1
|
Li Q, Li C, Chang Y, Su M, Yu R, Huang Z, Guo YW, Jin X. Design, Synthesis, and Evaluation of Novel ROCK Inhibitors for Glaucoma Treatment: Insights into In Vitro and In Vivo Efficacy and Safety. J Med Chem 2025. [PMID: 40340390 DOI: 10.1021/acs.jmedchem.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The inhibition of Rho-associated coiled-coil kinase (ROCK) has emerged as a promising strategy for reducing intraocular pressure (IOP) and treating glaucoma. Here, we report the synthesis and evaluation of novel ROCK inhibitors, D25 and R3, which were designed to optimize selectivity, efficacy, and ocular bioavailability. D25 potently inhibited ROCK1/2 with IC50 values of 47.2 nM and 33.8 nM, respectively, surpassing Netarsudil. Compound R3 had weaker ROCK inhibition but demonstrated favorable lipophilicity (logP) and good selectivity to ROCKs, which enhances its potential and safety for ocular delivery. In human trabecular meshwork (HTM) cells, R3 showed lower cytotoxicity than Netarsudil and effectively mitigated oxidative damage, enhanced cellular integrity, and reduced inflammatory cytokine secretion. In rabbit models, D25 significantly lowered IOP, outperforming (S)-Netarsudil. R3 exhibited weaker IOP-lowering efficacy but better selectivity. D25 is a promising glaucoma treatment candidate, with R3 as a safer alternative for further optimization.
Collapse
Affiliation(s)
- Qiang Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Cunrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanmin Chang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
2
|
Liang Y, Tian Y, Liu J, Lei P, Sun X, Zhang H, Lei Y. Smart Bioorthogonal Catalytic Factory for Glaucoma Therapy. NANO LETTERS 2025; 25:5502-5511. [PMID: 40102044 DOI: 10.1021/acs.nanolett.5c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Glaucoma is characterized by high intraocular pressure (IOP), oxidative stress, and distinct optic nerve damage. Natural enzymes have unparalleled advantages in the treatment of glaucoma due to their high efficiency, specificity, and selectivity. However, their poor stability and recoverability have constrained their application. The selection of good immobilization carriers is an effective strategy to protect natural enzymes. Here, we employ a mild room-temperature aqueous-phase enzyme immobilization technique to immobilize superoxide dismutase and catalase. Then, l-arginine is added to the pores and further modified with DSPE-mPEG to construct a bioorthogonal catalytic factory (SC@COF-L-D) with excellent biocompatibility. This strategy greatly protects the natural enzyme from inactivation and improves the operational stability. SC@COF-L-D can scavenge a large amount of reactive oxygen species to reduce oxidative/nitrative damage and activate the soluble guanylate cyclase pathway, thereby lowering the IOP for effective treatment of glaucoma. This work provides a paradigm for the design of materials for glaucoma therapy.
Collapse
Affiliation(s)
- Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Yi Tian
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Jiamin Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuan Lei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| |
Collapse
|
3
|
Deng X, Zhu M, Liu Y, Zhang N, Zhang P, Zeng W, Ke M. Suppression of CDK1/Drp1-Mediated Mitochondrial Fission Attenuates Dexamethasone-Induced Extracellular Matrix Deposition in the Trabecular Meshwork. Antioxid Redox Signal 2025; 42:249-264. [PMID: 39096204 DOI: 10.1089/ars.2023.0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Aims: Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), as induced by dexamethasone (Dex), is believed to play an important role in the onset of glucocorticoid-induced glaucoma (GIG). Abnormal ECM deposition is a consequence of mitochondrial dysfunction. We aimed to clarify how mitochondrial dysfunction leads to ECM deposition within the TM and to support the development of novel therapeutic strategies. Results: In primary human TM cells (pHTMCs) and a Dex acetate-induced murine model of GIG, glucocorticoid administration stimulated both mitochondrial fission and ECM deposition. Excessive mitochondrial fission leads to dysfunction and the overexpression of ECM proteins in pHTMCs. Notably, when pHTMCs were treated with the dynamin-related protein 1 (Drp1) inhibitor Mdivi-1 or with Drp1 siRNA, we observed a marked reduction in Dex-induced mitochondrial damage and ECM proteins in vitro. Furthermore, in C57BL/6J mice, treatment with Mdivi-1 mitigated mitochondrial damage and blocked ECM deposition within the TM. We then used Ro3306 to inhibit the cyclin-dependent kinase (CDK)1-mediated phosphorylation of Drp1 at Ser 616, which restored mitochondrial function and diminished Dex-induced ECM protein expression in pHTMCs. Innovation: This study illuminates the pathogenic mechanism linking mitochondrial dysfunction to ECM deposition in GIG. Our innovative approach revealed that Dex stimulates mitochondrial fission via CDK1-mediated p-Drp1s616 overexpression, which drives ECM accumulation. It offered a novel therapeutic strategy for reducing ECM protein expression by inhibiting excessive mitochondrial fission and restoring mitochondrial function. Conclusion: By targeting the CDK1/Drp1-driven mitochondrial fission process, we can counteract Dex-induced ECM deposition in the TM both in vivo and in vitro. Antioxid. Redox Signal. 42, 249-264.
Collapse
Affiliation(s)
- Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | | | | |
Collapse
|
4
|
Lamont HC, Wright AL, Devries K, Okur KE, Jones M, Masood I, Hill LJ, Nazhat SN, Grover LM, Haj AJE, Metcalfe AD. Trabecular meshwork cell differentiation in response to collagen and TGFβ-2 spatial interactions. Acta Biomater 2024; 189:217-231. [PMID: 39218278 DOI: 10.1016/j.actbio.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Primary open-angle glaucoma (POAG) is currently the most prevalent cause of irreversible blindness globally. To date, few in vitro models that can faithfully recapitulate the complex architecture of the trabecular meshwork (TM) and the specialised trabecular meshwork cell (TMC) characteristics that are local to the structurally opposing regions. This study aimed to investigate the parameters that govern TMC phenotype by adapting the extracellular matrix structure to mimic the juxtacanalicular tissue (JCT) region of the TM. Initially, TMC phenotypic characteristics were investigated within type I collagen matrices of controlled fiber density and anisotropy, generated through confined plastic compression (PC). Notably, PC-collagen presented biophysical cues that induced JCT cellular characteristics (elastin, α-β-Crystallin protein expression, cytoskeletal remodelling, increased mesenchymal markers and JCT-specific genetic markers). In parallel, a pathological mesenchymal phenotype associated with POAG was induced through localised transforming growth factor -beta 2 (TGFβ-2) exposure. This resulted in a profile of alternative mesenchymal states (fibroblast/smooth muscle or myofibroblast) displayed by the TMC in vitro. Overall, the study provides an advanced insight into the biophysical cues that modulate TMC fate, inducing a JCT-specific phenotype and transient mesenchymal characteristics that reflect healthy and pathological scenarios. STATEMENT OF SIGNIFICANCE: Glaucoma is a leading cause of blindness, with a lack of long-term efficacy within current drug candidates. Reliable trabecular meshwork (TM) in vitro models will be critical for enhancing the fields understanding of healthy and disease states for pre-clinical testing. Trabecular meshwork cells (TMCs) display heterogeneity throughout the hierarchical TM, however our understanding into recapitulating these phenotypes in vitro, remains elusive. This study hypothesizes the importance of specific matrix/growth factor spatial stimuli in governing TMCs phenotype. By emulating certain biophysical/biochemical in vivo parameters, we introduce an advanced profile of distinct TMC phenotypic states, reflecting healthy and disease scenarios. A notion that has not be stated prior and a fundamental consideration for future 3D TM in vitro modelling.
Collapse
Affiliation(s)
- Hannah C Lamont
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Kerime E Okur
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Jones
- Cell Guidance Systems Ltd, Maia Building, Babraham Bioscience Campus, Cambridge, UK
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, UK
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Liam M Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Anthony D Metcalfe
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Knecht KT, Chiriac G, Guan HD. The potential impact of a vegetarian diet on glaucoma. Surv Ophthalmol 2024; 69:833-841. [PMID: 38768761 DOI: 10.1016/j.survophthal.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Treatment of primary open-angle glaucoma has centered on the lowering of intraocular pressure that damages the optic nerve; however, this strategy is not uniformly successful, especially in normal tension glaucoma, and there is interest in antioxidant, anti-inflammatory, and other neuroprotective strategies. Vegetarian diets are known to be rich in antioxidant and anti-inflammatory components and have a number of established health benefits. Thus, it would be reasonable to assume that vegetarian diets would be beneficial in glaucoma, but this approach has not been well studied. We examine the possible role of vegetarian diets and their components in the incidence and progression of glaucoma.
Collapse
Affiliation(s)
- Kathryn T Knecht
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Gabriela Chiriac
- Loma Linda University School of Public Health, Loma Linda, California, USA
| | - Howard D Guan
- Loma Linda University Eye Institute, Loma Linda, California, USA.
| |
Collapse
|
6
|
Ulhaq ZS, Bittencourt GB, Soraya GV, Istifiani LA, Pamungkas SA, Ogino Y, Nurputra DK, Tse WKF. Association between glaucoma susceptibility with combined defects in mitochondrial oxidative phosphorylation and fatty acid beta oxidation. Mol Aspects Med 2024; 96:101238. [PMID: 38215610 DOI: 10.1016/j.mam.2023.101238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide, and is characterized by the progressive damage of retinal ganglion cells (RGCs) and the atrophy of the optic nerve head (ONH). The exact cause of RGC loss and optic nerve damage in glaucoma is not fully understood. The high energy demands of these cells imply a higher sensitivity to mitochondrial defects. Moreover, it has been postulated that the optic nerve is vulnerable towards damage from oxidative stress and mitochondrial dysfunction. To investigate this further, we conducted a pooled analysis of mitochondrial variants related to energy production, specifically focusing on oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation (FAO). Our findings revealed that patients carrying non-synonymous (NS) mitochondrial DNA (mtDNA) variants within the OXPHOS complexes had an almost two-fold increased risk of developing glaucoma. Regarding FAO, our results demonstrated that longer-chain acylcarnitines (AC) tended to decrease, while shorter-chain AC tended to increase in patients with glaucoma. Furthermore, we observed that the knocking down cpt1a (a key rate-limiting enzyme involved in FAO) in zebrafish induced a degenerative process in the optic nerve and RGC, which resembled the characteristics observed in glaucoma. In conclusion, our study provides evidence that genes encoding mitochondrial proteins involved in energy metabolisms, such as OXPHOS and FAO, are associated with glaucoma. These findings contribute to a better understanding of the molecular mechanisms underlying glaucoma pathogenesis and may offer potential targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency Republic of Indonesia, Cibinong, Indonesia; Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Guido Barbieri Bittencourt
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Gita Vita Soraya
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Lola Ayu Istifiani
- Department of Nutrition, Faculty of Health Sciences, Brawijaya University, Malang, Indonesia
| | | | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Barquet-Pizá V, Siegfried CJ. Understanding racial disparities of glaucoma. Curr Opin Ophthalmol 2024; 35:97-103. [PMID: 37922412 DOI: 10.1097/icu.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
PURPOSE OF REVIEW Increased prevalence, earlier onset, and more rapid progression to vision loss from glaucoma has demonstrated racial disparity in numerous studies over decades. Precise etiologies of these important differences among patients of African and Hispanic ancestral background have not been elucidated. This review focuses on currently available epidemiologic/population, genetic, socioeconomic and physiologic studies of racial disparities in this blinding disease. RECENT FINDINGS In depth reviews of several landmark studies of glaucoma prevalence in various racial groups have highlighted potential challenges of lack of recruitment of diverse populations in genetic studies and clinical trials, challenges of racial stratification of subjects, and the impact of socioeconomic variables. SUMMARY Through a more comprehensive analysis of racial disparities of glaucoma, both clinicians and researchers may provide more effective population screening and management with a holistic approach for individualized patient care to provide improved outcomes. Future studies of interventions in sociodemographic factors and genetic/physiologic variables that influence the prevalence, access, and consequential vision loss from glaucoma will be crucial to minimize/eliminate racial disparities and improve outcomes for all.
Collapse
Affiliation(s)
- Viviana Barquet-Pizá
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
8
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Glial metabolic alterations during glaucoma pathogenesis. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1290465. [PMID: 38983068 PMCID: PMC11182098 DOI: 10.3389/fopht.2023.1290465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/10/2023] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness. Current treatment options are limited and often only slow disease progression. Metabolic dysfunction has recently been recognized as a key early and persistent mechanism in glaucoma pathophysiology. Several intrinsic metabolic dysfunctions have been identified and treated in retinal ganglion cells to provide neuroprotection. Growing pre-clinical and clinical evidence has confirmed that metabolic alterations in glaucoma are widespread, occurring across visual system tissues, in ocular fluids, in blood/serum, and at the level of genomic and mitochondrial DNA. This suggests that metabolic dysfunction is not constrained to retinal ganglion cells and that metabolic alterations extrinsic to retinal ganglion cells may contribute to their metabolic compromise. Retinal ganglion cells are reliant on glial metabolic support under normal physiological conditions, but the implications of metabolic dysfunction in glia are underexplored. We highlight emerging evidence that has demonstrated metabolic alterations occurring within glia in glaucoma, and how this may affect neuro-glial metabolic coupling and the metabolic vulnerability of retinal ganglion cells. In other neurodegenerative diseases which share features with glaucoma, several other glial metabolic alterations have been identified, suggesting that similar mechanisms and therapeutic targets may exist in glaucoma.
Collapse
Affiliation(s)
| | | | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Soundararajan A, Wang T, Sundararajan R, Wijeratne A, Mosley A, Harvey FC, Bhattacharya S, Pattabiraman PP. Multiomics analysis reveals the mechanical stress-dependent changes in trabecular meshwork cytoskeletal-extracellular matrix interactions. Front Cell Dev Biol 2022; 10:874828. [PMID: 36176278 PMCID: PMC9513235 DOI: 10.3389/fcell.2022.874828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trabecular meshwork (TM) tissue is subjected to constant mechanical stress due to the ocular pulse created by the cardiac cycle. This brings about alterations in the membrane lipids and associated cell-cell adhesion and cell-extracellular matrix (ECM) interactions, triggering intracellular signaling responses to counter mechanical insults. A loss of such response can lead to elevated intraocular pressure (IOP), a major risk factor for primary open-angle glaucoma. This study is aimed to understand the changes in signaling responses by TM subjected to mechanical stretch. We utilized multiomics to perform an unbiased mRNA sequencing to identify changes in transcripts, mass spectrometry- (MS-) based quantitative proteomics for protein changes, and multiple reaction monitoring (MRM) profiling-based MS and high-performance liquid chromatography (HPLC-) based MS to characterize the lipid changes. We performed pathway analysis to obtain an integrated map of TM response to mechanical stretch. The human TM cells subjected to mechanical stretch demonstrated an upregulation of protein quality control, oxidative damage response, pro-autophagic signal, induction of anti-apoptotic, and survival signaling. We propose that mechanical stretch-induced lipid signaling via increased ceramide and sphingomyelin potentially contributes to increased TM stiffness through actin-cytoskeleton reorganization and profibrotic response. Interestingly, increased phospholipids and diacylglycerol due to mechanical stretch potentially enable cell membrane remodeling and changes in signaling pathways to alter cellular contractility. Overall, we propose the mechanistic interplay of macromolecules to bring about a concerted cellular response in TM cells to achieve mechanotransduction and IOP regulation when TM cells undergo mechanical stretch.
Collapse
Affiliation(s)
- Avinash Soundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ting Wang
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Rekha Sundararajan
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Proteome Analysis, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Faith Christine Harvey
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Sanjoy Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, United States
- Miami Integrative Metabolomics Research Center, Miami, FL, United States
| | - Padmanabhan Paranji Pattabiraman
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
11
|
Elghobashy M, Lamont HC, Morelli-Batters A, Masood I, Hill LJ. Magnesium and Its Role in Primary Open Angle Glaucoma; A Novel Therapeutic? FRONTIERS IN OPHTHALMOLOGY 2022; 2:897128. [PMID: 38983515 PMCID: PMC11182183 DOI: 10.3389/fopht.2022.897128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 07/11/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally, with Primary open angle glaucoma (POAG) being the commonest subtype. POAG is characterized by an increase in intraocular pressure (IOP), leading to optic nerve damage and subsequent visual field defects. Despite the clinical burden this disease poses, current therapies aim to reduce IOP rather than targeting the underling pathogenesis. Although the pathogenesis of POAG is complex, the culprit for this increase in IOP resides in the aqueous humour (AH) outflow pathway; the trabecular meshwork (TM) and Schlemm's canal. Dysfunction in these tissues is due to inherent mitochondrial dysfunction, calcium influx sensitivity, increase in reactive oxygen species (ROS) production, TGFβ-2 induction, leading to a sustained inflammatory response. Magnesium is the second most common intracellular cation, and is a major co-factor in over 300 reactions, being highly conserved within energy-dependent organelles such as the mitochondria. Magnesium deficiency has been observed in POAG and is linked to inflammatory and fibrotic responses, as well as increased oxidative stress (OS). Magnesium supplementation been shown to reduce cellular ROS, alleviate mitochondrial dysregulation and has further antifibrotic and anti-inflammatory properties within ocular tissues, and other soft tissues prone to fibrosis, suggesting that magnesium can improve visual fields in patients with POAG. The link between magnesium deficiency and glaucoma pathogenesis as well as the potential role of magnesium supplementation in the management of patients with POAG will be explored within this review.
Collapse
Affiliation(s)
- Mirna Elghobashy
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah C. Lamont
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Chemical Engineering, Healthcare Technologies Institute, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Morelli-Batters
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Imran Masood
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|