1
|
Sánchez‐Simarro Á, Cuevas‐Ferrando E, Fernández‑Soto D, Grau B, Albert E, Giménez E, Avilés‑Alía AI, Rusu L, Geller R, Reyburn HT, Navarro D. Estimating SARS-CoV-2 Omicron XBB.1.5 Spike-Directed Functional Antibody Levels From an Anti-Receptor Binding Domain Wuhan-Hu-1-Based Commercial Immunoassay Results. J Med Virol 2025; 97:e70130. [PMID: 39812228 PMCID: PMC11734093 DOI: 10.1002/jmv.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
We investigated whether antibody concentrations measured in plasma using the Roche Elecsys® Anti-SARS-CoV-2 S assay (targeting the receptor binding domain, RBD) could estimate levels of Wuhan-Hu-1 and Omicron XBB.1.5 spike-directed antibodies with neutralizing ability (NtAb) or those mediating NK-cell activity. We analyzed 135 plasma samples from 39 vaccinated elderly nursing home residents. A strong correlation was found for NtAb against both Wuhan-Hu-1 (Rho = 0.73, p < 0.001) and Omicron XBB.1.5 (sub)variants (Rho = 0.73, p < 0.001). Moderate positive correlations were observed for NK-cell activity, based on lysosome-associated membrane protein 1 (LAMP1)-producing NK cells stimulated with Wuhan-Hu-1 (Rho = 0.43, p < 0.001) and Omicron XBB.1.5 spike proteins (Rho = 0.50, p < 0.001). Similarly, interferon-gamma (IFN-γ)-producing NK-cell frequencies showed moderate correlations (Wuhan-Hu-1: Rho = 0.43, p < 0.001; Omicron XBB.1.5: Rho = 0.50, p < 0.001). Random Forest models accurately predicted NtAb levels against Wuhan-Hu-1 (R2 = 0.72), though models for Omicron XBB.1.5 were less robust. Anti-RBD antibody concentrations of 4.73 and 5.02 log10 BAU/mL predicted high NtAb levels for Wuhan-Hu-1 and Omicron XBB.1.5, respectively. Antibody thresholds for predicting functional NK cell-mediated responses were 4.73 log10 and 4.54 log10 BAU/mL for Wuhan-Hu-1 and Omicron XBB.1.5, respectively. For LAMP1-producing NK cells, the thresholds were 4.94 and 4.75 log10 BAU/mL for Wuhan-Hu-1 and Omicron XBB.1.5, respectively. In summary, total anti-RBD antibody levels measured by the Roche assay may allow inference of NtAb levels and, to a lesser extent, Fc-mediated NK-cell responses against Omicron XBB.1.5.
Collapse
Affiliation(s)
- Ángela Sánchez‐Simarro
- Microbiology ServiceClinic University Hospital, INCLIVA Health Research InstituteValenciaSpain
| | - Enric Cuevas‐Ferrando
- Microbiology ServiceClinic University Hospital, INCLIVA Health Research InstituteValenciaSpain
| | - Daniel Fernández‑Soto
- Department of Immunology and OncologyNational Centre for Biotechnology, CNB‐CSICMadridSpain
| | - Brayan Grau
- Institute for Integrative Systems Biology (I2SysBio)Universitat de Valencia‐CSICValenciaSpain
| | - Eliseo Albert
- Microbiology ServiceClinic University Hospital, INCLIVA Health Research InstituteValenciaSpain
| | - Estela Giménez
- Microbiology ServiceClinic University Hospital, INCLIVA Health Research InstituteValenciaSpain
- Department of MicrobiologySchool of Medicine, University of ValenciaValenciaSpain
| | - Ana Isabel Avilés‑Alía
- Institute for Integrative Systems Biology (I2SysBio)Universitat de Valencia‐CSICValenciaSpain
| | - Luciana Rusu
- Institute for Integrative Systems Biology (I2SysBio)Universitat de Valencia‐CSICValenciaSpain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio)Universitat de Valencia‐CSICValenciaSpain
| | - Hugh T. Reyburn
- Department of Immunology and OncologyNational Centre for Biotechnology, CNB‐CSICMadridSpain
| | - David Navarro
- Microbiology ServiceClinic University Hospital, INCLIVA Health Research InstituteValenciaSpain
- Department of MicrobiologySchool of Medicine, University of ValenciaValenciaSpain
- CIBER de Enfermedades InfecciosasInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
3
|
Sánchez-Simarro Á, Fernández-Soto D, Grau B, Albert E, Giménez E, Avilés-Alía AI, Gozalbo-Rovira R, Rusu L, Olea B, Geller R, Reyburn HT, Navarro D. Functional antibody responses targeting the Spike protein of SARS-CoV-2 Omicron XBB.1.5 in elderly nursing home residents following Wuhan-Hu-1-based mRNA booster vaccination. Sci Rep 2024; 14:11896. [PMID: 38789475 PMCID: PMC11126592 DOI: 10.1038/s41598-024-62874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
The immune effector mechanisms involved in protecting against severe COVID-19 infection in elderly nursing home residents following vaccination or natural infection are not well understood. Here, we measured SARS-CoV-2 Spike (S)-directed functional antibody responses, including neutralizing antibodies (NtAb) and antibody Fc-mediated NK cell activity (degranulation and IFNγ production), against the Wuhan-Hu-1, BA.4/5 (for NtAb), and Omicron XBB.1.5 variants in elderly nursing home residents (n = 39; median age, 91 years) before and following a third (pre- and post-3D) and a fourth (pre- and post-4D) mRNA COVID-19 vaccine dose. Both 3D and 4D boosted NtAb levels against both (sub)variants. Likewise, 3D and 4D increased the ability of sera to trigger both LAMP1- and IFNγ-producing NK cells, in particular against XBB.1.5. In contrast to NtAb titres, the frequencies of LAMP1- and IFNγ-producing NK cells activated by antibodies binding to Wuhan-Hu-1 and Omicron XBB.1.5 S were comparable at all testing times. Stronger functional antibody responses were observed in vaccine-experienced participants compared to vaccine-naïve at some testing times. These findings can contribute to identifying a reliable correlate of protection in elderly nursing home residents against severe COVID-19 and inform future vaccine strategies in this population group.
Collapse
Grants
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- FIS, PI21/00563 Instituto de Salud Carlos III
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- 202020E079 y CSIC-COVID19-028 Fundación General CSIC
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
- PID2020-115506RB-I00 (HTR) Ministerio de Ciencia e Innovación
Collapse
Affiliation(s)
- Ángela Sánchez-Simarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Daniel Fernández-Soto
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - Brayan Grau
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel Avilés-Alía
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980, Valencia, Spain
| | | | - Luciana Rusu
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980, Valencia, Spain
| | - Beatriz Olea
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - Ron Geller
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46980, Valencia, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, CNB-CSIC, Madrid, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Av. Blasco Ibáñez 17, 46010, Valencia, Spain.
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Alrubayyi A, Touizer E, Hameiri-Bowen D, Charlton B, Gea-Mallorquí E, Hussain N, da Costa KAS, Ford R, Rees-Spear C, Fox TA, Williams I, Waters L, Barber TJ, Burns F, Kinloch S, Morris E, Rowland-Jones S, McCoy LE, Peppa D. Natural killer cell responses during SARS-CoV-2 infection and vaccination in people living with HIV-1. Sci Rep 2023; 13:18994. [PMID: 37923825 PMCID: PMC10624865 DOI: 10.1038/s41598-023-45412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Natural killer (NK) cell subsets with adaptive properties are emerging as regulators of vaccine-induced T and B cell responses and are specialized towards antibody-dependent functions contributing to SARS-CoV-2 control. Although HIV-1 infection is known to affect the NK cell pool, the additional impact of SARS-CoV-2 infection and/or vaccination on NK cell responses in people living with HIV (PLWH) has remained unexplored. Our data show that SARS-CoV-2 infection skews NK cells towards a more differentiated/adaptive CD57+FcεRIγ- phenotype in PLWH. A similar subset was induced following vaccination in SARS-CoV-2 naïve PLWH in addition to a CD56bright population with cytotoxic potential. Antibody-dependent NK cell function showed robust and durable responses to Spike up to 148 days post-infection, with responses enriched in adaptive NK cells. NK cell responses were further boosted by the first vaccine dose in SARS-CoV-2 exposed individuals and peaked after the second dose in SARS-CoV-2 naïve PLWH. The presence of adaptive NK cells associated with the magnitude of cellular and humoral responses. These data suggest that features of adaptive NK cells can be effectively engaged to complement and boost vaccine-induced adaptive immunity in potentially more vulnerable groups such as PLWH.
Collapse
Affiliation(s)
- Aljawharah Alrubayyi
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Emma Touizer
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Bethany Charlton
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Noshin Hussain
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Kelly A S da Costa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Rosemarie Ford
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Thomas A Fox
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Ian Williams
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Laura Waters
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK
| | - Tristan J Barber
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Fiona Burns
- Institute for Global Health, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Sabine Kinloch
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK
| | - Emma Morris
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | | | - Laura E McCoy
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK
| | - Dimitra Peppa
- Division of Infection and Immunity, Institute for Immunity and Transplantation, University College London, London, UK.
- Department of HIV, Mortimer Market Centre, Central and North West London NHS Trust, London, UK.
- The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Combinatorial Regimens Augment Drug Monotherapy for SARS-CoV-2 Clearance in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543159. [PMID: 37398307 PMCID: PMC10312581 DOI: 10.1101/2023.05.31.543159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating SARS-CoV-2 variants of concern (VOCs) that evolve to escape spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or Main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy did not eliminate SARS-CoV-2 in mice. However, targeting two viral enzymes by combining molnupiravir with nirmatrelvir resulted in superior efficacy and virus clearance. Furthermore, combining molnupiravir with Caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma yielded rapid virus clearance and 100% survival. Thus, our study provides insights into treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
|
7
|
Nantambi H, Sembera J, Ankunda V, Ssali I, Kalyebi AW, Oluka GK, Kato L, Ubaldo B, Kibengo F, Katende JS, Gombe B, Baine C, Odoch G, Mugaba S, Sande OJ, The COVID-19 Immunoprofiling Team, Kaleebu P, Serwanga J. Pre-pandemic SARS-CoV-2-specific IFN-γ and antibody responses were low in Ugandan samples and significantly reduced in HIV-positive specimens. Front Immunol 2023; 14:1148877. [PMID: 37153598 PMCID: PMC10154590 DOI: 10.3389/fimmu.2023.1148877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction We investigated whether prior SARS-CoV-2-specific IFN-γ and antibody responses in Ugandan COVID-19 pre-pandemic specimens aligned to this population's low disease severity. Methods We used nucleoprotein (N), spike (S), NTD, RBD, envelope, membrane, SD1/2-directed IFN-γ ELISpots, and an S- and N-IgG antibody ELISA to screen for SARS-CoV-2-specific cross-reactivity. Results HCoV-OC43-, HCoV-229E-, and SARS-CoV-2-specific IFN-γ occurred in 23, 15, and 17 of 104 specimens, respectively. Cross-reactive IgG was more common against the nucleoprotein (7/110, 15.5%; p = 0.0016, Fishers' Exact) than the spike (3/110, 2.72%). Specimens lacking anti-HuCoV antibodies had higher rates of pre-epidemic SARS-CoV-2-specific IFN-γ cross-reactivity (p-value = 0.00001, Fishers' exact test), suggesting that exposure to additional factors not examined here might play a role. SARS-CoV-2-specific cross-reactive antibodies were significantly less common in HIV-positive specimens (p=0.017; Fishers' Exact test). Correlations between SARS-CoV-2- and HuCoV-specific IFN-γ responses were consistently weak in both HIV negative and positive specimens. Discussion These findings support the existence of pre-epidemic SARS-CoV-2-specific cellular and humoral cross-reactivity in this population. The data do not establish that these virus-specific IFN-γ and antibody responses are entirely specific to SARS-CoV-2. Inability of the antibodies to neutralise SARS-CoV-2 implies that prior exposure did not result in immunity. Correlations between SARS-CoV-2 and HuCoV-specific responses were consistently weak, suggesting that additional variables likely contributed to the pre-epidemic cross-reactivity patterns. The data suggests that surveillance efforts based on the nucleoprotein might overestimate the exposure to SARS-CoV-2 compared to inclusion of additional targets, like the spike protein. This study, while limited in scope, suggests that HIV-positive people are less likely than HIV-negative people to produce protective antibodies against SARS-CoV-2.
Collapse
Affiliation(s)
- Hellen Nantambi
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Jackson Sembera
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Ivan Ssali
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Arthur Watelo Kalyebi
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Kevin Oluka
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Bahemuka Ubaldo
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Freddie Kibengo
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Joseph Ssebwana Katende
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Ben Gombe
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Susan Mugaba
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - The COVID-19 Immunoprofiling Team
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jennifer Serwanga
- Medical Research Council (MRC), Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
8
|
Mackin SR, Desai P, Whitener BM, Karl CE, Liu M, Baric RS, Edwards DK, Chicz TM, McNamara RP, Alter G, Diamond MS. Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat Microbiol 2023; 8:569-580. [PMID: 37012355 PMCID: PMC10797606 DOI: 10.1038/s41564-023-01359-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023]
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical coronavirus disease 2019 outcome. However, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and FcγR-knockout mice, we determined the requirement for Fc effector functions to control SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the pre-clinical mRNA-1273 vaccine, control of Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Collapse
Affiliation(s)
- Samantha R Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Courtney E Karl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Taras M Chicz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Galit Alter
- Moderna, Inc., Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Jaiswal SR, Saifullah A, Arunachalam J, Lakhchaura R, Tailor D, Mehta A, Bhagawati G, Aiyer H, Biswas S, Khamar B, Malhotra SV, Chakrabarti S. Augmenting Vaccine Efficacy against Delta Variant with 'Mycobacterium- w'-Mediated Modulation of NK-ADCC and TLR-MYD88 Pathways. Vaccines (Basel) 2023; 11:vaccines11020328. [PMID: 36851206 PMCID: PMC9966412 DOI: 10.3390/vaccines11020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Mycobacterium-w (Mw) was shown to boost adaptive natural killer (ANK) cells and protect against COVID-19 during the first wave of the pandemic. As a follow-up of the trial, 50 healthcare workers (HCW) who had received Mw in September 2020 and subsequently received at least one dose of ChAdOx1 nCoV-19 vaccine (Mw + ChAdOx1 group) were monitored for symptomatic COVID-19 during a major outbreak with the delta variant of SARS-CoV-2 (April-June 2021), along with 201 HCW receiving both doses of the vaccine without Mw (ChAdOx1 group). Despite 48% having received just a single dose of the vaccine in the Mw + ChAdOx1 group, only two had mild COVID-19, compared to 36 infections in the ChAdOx1 group (HR-0.46, p = 0.009). Transcriptomic studies revealed an enhanced adaptive NK cell-dependent ADCC in the Mw + ChAdOx1 group, along with downregulation of the TLR2-MYD88 pathway and concomitant attenuation of downstream inflammatory pathways. This might have resulted in robust protection during the pandemic with the delta variant.
Collapse
Affiliation(s)
- Sarita Rani Jaiswal
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Ashraf Saifullah
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Jaganath Arunachalam
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
| | - Rohit Lakhchaura
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Dhanir Tailor
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupama Mehta
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Gitali Bhagawati
- Department of Pathology and Microbiology, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Hemamalini Aiyer
- Department of Pathology and Microbiology, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Bakulesh Khamar
- Research & Development, Cadila Pharmaceuticals Ltd., Ahmedabad 382225, India
| | - Sanjay V. Malhotra
- Department of Cell, Development & Cancer Biology and Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Suparno Chakrabarti
- Cellular Therapy and Immunology, Manashi Chakrabarti Foundation, New Delhi 110096, India
- Department of Blood and Marrow Transplantation, Dharamshila Narayana Super-Speciality Hospital, New Delhi 110096, India
- Correspondence: or
| |
Collapse
|
10
|
Aguilar-Bretones M, Fouchier RA, Koopmans MP, van Nierop GP. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest 2023; 133:e162192. [PMID: 36594464 PMCID: PMC9797340 DOI: 10.1172/jci162192] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
Collapse
|
11
|
Mackin SR, Desai P, Whitener BM, Karl CE, Liu M, Baric RS, Edwards DK, Chicz TM, McNamara RP, Alter G, Diamond MS. Fcγ receptor-dependent antibody effector functions are required for vaccine protection against infection by antigenic variants of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.27.518117. [PMID: 36482975 PMCID: PMC9727771 DOI: 10.1101/2022.11.27.518117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emerging SARS-CoV-2 variants with antigenic changes in the spike protein are neutralized less efficiently by serum antibodies elicited by legacy vaccines against the ancestral Wuhan-1 virus. Nonetheless, these vaccines, including mRNA-1273 and BNT162b2, retained their ability to protect against severe disease and death, suggesting that other aspects of immunity control infection in the lung. Although vaccine-elicited antibodies can bind Fc gamma receptors (FcγRs) and mediate effector functions against SARS-CoV-2 variants, and this property correlates with improved clinical COVID-19 outcome, a causal relationship between Fc effector functions and vaccine-mediated protection against infection has not been established. Here, using passive and active immunization approaches in wild-type and Fc-gamma receptor (FcγR) KO mice, we determined the requirement for Fc effector functions to protect against SARS-CoV-2 infection. The antiviral activity of passively transferred immune serum was lost against multiple SARS-CoV-2 strains in mice lacking expression of activating FcγRs, especially murine FcγR III (CD16), or depleted of alveolar macrophages. After immunization with the preclinical mRNA-1273 vaccine, protection against Omicron BA.5 infection in the respiratory tract also was lost in mice lacking FcγR III. Our passive and active immunization studies in mice suggest that Fc-FcγR engagement and alveolar macrophages are required for vaccine-induced antibody-mediated protection against infection by antigenically changed SARS-CoV-2 variants, including Omicron strains.
Collapse
Affiliation(s)
- Samantha R. Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bradley M. Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Courtney E. Karl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | | | | | | | - Galit Alter
- Moderna, Inc., Cambridge MA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Case JB, Mackin S, Errico JM, Chong Z, Madden EA, Whitener B, Guarino B, Schmid MA, Rosenthal K, Ren K, Dang HV, Snell G, Jung A, Droit L, Handley SA, Halfmann PJ, Kawaoka Y, Crowe JE, Fremont DH, Virgin HW, Loo YM, Esser MT, Purcell LA, Corti D, Diamond MS. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Nat Commun 2022; 13:3824. [PMID: 35780162 PMCID: PMC9250508 DOI: 10.1038/s41467-022-31615-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022] Open
Abstract
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhenlu Chong
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily A Madden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara Guarino
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Kim Rosenthal
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Kuishu Ren
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Ha V Dang
- Vir Biotechnology, San Francisco, CA, USA
| | | | - Ana Jung
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Vir Biotechnology, San Francisco, CA, USA
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueh-Ming Loo
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mark T Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
13
|
Sette A, Saphire EO. Inducing broad-based immunity against viruses with pandemic potential. Immunity 2022; 55:738-748. [PMID: 35545026 PMCID: PMC10286218 DOI: 10.1016/j.immuni.2022.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
The brutal toll of another viral pandemic can be blunted by investing now in research that uncovers mechanisms of broad-based immunity so we may have vaccines and therapeutics at the ready. We do not know exactly what pathogen may trigger the next wave or next pandemic. We do know, however, that the human immune system must respond and must be bolstered with effective vaccines and other therapeutics to preserve lives and livelihoods. These countermeasures must focus on features conserved among families of pathogens in order to be responsive against something yet to emerge. Here, we focus on immunological approaches to mitigate the impact of the next emerging virus pandemic by developing vaccines that elicit both broadly protective antibodies and T cells. Identifying human immune mechanisms of broad protection against virus families with pandemic potential will be our best defense for humanity in the future.
Collapse
Affiliation(s)
- Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|