 34525336 PMCID: PMC7615352 DOI: 10.1016/j.immuni.2021.08.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Stress is an essential adaptive response that enables the organism to cope with challenges and restore homeostasis. Different stressors require distinctive corrective responses in which immune cells play a critical role. Hence, effects of stress on immunity may vary accordingly. Indeed, epidemiologically, stress can induce either inflammation or immune suppression in an organism. However, in the absence of a conceptual framework, these effects appear chaotic, leading to confusion. Here, we examine how stressor diversity is imbedded in the neuroimmune axis. Stressors differ in the brain patterns they induce, diversifying the neuronal and endocrine mediators dispatched to the periphery and generating a wide range of potential immune effects. Uncovering this complexity and diversity of the immune response to different stressors will allow us to understand the involvement of stress in pathological conditions, identify ways to modulate it, and even harness the therapeutic potential embedded in an adaptive response to stress.
Collapse
Affiliation(s)
- Hedva Haykin
- Department of immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Asya Rolls
- Department of immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel.
| |
Collapse
|
23
|
Rodriguez N, Tun HM, Field CJ, Mandhane PJ, Scott JA, Kozyrskyj AL. Prenatal Depression, Breastfeeding, and Infant Gut Microbiota. Front Microbiol 2021; 12:664257. [PMID: 34394021 PMCID: PMC8363245 DOI: 10.3389/fmicb.2021.664257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/23/2021] [Indexed: 02/01/2023] Open
Abstract
Depressive symptoms are common during pregnancy and are estimated to affect 7-20% of pregnant women, with higher prevalence found in those with a prior history of depression, in ethnic minorities, and those with increased exposure to stressful life events. Maternal depression often remains undiagnosed, and its symptoms can increase adverse health risks to the infant, including impaired cognitive development, behavioral problems, and higher susceptibility to physical illnesses. Accumulating research evidence supports the association between maternal physical health elements to infant gut health, including factors such as mode of delivery, medication, feeding status, and antibiotic use. However, specific maternal prenatal psychosocial factors and their effect on infant gut microbiota and immunity remains an area that is not well understood. This article reviews the literature and supplements it with new findings to show that prenatal depression alters: (i) gut microbial composition in partially and fully formula-fed infants at 3-4 months of age, and (ii) gut immunity (i.e., secretory Immunoglobulin A) in all infants independent of breastfeeding status. Understanding the implications of maternal depression on the infant gut microbiome is important to enhance both maternal and child health and to better inform disease outcomes and management.
Collapse
Affiliation(s)
- Nicole Rodriguez
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Hein M Tun
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - James A Scott
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Hsieh CS, Rengarajan S, Kau A, Tarazona-Meza C, Nicholson A, Checkley W, Romero K, Hansel NN. Altered IgA Response to Gut Bacteria Is Associated with Childhood Asthma in Peru. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:398-407. [PMID: 34193598 PMCID: PMC8516662 DOI: 10.4049/jimmunol.2001296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Alterations in gut microbiota in early life have been associated with the development of asthma; however, the role of gut bacteria or the IgA response to gut bacteria in school-aged children with asthma is unclear. To address this question, we profiled the microbial populations in fecal and nasal swab samples by 16S rRNA sequencing from 40 asthma and 40 control children aged 9-17 y from Peru. Clinical history and laboratory evaluation of asthma and allergy were obtained. Fecal samples were analyzed by flow cytometry and sorted into IgA+ and IgA- subsets for 16S rRNA sequencing. We found that the fecal or nasal microbial 16S rRNA diversity and frequency of IgA+ fecal bacteria did not differ between children with or without asthma. However, the α diversity of fecal IgA+ bacteria was decreased in asthma compared with control. Machine learning analysis of fecal bacterial IgA-enrichment data revealed loss of IgA binding to the Blautia, Ruminococcus, and Lachnospiraceae taxa in children with asthma compared with controls. In addition, this loss of IgA binding was associated with worse asthma control (Asthma Control Test) and increased odds of severe as opposed to mild to moderate asthma. Thus, despite little to no change in the microbiota, children with asthma exhibit an altered host IgA response to gut bacteria compared with control participants. Notably, the signature of altered IgA responses is loss of IgA binding, in particular to members of Clostridia spp., which is associated with greater severity of asthma.
Collapse
Affiliation(s)
- Chyi-Song Hsieh
- Division of Rheumatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO;
| | - Sunaina Rengarajan
- Division of Rheumatology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Andrew Kau
- Division of Allergy and Immunology, John T. Milliken Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Carla Tarazona-Meza
- Asociacion Benefica Prisma, PRISMA, Lima, Peru
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew Nicholson
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karina Romero
- Asociacion Benefica Prisma, PRISMA, Lima, Peru
- Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University School of Medicine, Baltimore, MD
- Program in Global Disease Epidemiology and Control, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Zhou D, Xue J, Miyamoto Y, Poulsen O, Eckmann L, Haddad GG. Microbiota Modulates Cardiac Transcriptional Responses to Intermittent Hypoxia and Hypercapnia. Front Physiol 2021; 12:680275. [PMID: 34248668 PMCID: PMC8267877 DOI: 10.3389/fphys.2021.680275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Orit Poulsen
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel G Haddad
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States.,Rady Children's Hospital-San Diego, San Diego, CA, United States
| |
Collapse
|
26
|
Guzmán-Mejía F, Godínez-Victoria M, Vega-Bautista A, Pacheco-Yépez J, Drago-Serrano ME. Intestinal Homeostasis under Stress Siege. Int J Mol Sci 2021; 22:ijms22105095. [PMID: 34065791 PMCID: PMC8150578 DOI: 10.3390/ijms22105095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023] Open
Abstract
Intestinal homeostasis encompasses a complex and balanced interplay among a wide array of components that collaborate to maintain gut barrier integrity. The appropriate function of the gut barrier requires the mucus layer, a sticky cushion of mucopolysaccharides that overlays the epithelial cell surface. Mucus plays a critical anti-inflammatory role by preventing direct contact between luminal microbiota and the surface of the epithelial cell monolayer. Moreover, mucus is enriched with pivotal effectors of intestinal immunity, such as immunoglobulin A (IgA). A fragile and delicate equilibrium that supports proper barrier function can be disturbed by stress. The impact of stress upon intestinal homeostasis results from neuroendocrine mediators of the brain-gut axis (BGA), which comprises a nervous branch that includes the enteric nervous system (ENS) and the sympathetic and parasympathetic nervous systems, as well as an endocrine branch of the hypothalamic-pituitary-adrenal axis. This review is the first to discuss the experimental animal models that address the impact of stress on components of intestinal homeostasis, with special emphasis on intestinal mucus and IgA. Basic knowledge from animal models provides the foundations of pharmacologic and immunological interventions to control disturbances associated with conditions that are exacerbated by emotional stress, such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Marycarmen Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| | - Alan Vega-Bautista
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, CP 11340 Mexico City, Mexico;
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso No. 1100, CP 04960 Mexico City, Mexico; (F.G.-M.); (A.V.-B.)
- Correspondence: (M.G.-V.); (M.E.D.-S.); Tel.: +52-55-5729-6000 (ext. 62743) (M.G.-V.); +52-55-5483-7000 (ext. 3624) (M.E.D.-S.)
| |
Collapse
|