1
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants. mBio 2025; 16:e0046425. [PMID: 40136024 PMCID: PMC12077133 DOI: 10.1128/mbio.00464-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Wang C, Tang X, Jiang C, Zhang Y, Han B, Sun Y, Guo J, Peng H, Wang Z, Wang Y, Zhang J, Zhang Y, Jiang C. Intradermal delivery of SARS-CoV-2 RBD3-Fc mRNA vaccines via a needle-free injection system induces robust immune responses in rats. Front Immunol 2025; 16:1530736. [PMID: 40034698 PMCID: PMC11872709 DOI: 10.3389/fimmu.2025.1530736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Needle-free injection system (NFIS) is easy to operate and can decrease needle phobia. Besides, NFIS can increase the interaction of antigens in a more dispersed manner with immune cell at local injection site, which may improve the immune responses of mRNA vaccines. Although SARS-CoV-2 mRNA vaccines have great success, universal vaccines are urgently needed. Delivering universal mRNA vaccines by NFIS is preferred to combat COVID-19. Methods RBD3-Fc mRNA expressing BA.4, Delta, and prototype RBD, and human IgG Fc with YTE mutation was designed and synthesized. The safety and immune responses of universal RBD3-Fc naked mRNA and mRNA-LNP vaccines delivered intradermally using NFIS (named GV-01) and intramuscularly via needles were evaluated and compared in rats. Results The prime-boost regimen administered by two routes resulted in potent immune responses and intradermal delivery displays comparable or better performance in terms of binding antibodies, neutralizing antibodies and T cell responses. Naked mRNA vaccines were functional, but less effective than mRNA-LNP vaccines. Discussion The above results suggest that RBD3-Fc vaccines are safe and immunogenic and NFIS can be used as an alternative to needles/syringes for the inoculation of mRNA-LNP vaccines to elicit robust systematic immune responses.
Collapse
MESH Headings
- Animals
- Injections, Intradermal
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Rats
- SARS-CoV-2/immunology
- COVID-19/immunology
- COVID-19/prevention & control
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Humans
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- mRNA Vaccines/immunology
- mRNA Vaccines/administration & dosage
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/genetics
- RNA, Messenger/immunology
- Female
- Male
- T-Lymphocytes/immunology
- Needles
Collapse
Affiliation(s)
- Cenrong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Tang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
| | - Chenghan Jiang
- College of Agriculture, Yanbian University, Yanbian, China
| | - Yu Zhang
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Bo Han
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Yi Sun
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Jianfeng Guo
- R&D Department, Jiangsu Leju Medical Technology Co., Jiangsu, China
| | - Hanyu Peng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zihan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yipeng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialu Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- R&D Department, Changchun BCHT Biotechnology Co., Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
3
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and Stability of JN.1-derived LB.1, KP.2.3, KP.3 and KP.3.1.1 Subvariants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611219. [PMID: 39282390 PMCID: PMC11398412 DOI: 10.1101/2024.09.04.611219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Lead contact
| |
Collapse
|
4
|
Yamamoto S, Matsuda K, Maeda K, Mizoue T, Horii K, Okudera K, Tan T, Oshiro Y, Inamura N, Nemoto T, S Takeuchi J, Konishi M, Sugiyama H, Aoyanagi N, Sugiura W, Ohmagari N. Protection of Omicron Bivalent Vaccine, Previous Infection, and Their Induced Neutralizing Antibodies Against Symptomatic Infection With Omicron XBB.1.16 and EG.5.1. Open Forum Infect Dis 2024; 11:ofae519. [PMID: 39319092 PMCID: PMC11420683 DOI: 10.1093/ofid/ofae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Background Data are limited on the protective role of the Omicron BA bivalent vaccine, previous infection, and their induced neutralizing antibodies against Omicron XBB.1.16 and EG.5.1 infection. Methods We conducted a nested case-control analysis among tertiary hospital staff in Tokyo who had received ≥3 doses of COVID-19 vaccines and donated blood samples in June 2023 (1 month before the Omicron XBB.1.16 and EG.5.1 wave). We identified 206 symptomatic cases between June and September 2023 and selected their controls with 1:1 propensity score matching. We examined the association of vaccination, previous infection, and preinfection live virus neutralizing antibody titers against Omicron XBB.1.16 and EG.5.1 with the risk of COVID-19 infection. Results Previous infection during the Omicron BA- or XBB-dominant phase was associated with a significantly lower infection risk during the XBB.1.16 and EG.5.1-dominant phase than infection-naive status, with 70% and 100% protection, respectively, whereas Omicron BA bivalent vaccination showed no association. Preinfection neutralizing titers against XBB.1.16 and EG.5.1 were 39% (95% CI, 8%-60%) and 28% (95% CI, 8%-44%) lower in cases than matched controls. Neutralizing activity against XBB.1.16 and EG.5.1 was somewhat detectable in the sera of individuals with previous infection but barely detectable in those who were infection naive and received the Omicron bivalent vaccine. Conclusions In the era when the Omicron XBB vaccine was unavailable, the Omicron BA bivalent vaccine did not confer the neutralizing activity and protection against Omicron XBB.1.16 and EG.5.1 symptomatic infection. The previous infection afforded neutralizing titers and protection against symptomatic infection with these variants.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
- Department of Refractory Viral Infection, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumi Horii
- Infection Control Office, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Kaori Okudera
- Infection Control Office, Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Tomofumi Tan
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Yusuke Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Junko S Takeuchi
- Department of Academic-Industrial Partnerships Promotion, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruhito Sugiyama
- Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Nobuyoshi Aoyanagi
- Kohnodai Hospital of the National Center for the Global Health and Medicine, Chiba, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Zhang Y, Chamblee M, Xu J, Qu P, Shamseldin MM, Yoo SJ, Misny J, Thongpan I, Kc M, Hall JM, Gupta YA, Evans JP, Lu M, Ye C, Hsu CC, Liang X, Martinez-Sobrido L, Yount JS, Boyaka PN, Liu SL, Dubey P, Peeples ME, Li J. Three SARS-CoV-2 spike protein variants delivered intranasally by measles and mumps vaccines are broadly protective. Nat Commun 2024; 15:5589. [PMID: 38961063 PMCID: PMC11222507 DOI: 10.1038/s41467-024-49443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.
Collapse
Affiliation(s)
- Yuexiu Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jiayu Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Panke Qu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Egypt
| | - Sung J Yoo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Jack Misny
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ilada Thongpan
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Mahesh Kc
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yash A Gupta
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | - Jacob S Yount
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
- Infectious Disease Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Li P, Liu Y, Faraone JN, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Liu SL. Distinct patterns of SARS-CoV-2 BA.2.87.1 and JN.1 variants in immune evasion, antigenicity, and cell-cell fusion. mBio 2024; 15:e0075124. [PMID: 38591890 PMCID: PMC11077997 DOI: 10.1128/mbio.00751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Li P, Liu Y, Faraone J, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Liu SL. Distinct Patterns of SARS-CoV-2 BA.2.87.1 and JN.1 Variants in Immune Evasion, Antigenicity and Cell-Cell Fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583978. [PMID: 38559216 PMCID: PMC10979924 DOI: 10.1101/2024.03.11.583978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|