1
|
Yang C, Gao M, Wang Y, Jiang T, Ma Y, Si X, Deng Y, Liu Y, Mo M, Xiao X, Wang F, Yang Y. Low-Frequency Optical Signal Enhancement Device Combines CRISPR-Based Assay for Portable S. Pneumoniae Detection. Anal Chem 2025; 97:8553-8563. [PMID: 40203058 DOI: 10.1021/acs.analchem.5c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Early detection and treatment of Streptococcus pneumoniae (SPN) is crucial for patients. However, since nucleic acid testing relies on large-scale equipment and specialized operators, challenges remain for accurate, fast, and low-cost SPN detection. Here, we present a point-of-care testing (POCT) device for rapid and accurate detection of SPN based on low-frequency optical signal enhancement and cluster of regularly interspaced short palindromic repeats (CRISPR). The spotlight tube enables the enhancement of the fluorescence signal, while the combination of an artificial intelligence-assisted autoexposure algorithm and a homomorphic filtering image processing method improves the signal-to-noise ratio of the fluorescence image, thus realizing highly sensitive detection. Nucleic acid identification is performed using CRISPR-based crRNAs, and fluorescent probes were constructed against the IytA gene of SPN. And they showed high specificity and sensitivity for the IytA gene. This device demonstrated excellent sensitivity in detecting the SPN using the developed CRISPR-based nucleic acid detection strategy. The detection threshold of SPN reached 0.1 fM, and the single detection time of the device was only 40 min. Specificity was validated using clinical samples, and the test showed 100% agreement with quantitative polymerase chain reaction results from clinical samples. This method provides a highly sensitive optical and signal processing device, which, in combination with a novel DNA probe for SPN, provides a novel indicator option for POCT of SPN.
Collapse
Affiliation(s)
- Chen Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Menglu Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Yifan Wang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Tao Jiang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yihan Ma
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xiaotong Si
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
| | - Youping Deng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Yantong Liu
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Minjing Mo
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
| | - Xuan Xiao
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Gao M, Yang C, Si W, Xi X, Chen L, Zeng Z, Rong Y, Yang Y, Wang F, Yuan C. Combining CRISPR-Cas12a with Microsphere Array-Enhanced Fluorescence for Portable Pathogen Nucleic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20932-20942. [PMID: 40151930 DOI: 10.1021/acsami.5c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The detection of food contamination in a swift and sensitive manner is essential for safeguarding public health. Clustered regularly interspaced short palindromic repeats (CRISPR)-based assays for nucleic acid detection are renowned for their high specificity and convenient, related studies have focused on refining the Cas protein and optimizing the CRISPR (cr)RNAs design within CRISPR-based assays for enhancing the sensitivity of nucleic acid detection. Our research offers innovative insights into enhancing the fluorescence signal output intensity from a physical standpoint, thereby presenting a practical and cost-effective strategy to lower the detection thresholds in CRISPR-based assays. By a layer of microsphere arrays was spread onto the bottom of the microfluidic chip to enhance the fluorescence signal of the sample via self-assembly of the microspheres. Recombinase polymerase amplification (RPA) was used to amplify target sequences, followed by crRNA binding to activate Cas enzyme, cleaving fluorescein amidite (FAM)-labeled reporters and emitting a fluorescent signal. The method successfully identified SARS-CoV-2 positive samples (10 clinical samples and 8 environmental contamination samples) and distinguished them from negative samples. Meanwhile, it successfully detected 4 food contamination Shigella samples and 5 clinical Shigella samples. In this study, the developed method exhibited a detection limit (LoD) of 75 fM for SARS-CoV-2 (POCT with USB camera: 50 fM) and 100 fM for Shigella (POCT with USB camera: 75 fM). It also demonstrated promising sensitivity (100%) and specificity (100%) in a small-sample validation. Combined portable and automated detection was achieved using a smartphone to receive and process the fluorescent signals obtained from the samples. The detection platform developed in this study is not only applicable for the detection of pathogens in cold-chain food products, but also extends to pathogen detection in community hospitals and resource-limited areas, providing an efficient solution for rapid pathogen screening in different settings. Moreover, different nucleic acid samples can be detected by changing the RPA primer and CRISPR crRNA. This method provides a paradigm for studying enhanced fluorescence signaling and holds significant potential to advance the commercialization and practical use of CRISPR fluorescence sensors.
Collapse
Affiliation(s)
- Menglu Gao
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Wu Si
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaodan Xi
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Fubing Wang
- Department of Laboratory Medicine, Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| |
Collapse
|
3
|
Zhao YC, Wang Z, Zhao H, Yap NA, Wang R, Cheng W, Xu X, Ju LA. Sensing the Future of Thrombosis Management: Integrating Vessel-on-a-Chip Models, Advanced Biosensors, and AI-Driven Digital Twins. ACS Sens 2025; 10:1507-1520. [PMID: 40067156 DOI: 10.1021/acssensors.4c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Thrombotic events, such as strokes and deep vein thrombosis, remain a significant global health burden, with traditional diagnostic methods often failing to capture the complex, patient-specific nuances of thrombosis risk. This Perspective explores the revolutionary potential of microengineered vessel-on-chip platforms in thrombosis research and personalized medicine. We discuss the evolution from basic microfluidic channels to advanced 3D-printed, patient-specific models that accurately replicate complex vascular geometries, incorporating all elements of Virchow's triad. Integrating these platforms with cutting-edge sensing technologies, including wearable ultrasonic devices and electrochemical biosensors, enables real-time monitoring of thrombosis-related parameters. Crucially, we highlight the transformative role of artificial intelligence and digital twin technology in leveraging vast patient-specific data collected from these models. This integration allows for the development of predictive algorithms and personalized digital twins, offering unprecedented thrombosis risk assessment, treatment optimization, and drug screening capabilities. The clinical relevance and validation of these models are examined, showcasing their potential to predict thrombotic events and guide personalized treatment strategies. While challenges in scalability, standardization, and regulatory approval persist, the convergence of vessel-on-chip platforms, advanced sensing, and AI-driven digital twins promises to revolutionize thrombosis management. This approach paves the way for a new era of precision cardiovascular care, offering noninvasive, predictive, and personalized strategies for thrombosis prevention and treatment, ultimately improving patient outcomes and reducing the global burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Yunduo Charles Zhao
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
- Charles Perkins Centre, The University of Sydney,Camperdown,NSW 2006,Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
| | - Zihao Wang
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
| | - Haimei Zhao
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales,Kensington,NSW 2052,Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing 100053, China
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney,Darlington,NSW 2008,Australia
- Charles Perkins Centre, The University of Sydney,Camperdown,NSW 2006,Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
4
|
张 华, 胡 灿, 齐 鹏, 俞 展, 陈 玮, 童 基. [Research progress on point-of-care testing of blood biochemical indexes based on microfluidic technology]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2025; 42:205-211. [PMID: 40000194 PMCID: PMC11955327 DOI: 10.7507/1001-5515.202406061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Indexed: 02/27/2025]
Abstract
Blood biochemical indicators are an important basis for the diagnosis and treatment by doctors. The performance of related instruments, the qualification of operators, the storage method and time of blood samples and other factors will affect the accuracy of test results. However, it is difficult to meet the clinical needs of rapid detection and early screening of diseases with currently available methods. Point-of-care testing (POCT) is a new diagnostic technology with the characteristics of instant, portability, accuracy and efficiency. Microfluidic chips can provide an ideal experimental reaction platform for POCT. This paper summarizes the existing detection methods for common biochemical indicators such as blood glucose, lactic acid, uric acid, dopamine and cholesterol, and focuses on the application status of POCT based on microfluidic technology in blood biochemistry. It also summarizes the advantages and challenges of existing methods and prospects for development. The purpose of this paper is to provide relevant basis for breaking through the technical barriers of microfluidic and POCT product development in China.
Collapse
Affiliation(s)
- 华青 张
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - 灿杰 胡
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - 鹏嘉 齐
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - 展路 俞
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - 玮 陈
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - 基均 童
- 浙江大学医学院附属第二医院 临床医学工程部(杭州 310009)Department of Clinical Medical Engineering, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| |
Collapse
|
5
|
Liu Y, Yu L, Chen L, Chen K, Xu H, Chen M, Yi K, Li Y, Chen T, Wang F, Wang F, Zhu J, Wang F, Xiao X, Yang Y. Gradient Hydrogels Spatially Trapped Optical Cell Profiling for Quantitative Blood Cellular Osmotic Analysis. ACS Sens 2024; 9:1592-1601. [PMID: 38477713 DOI: 10.1021/acssensors.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The quantitative exploration of cellular osmotic responses and a thorough analysis of osmotic pressure-responsive cellular behaviors are poised to offer novel clinical insights into current research. This underscores a paradigm shift in the long-standing approach of colorimetric measurements triggered by red cell lysis. In this study, we engineered a purpose-driven optofluidic platform to facilitate the goal. Specifically, creating photocurable hydrogel traps surmounts a persistent challenge─optical signal interference from fluid disturbances. This achievement ensures a stable spatial phase of cells and the acquisition of optical signals for accurate osmotic response analysis at the single-cell level. Leveraging a multigradient microfluidic system, we constructed gradient osmotic hydrogel traps and developed an imaging recognition algorithm, empowering comprehensive analysis of cellular behaviors. Notably, this system has successfully and precisely analyzed individual and clustered cellular responses within the osmotic dimension. Prospective clinical testing has further substantiated its feasibility and performance in that it demonstrates an accuracy of 92% in discriminating complete hemolysis values (n = 25) and 100% in identifying initial hemolysis values (n = 25). Foreseeably, this strategy should promise to advance osmotic pressure-related cellular response analysis, benefiting further investigation and diagnosis of related blood diseases, blood quality, drug development, etc.
Collapse
Affiliation(s)
- Yantong Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Keyu Chen
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Faxi Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Department of Ophthalmology, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
6
|
Gayathri R, Suchand Sandeep CS, Vijayan C, Murukeshan VM. Random Lasing for Bimodal Imaging and Detection of Tumor. BIOSENSORS 2023; 13:1003. [PMID: 38131763 PMCID: PMC10742073 DOI: 10.3390/bios13121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The interaction of light with biological tissues is an intriguing area of research that has led to the development of numerous techniques and technologies. The randomness inherent in biological tissues can trap light through multiple scattering events and provide optical feedback to generate random lasing emission. The emerging random lasing signals carry sensitive information about the scattering dynamics of the medium, which can help in identifying abnormalities in tissues, while simultaneously functioning as an illumination source for imaging. The early detection and imaging of tumor regions are crucial for the successful treatment of cancer, which is one of the major causes of mortality worldwide. In this paper, a bimodal spectroscopic and imaging system, capable of identifying and imaging tumor polyps as small as 1 mm2, is proposed and illustrated using a phantom sample for the early diagnosis of tumor growth. The far-field imaging capabilities of the developed system can enable non-contact in vivo inspections. The integration of random lasing principles with sensing and imaging modalities has the potential to provide an efficient, minimally invasive, and cost-effective means of early detection and treatment of various diseases, including cancer.
Collapse
Affiliation(s)
- R. Gayathri
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| | - C. S. Suchand Sandeep
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| | - C. Vijayan
- Department of Physics, Indian Institute of Technology Madras (IITM), Chennai 600036, India;
| | - V. M. Murukeshan
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore; (R.G.); (C.S.S.S.)
| |
Collapse
|
7
|
Gao X, Hu X, Yang D, Hu Q, Zheng J, Zhao S, Zhu C, Xiao X, Yang Y. Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance. LAB ON A CHIP 2023; 23:4413-4421. [PMID: 37772435 DOI: 10.1039/d3lc00448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jingjing Zheng
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
8
|
Yadav VK, Ganguly P, Mishra P, Das S, Mallick D. A magnetically controlled microfluidic device for concentration dependent in vitro testing of anticancer drug. LAB ON A CHIP 2023; 23:4352-4365. [PMID: 37712390 DOI: 10.1039/d3lc00495c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Compartmentalizing magnetically controlled drug molecules is critical in several bioanalytical trials and tests, such as drug screening, digital PCR, magnetic hyperthermia, and controlled magnetic drug targeting (MDT). However, several studies have focused on diluting the nonmagnetic drug using various passive devices based on traditional microfabrication and 3D printing techniques, leading to the requirement of sterilized cleanroom facilities and expensive equipment, respectively. This work develops a strategically designed and straightforward lithography-free process to fabricate a magnetic microfluidic device using a multilayered PMMA substrate for concentration-dependent compartmentalization of a magnetically controlled anticancer drug. The device contains an array of outlet chamber wells connected to five primary separation microfluidic channels for collecting different drug concentrations. The microfluidic design geometry, magnet configuration, and fluid flow rate are optimized using FEM (Finite Element Method) simulations to attain a systematic concentration gradient region within the microfluidic channel. A stair-step-like patterned magnet creates an attenuating magnetic force between 0.01-0.24 pN on magnetic nanoparticles, capable of generating the concentration gradient for the clinically acceptable flow range of Q = 0.6-1.1 μL min-1. The chamber well of the device is designed to adapt different cell cultures and simultaneously expose five different concentrations by introducing a predefined concentration from the inlet. As a result, this innovative design provides a predictable concentration control in each well through a single injection port to minimize drug loading errors. The concentration gradient generation of the drug and exposure to cell culture chambers are controlled using the magnetic and drag forces capable of running a time-varying dose screening experiment. The concentration range of the compartmentalized drug sample in the device is determined as 10-480 μg mL-1 using inductively coupled plasma mass spectrometry (ICPMS) measurement and fluorescence intensity. The cytotoxicity test of MCF7 and NIH3T3 cells using the device was consistent with the results obtained with the manual dilution method, resulting in the reusability of the device.
Collapse
Affiliation(s)
- Vinit Kumar Yadav
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| | - Preetha Ganguly
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian institute of Technology Delhi, New Delhi, India
| | - Samaresh Das
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
- The Centre for Applied Research in Electronics, Indian institute of technology Delhi, New Delhi, India
| | - Dhiman Mallick
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
9
|
Wang J, Zhou W, Liu Y, He G, Yang Y. Biomimetic Compound Eyes with Gradient Ommatidium Arrays. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44503-44512. [PMID: 37675845 DOI: 10.1021/acsami.3c08063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Compound eyes are high-performing natural optical perception systems with compact configurations, generating extensive research interest. Existing compound eye systems are often combinations of simple uniform microlens arrays; there are still challenges in making more ommatidia on the compound eye surface to focus to the same plane. Here, a biomimetic gradient compound eye is presented by artificially mimicking dragonflies. The multiple replication process efficiently endows compound eyes with the gradient characteristics of dragonfly compound eyes. Experimental results show that the manufactured compound eye allows multifocus imaging by virtue of the gradient ommatidium array arranged closely in a honeycomb pattern while ensuring excellent optical properties and compact configurations. Thousands of ommatidia showing a gradient trend at the millimeter scale while remaining relatively uniform at the micron scale have gradient focal lengths ranging from 260 to 450 μm. This gradient compound eye allows more ommatidia to focus on the same plane than traditional uniform compound eyes, which have experimentally been shown to capture more than 1100 in-plane clear images simultaneously, promising potential applications in micro-optical devices, optical imaging, and biochemical sensing.
Collapse
Affiliation(s)
- Jian Wang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Wenna Zhou
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
10
|
Chen L, Yu L, Liu Y, Xu H, Li W, Wang F, Zhu J, Yi K, Ma L, Xiao H, Zhou F, Chen M, Cheng Y, Wang F, Zhu C, Xiao X, Yang Y. Valve-Adjustable Optofluidic Bio-Imaging Platform for Progressive Stenosis Investigation. ACS Sens 2023; 8:3104-3115. [PMID: 37477650 DOI: 10.1021/acssensors.3c00754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The clinical evidence has proven that valvular stenosis is closely related to many vascular diseases, which attracts great academic attention to the corresponding pathological mechanisms. The investigation is expected to benefit from the further development of an in vitro model that is tunable for bio-mimicking progressive valvular stenosis and enables accurate optical recognition in complex blood flow. Here, we develop a valve-adjustable optofluidic bio-imaging recognition platform to fulfill it. Specifically, the bionic valve was designed with in situ soft membrane, and the internal air-pressure chamber could be regulated from the inside out to bio-mimic progressive valvular stenosis. The developed imaging algorithm enhances the recognition of optical details in blood flow imaging and allows for quantitative analysis. In a prospective clinical study, we examined the effect of progressive valvular stenosis on hemodynamics within the typical physiological range of veins by this way, where the inhomogeneity and local enhancement effect in the altered blood flow field were precisely described and the optical differences were quantified. The effectiveness and consistency of the results were further validated through statistical analysis. In addition, we tested it on fluorescence and noticed its good performance in fluorescent tracing of the clotting process. In virtue of theses merits, this system should be able to contribute to mechanism investigation, pharmaceutical development, and therapeutics of valvular stenosis-related diseases.
Collapse
Affiliation(s)
- Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Hongshan Xu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Wei Li
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ming Chen
- Department of Blood Transfusion, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yanxiang Cheng
- School of Medicine, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
11
|
Yu L, Chen L, Liu Y, Zhu J, Wang F, Ma L, Yi K, Xiao H, Zhou F, Wang F, Bai L, Zhu Y, Xiao X, Yang Y. Magnetically Actuated Hydrogel Stamping-Assisted Cellular Mechanical Analyzer for Stored Blood Quality Detection. ACS Sens 2023; 8:1183-1191. [PMID: 36867892 DOI: 10.1021/acssensors.2c02507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Cellular mechanical property analysis reflecting the physiological and pathological states of cells plays a crucial role in assessing the quality of stored blood. However, its complex equipment needs, operation difficulty, and clogging issues hinder automated and rapid biomechanical testing. Here, we propose a promising biosensor assisted by magnetically actuated hydrogel stamping to fulfill it. The flexible magnetic actuator triggers the collective deformation of multiple cells in the light-cured hydrogel, and it allows for on-demand bioforce stimulation with the advantages of portability, cost-effectiveness, and simplicity of operation. The magnetically manipulated cell deformation processes are captured by the integrated miniaturized optical imaging system, and the cellular mechanical property parameters are extracted from the captured images for real-time analysis and intelligent sensing. In this work, 30 clinical blood samples with different storage durations (<14 days and >14 days) were tested. A deviation of 3.3% in the differentiation of blood storage durations by this system compared to physician annotation demonstrated its feasibility. This system should broaden the application of cellular mechanical assays in diverse clinical settings.
Collapse
Affiliation(s)
- Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
12
|
Tsiamis A, Buchoux A, Mahon ST, Walton AJ, Smith S, Clarke DJ, Stokes AA. Design and Fabrication of a Fully-Integrated, Miniaturised Fluidic System for the Analysis of Enzyme Kinetics. MICROMACHINES 2023; 14:537. [PMID: 36984943 PMCID: PMC10051508 DOI: 10.3390/mi14030537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The lab-on-a-chip concept, enabled by microfluidic technology, promises the integration of multiple discrete laboratory techniques into a miniaturised system. Research into microfluidics has generally focused on the development of individual elements of the total system (often with relatively limited functionality), without full consideration for integration into a complete fully optimised and miniaturised system. Typically, the operation of many of the reported lab-on-a-chip devices is dependent on the support of a laboratory framework. In this paper, a demonstrator platform for routine laboratory analysis is designed and built, which fully integrates a number of technologies into a single device with multiple domains such as fluidics, electronics, pneumatics, hydraulics, and photonics. This facilitates the delivery of breakthroughs in research, by incorporating all physical requirements into a single device. To highlight this proposed approach, this demonstrator microsystem acts as a fully integrated biochemical assay reaction system. The resulting design determines enzyme kinetics in an automated process and combines reservoirs, three-dimensional fluidic channels, optical sensing, and electronics in a low-cost, low-power and portable package.
Collapse
Affiliation(s)
- Andreas Tsiamis
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Anthony Buchoux
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3LJ, UK
| | - Stephen T. Mahon
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Anthony J. Walton
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - Stewart Smith
- School of Engineering, Institute for Bio-Engineering, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| | - David J. Clarke
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Adam A. Stokes
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FF, UK
| |
Collapse
|
13
|
Psotta C, Chaturvedi V, Gonzalez-Martinez JF, Sotres J, Falk M. Portable Prussian Blue-Based Sensor for Bacterial Detection in Urine. SENSORS (BASEL, SWITZERLAND) 2022; 23:388. [PMID: 36616986 PMCID: PMC9823789 DOI: 10.3390/s23010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Bacterial infections can affect the skin, lungs, blood, and brain, and are among the leading causes of mortality globally. Early infection detection is critical in diagnosis and treatment but is a time- and work-consuming process taking several days, creating a hitherto unmet need to develop simple, rapid, and accurate methods for bacterial detection at the point of care. The most frequent type of bacterial infection is infection of the urinary tract. Here, we present a wireless-enabled, portable, potentiometric sensor for E. coli. E. coli was chosen as a model bacterium since it is the most common cause of urinary tract infections. The sensing principle is based on reduction of Prussian blue by the metabolic activity of the bacteria, detected by monitoring the potential of the sensor, transferring the sensor signal via Bluetooth, and recording the output on a laptop or a mobile phone. In sensing of bacteria in an artificial urine medium, E. coli was detected in ~4 h (237 ± 19 min; n = 4) and in less than 0.5 h (21 ± 7 min, n = 3) using initial E. coli concentrations of ~103 and 105 cells mL-1, respectively, which is under or on the limit for classification of a urinary tract infection. Detection of E. coli was also demonstrated in authentic urine samples with bacteria concentration as low as 104 cells mL-1, with a similar response recorded between urine samples collected from different volunteers as well as from morning and afternoon urine samples.
Collapse
Affiliation(s)
- Carolin Psotta
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Aptusens AB, 29394 Kyrkhult, Sweden
| | - Vivek Chaturvedi
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Juan F. Gonzalez-Martinez
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Magnus Falk
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
- Biofilms-Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| |
Collapse
|