1
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. Coaxial bioprinting of a three-layer vascular structure exhibiting blood-brain barrier function for neuroprotective drug screening. Colloids Surf B Biointerfaces 2025; 249:114494. [PMID: 39787741 DOI: 10.1016/j.colsurfb.2025.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
The in vitro blood-brain barrier (BBB) structures can offer advantages for studying cerebrovascular functions and developing neuroprotective drugs. However, currently developed BBB models are overly simplistic and inadequate for replicating the complex three-dimensional architecture of the in vivo BBB. In this study, a method is introduced for fabricating a three-layer vascular structure exhibiting BBB function using a coaxial extrusion bioprinting technique with a two-layer nozzle. Photocurable materials were incorporated into the inner layer of the coaxial nozzle, and photoinitiators from the outer layer diffused into the inner layer. As a result, only the materials in the inner layer at the interface between the inner and outer layers underwent crosslinking upon UV exposure. After removing the uncrosslinked materials, a two-layer vascular structure can be formed. Subsequently, a three-layer structure was established after seeding endothelial cells. The perfusion experiments demonstrated that the vascular structure facilitated the continuous flow of culture medium, thereby providing nutrients and oxygen to the surrounding neural tissue. The drug screening analysis indicated that this vascular structure could possess barrier function, allowing the passage of small molecular drugs while effectively blocking macromolecular drugs. Overall, these results suggest that the three-layer vascular structure exhibits excellent perfusion capacity and barrier function, making it a promising candidate for neuroprotective drug screening.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
2
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, Wegener S, Weber B, El Amki M, Ahmed D. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat Commun 2023; 14:5889. [PMID: 37735158 PMCID: PMC10514062 DOI: 10.1038/s41467-023-41557-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
The intricate and delicate anatomy of the brain poses significant challenges for the treatment of cerebrovascular and neurodegenerative diseases. Thus, precise local drug delivery in hard-to-reach brain regions remains an urgent medical need. Microrobots offer potential solutions; however, their functionality in the brain remains restricted by limited imaging capabilities and complications within blood vessels, such as high blood flows, osmotic pressures, and cellular responses. Here, we introduce ultrasound-activated microrobots for in vivo navigation in brain vasculature. Our microrobots consist of lipid-shelled microbubbles that autonomously aggregate and propel under ultrasound irradiation. We investigate their capacities in vitro within microfluidic-based vasculatures and in vivo within vessels of a living mouse brain. These microrobots self-assemble and execute upstream motion in brain vasculature, achieving velocities up to 1.5 µm/s and moving against blood flows of ~10 mm/s. This work represents a substantial advance towards the therapeutic application of microrobots within the complex brain vasculature.
Collapse
Affiliation(s)
- Alexia Del Campo Fonseca
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Jeanne Droux
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Yann Ferry
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Carole Frei
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Susanne Wegener
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| | - Mohamad El Amki
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland.
- Department of Neurology, University Hospital and University of Zurich, and Zurich Neuroscience Center, Zurich, 8091, Switzerland.
| | - Daniel Ahmed
- Department of Mechanical and Process Engineering, Acoustic Robotics Systems Lab, ETH, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.
| |
Collapse
|
4
|
Du F, Shusta EV, Palecek SP. Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1130127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly impermeable barrier separating circulating blood and brain tissue. A functional BBB is critical for brain health, and BBB dysfunction has been linked to the pathophysiology of diseases such as stroke and Alzheimer’s disease. A variety of models have been developed to study the formation and maintenance of the BBB, ranging from in vivo animal models to in vitro models consisting of primary cells or cells differentiated from human pluripotent stem cells (hPSCs). These models must consider the composition and source of the cellular components of the neurovascular unit (NVU), including brain microvascular endothelial cells (BMECs), brain pericytes, astrocytes, and neurons, and how these cell types interact. In addition, the non-cellular components of the BBB microenvironment, such as the brain vascular basement membrane (BM) that is in direct contact with the NVU, also play key roles in BBB function. Here, we review how extracellular matrix (ECM) proteins in the brain vascular BM affect the BBB, with a particular focus on studies using hPSC-derived in vitro BBB models, and discuss how future studies are needed to advance our understanding of how the ECM affects BBB models to improve model performance and expand our knowledge on the formation and maintenance of the BBB.
Collapse
|
5
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
6
|
Chai S, Sheng Y, Sun R, He J, Chen L, He F, Chen W, Ma D, Yu B. Protective effect of miR-33-5p on the M1/M2 polarization of microglia and the underlying mechanism. Bioengineered 2022; 13:10774-10785. [PMID: 35485294 PMCID: PMC9208509 DOI: 10.1080/21655979.2022.2061285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study was aimed to investigate the influence of miR-33-5p on the M1/M2 polarization of microglia and the underlying mechanism. Transcriptome sequencing was performed using microglia from miR-33-5p mimic and control groups. In total, 507 differentially expressed genes, including 314 upregulated genes and 193 downregulated genes, were identified. The subnetwork of module A, which was extracted from the protein–protein interaction networks, mainly contained the downregulated genes. Cdk1,Ccnb,and Cdc20, the members of module-A networks with the highest degrees, possess the potential of being biomarkers of ischemic stroke due to their function in the cell cycle. NFY, a transcription factor, was predicted to have the regulatory relation with nine downregulated genes. Overall, our findings will provide a valuable foundation for genetic mechanisms and treatment studies of ischemic stroke.
Collapse
Affiliation(s)
- Song Chai
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yilan Sheng
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, Pudong, China
| | - Ran Sun
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jieshi He
- Department of Rehabilitation Medicine, Ningbo No. 9 Hospital, Ningbo, Zhejiang Province, China
| | - Lihua Chen
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China
| | - Fei He
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenhua Chen
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, Pudong, China
| | - Dingying Ma
- Department of Rehabilitation Medicine, Ningbo No. 9 Hospital, Ningbo, Zhejiang Province, China
| | - Bo Yu
- Department of Rehabilitation Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda University, Shanghai, Pudong, China
| |
Collapse
|
7
|
Shah B, Dong X. Current Status of In vitro Models of the Blood-Brain Barrier. Curr Drug Deliv 2022; 19:1034-1046. [PMID: 35240972 DOI: 10.2174/1567201819666220303102614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Disorders of the brain are the most debilitating situation affected globally with increased mortality rates every year, while brain physiology and cumbersome drug development processes exacerbate this. Although blood-brain barrier (BBB) and its components are important for brain protection, their complexity creates major obstacles for brain drug delivery and the BBB is the primary cause of treatment failure leading to disease progression. Therefore, developing an ideal platform which can predict the behavior of a drug delivery system in the brain at the early development phase is extremely crucial. In this direction, since the last two decades, numerous in vitro BBB models have been developed and investigated by researchers to understand the barrier properties and how closely the in vitro models mimic with in vivo BBB. In-vitro BBB models are mainly culture of endothelial cells or their coculture with other perivascular cells either in two or three-dimensional platforms. In this article, we have briefly summarized the fundamentals of BBB and outlined different types of in vitro BBB models with their pros and cons. Based on the available reports, no model seems to be robust that can truly mimic the entire properties of the in vivo BBB microvasculature. However, human stem cells, coculture and three-dimensional models were found to mimic the complexity of the barrier integrity not completely but more precisely than other in vitro models. More studies aiming towards combining them together would be needed to develop an ideal in vitro model that can overcome the existing limitations and unravel the mysterious BBB.
Collapse
Affiliation(s)
- Brijesh Shah
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
8
|
Dave KM, Zhao W, Hoover C, D'Souza A, S Manickam D. Extracellular Vesicles Derived from a Human Brain Endothelial Cell Line Increase Cellular ATP Levels. AAPS PharmSciTech 2021; 22:18. [PMID: 33389284 PMCID: PMC8451174 DOI: 10.1208/s12249-020-01892-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Engineered cell-derived extracellular vesicles (EVs) such as exosomes and microvesicles hold immense potential as safe and efficient drug carriers due to their lower immunogenicity and inherent homing capabilities to target cells. In addition to innate vesicular cargo such as lipids, proteins, and nucleic acids, EVs are also known to contain functional mitochondria/mitochondrial DNA that can be transferred to recipient cells to increase cellular bioenergetics. In this proof-of-concept study, we isolated naïve EVs and engineered EVs loaded with an exogenous plasmid DNA encoding for brain-derived neurotrophic factor (BDNF-EVs) from hCMEC/D3, a human brain endothelial cell line, and RAW 264.7 macrophages. We tested whether mitochondrial components in naïve or engineered EVs can increase ATP levels in the recipient brain endothelial cells. EVs (e.g., exosomes and microvesicles; EXOs and MVs) were isolated from the conditioned medium of either untreated (naïve) or pDNA-transfected (Luc-DNA or BDNF-DNA) cells using a differential centrifugation method. RAW 264.7 cell line-derived EVs showed a significantly higher DNA loading and increased luciferase expression in the recipient hCMEC/D3 cells at 72 h compared with hCMEC/D3 cell line-derived EVs. Naïve EVs from hCMEC/D3 cells and BDNF-EVs from RAW 264.7 cells showed a small, but a significantly greater increase in the ATP levels of recipient hCMEC/D3 cells at 24 and 48 h post-exposure. In summary, we have demonstrated (1) differences in exogenous pDNA loading into EVs as a function of cell type using brain endothelial and macrophage cell lines and (2) EV-mediated increases in the intracellular ATP levels in the recipient hCMEC/D3 monolayers.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, 453 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA
| | - Wanzhu Zhao
- Graduate School of Pharmaceutical Sciences, Duquesne University, 453 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA
| | - Catherine Hoover
- Department of Chemistry and Physics, Mansfield University, Mansfield, Pennsylvania, USA
| | - Anisha D'Souza
- Graduate School of Pharmaceutical Sciences, Duquesne University, 453 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, 453 Mellon Hall, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA.
| |
Collapse
|
9
|
Transport of ultrasmall gold nanoparticles (2 nm) across the blood-brain barrier in a six-cell brain spheroid model. Sci Rep 2020; 10:18033. [PMID: 33093563 PMCID: PMC7581805 DOI: 10.1038/s41598-020-75125-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
The blood–brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3–4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.
Collapse
|
10
|
Neglia L, Fumagalli S, Orsini F, Zanetti A, Perego C, De Simoni MG. Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells. J Cereb Blood Flow Metab 2020; 40:1608-1620. [PMID: 31495300 PMCID: PMC7370363 DOI: 10.1177/0271678x19874509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannose-binding lectin (MBL), an initiator of the lectin pathway, is detrimental in ischemic stroke. MBL deposition on the ischemic endothelium indicates the beginning of its actions, but downstream mechanisms are not clear yet.We investigated MBL interactions with the ischemic endothelium by exposing human brain microvascular endothelial cells (hBMECs) to protocols of ischemia. Cells were exposed to hypoxia or oxygen-glucose deprivation (OGD), and re-oxygenated with human serum (HS) or recombinant MBL (rhMBL). Hypoxic hBMECs re-oxygenated with HS showed increased complement system activation (C3c deposition, +59%) and MBL deposition (+93%) than normoxic cells. Super-resolution microscopy showed MBL internalization in hypoxic cells and altered cytoskeletal organization, indicating a potential MBL action on the endothelial structure. To isolate MBL effect, hBMECs were re-oxygenated with rhMBL after hypoxia/OGD. In both conditions, MBL reduced viability (hypoxia: -25%, OGD: -34%) compared to conditions without MBL, showing a direct toxic effect. Ischemic cells also showed greater MBL deposition (hypoxia: +143%, OGD: +126%) than normoxic cells. These results were confirmed with primary hBMECs exposed to OGD (increased MBL-induced cell death: +226%, and MBL deposition: +104%). The present findings demonstrate that MBL can exert a direct deleterious effect on ischemic brain endothelial cells in vitro, independently from complement activation.
Collapse
Affiliation(s)
- Laura Neglia
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Stefano Fumagalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Franca Orsini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Adriana Zanetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Carlo Perego
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | |
Collapse
|
11
|
Nzou G, Wicks RT, VanOstrand NR, Mekky GA, Seale SA, El-Taibany A, Wicks EE, Nechtman CM, Marrotte EJ, Makani VS, Murphy SV, Seeds MC, Jackson JD, Atala AJ. Multicellular 3D Neurovascular Unit Model for Assessing Hypoxia and Neuroinflammation Induced Blood-Brain Barrier Dysfunction. Sci Rep 2020; 10:9766. [PMID: 32555384 PMCID: PMC7299970 DOI: 10.1038/s41598-020-66487-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics of BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development.
Collapse
Affiliation(s)
- Goodwell Nzou
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA.
| | - Robert T Wicks
- Department of Neurology and Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Nicole R VanOstrand
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Gehad A Mekky
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Stephanie A Seale
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Aya El-Taibany
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Elizabeth E Wicks
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Carl M Nechtman
- Department of Neurology and Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Eric J Marrotte
- Department of Neurology and Neurological Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Vishruti S Makani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - M C Seeds
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - John D Jackson
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| |
Collapse
|
12
|
Bagchi S, Chhibber T, Lahooti B, Verma A, Borse V, Jayant RD. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther 2019; 13:3591-3605. [PMID: 31695329 PMCID: PMC6805046 DOI: 10.2147/dddt.s218708] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
The blood-brain barrier (BBB) is comprised of brain microvascular endothelial central nervous system (CNS) cells, which communicate with other CNS cells (astrocytes, pericytes) and behave according to the state of the CNS, by responding against pathological environments and modulating disease progression. The BBB plays a crucial role in maintaining homeostasis in the CNS by maintaining restricted transport of toxic or harmful molecules, transport of nutrients, and removal of metabolites from the brain. Neurological disorders, such as NeuroHIV, cerebral stroke, brain tumors, and other neurodegenerative diseases increase the permeability of the BBB. While on the other hand, semipermeable nature of BBB restricts the movement of bigger molecules i.e. drugs or proteins (>500 kDa) across it, leading to minimal bioavailability of drugs in the CNS. This poses the most significant shortcoming in the development of therapeutics for CNS neurodegenerative disorders. Although the complexity of the BBB (dynamic and adaptable barrier) affects approaches of CNS drug delivery and promotes disease progression, understanding the composition and functions of BBB provides a platform for novel innovative approaches towards drug delivery to CNS. The methodical and scientific interests in the physiology and pathology of the BBB led to the development and the advancement of numerous in vitro models of the BBB. This review discusses the fundamentals of BBB structure, permeation mechanisms, an overview of all the different in-vitro BBB models with their advantages and disadvantages, and rationale of selecting penetration prediction methods towards the critical role in the development of the CNS therapeutics.
Collapse
Affiliation(s)
- Sounak Bagchi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Tanya Chhibber
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Angela Verma
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| | - Vivek Borse
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam781039, India
| | - Rahul Dev Jayant
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX79106, USA
| |
Collapse
|
13
|
Acetyl-11-keto-β-boswellic acid (AKBA) Attenuates Oxidative Stress, Inflammation, Complement Activation and Cell Death in Brain Endothelial Cells Following OGD/Reperfusion. Neuromolecular Med 2019; 21:505-516. [DOI: 10.1007/s12017-019-08569-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022]
|
14
|
Tornabene E, Helms HCC, Pedersen SF, Brodin B. Effects of oxygen-glucose deprivation (OGD) on barrier properties and mRNA transcript levels of selected marker proteins in brain endothelial cells/astrocyte co-cultures. PLoS One 2019; 14:e0221103. [PMID: 31425564 PMCID: PMC6699694 DOI: 10.1371/journal.pone.0221103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke has been shown to induce breakdown of the blood-brain barrier, although these changes are not fully characterized. Oxygen-glucose deprivation (OGD) has been used to investigate the effects of ischemia in cultured brain capillary endothelial cells, however this involves a change of medium which in itself may affect the cells. The aim of the present study was to investigate the effect of OGD and simple medium exchange followed by 48 h of reperfusion on barrier properties of primary bovine endothelial cells co-cultured with rat astrocytes. Barrier properties were evaluated by transendothelial electrical resistance measurements, passive permeability of flux markers, RT-qPCR and immunocytochemistry. Both OGD and simple medium exchange caused an increase in endothelial monolayer permeability. This correlated with reduced transcript levels of a number of tight junction and tight junction-associated proteins (claudin-1, claudin-5, occludin, ZO-1, tricellulin, marveld3 and PECAM-1), as well as with altered transcript level of several transporters and receptors (GLUT-1, HB-EGF, InsR, TfR, two members of the low density lipoprotein receptor family, LDLR and LRP-1, and the efflux transporter BCRP). In contrast, effects induced specifically by OGD were transient de-localization of claudin-5 from the junction zone, increased InsR localization at the plasma membrane and transient downregulation of MRP-1 and P-gp transcript levels. In conclusion, OGD caused changes in claudin-5 and InsR localization, as well as in MRP-1 and P-gp transcript levels. Our results however also indicated that medium exchange alone caused changes in functional barrier properties and expression levels of wide range of proteins.
Collapse
Affiliation(s)
- Erica Tornabene
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Stine Falsig Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
15
|
Tsai YR, Tweedie D, Navas-Enamorado I, Scerba MT, Chang CF, Lai JH, Wu JCC, Chen YH, Kang SJ, Hoffer BJ, de Cabo R, Greig NH, Chiang YH, Chen KY. Pomalidomide Reduces Ischemic Brain Injury in Rodents. Cell Transplant 2019; 28:439-450. [PMID: 31094216 PMCID: PMC6628558 DOI: 10.1177/0963689719850078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stroke is a leading cause of death and severe disability worldwide. After cerebral
ischemia, inflammation plays a central role in the development of permanent neurological
damage. Reactive oxygen species (ROS) are involved in the mechanism of post-ischemic
inflammation. The activation of several inflammatory enzymes produces ROS, which
subsequently suppress mitochondrial activity, leading to further tissue damage.
Pomalidomide (POM) is a clinically available immunomodulatory and anti-inflammatory agent.
Prior cellular studies demonstrate that POM can mitigate oxidative stress and lower levels
of pro-inflammatory cytokines, particularly TNF-α, which plays a prominent role in
ischemic stroke-induced brain damage and functional deficits. To evaluate the potential
value of POM in cerebral ischemia, POM was initially administered to transgenic mice
chronically over-expressing TNF-α surfactant protein (SP)-C promoter (SP-C/TNF-α mice) to
assess whether systemically administered drug could lower systemic TNF-α level. POM
significantly lowered serum levels of TNF-α and IL-5. Pharmacokinetic studies were then
undertaken in mice to evaluate brain POM levels following systemic drug administration.
POM possessed a brain/plasma concentration ratio of 0.71. Finally, rats were subjected to
transient middle cerebral artery occlusion (MCAo) for 60 min, and subsequently treated
with POM 30 min thereafter to evaluate action on cerebral ischemia. POM reduced the
cerebral infarct volume in MCAo-challenged rats and improved motor activity, as evaluated
by the elevated body swing test. POM’s neuroprotective actions on ischemic injury
represent a potential therapeutic approach for ischemic brain damage and related
disorders, and warrant further evaluation.
Collapse
Affiliation(s)
- Yan-Rou Tsai
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - David Tweedie
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ignacio Navas-Enamorado
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael T Scerba
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Cheng-Fu Chang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,4 Department of Neurosurgery, Taipei City Hospital, Zhongxiao Branch, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Jing-Huei Lai
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - John Chung-Che Wu
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Yen-Hua Chen
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| | - Shuo-Jhen Kang
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei
| | - Barry J Hoffer
- 2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,7 Department of Neurosurgery, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Rafael de Cabo
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- 3 Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yung-Hsiao Chiang
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei.,5 Department of Surgery, College of Medicine, Taipei Medical University, Taipei.,6 Department of Neurosurgery, Taipei Medical University Hospital, Taipei
| | - Kai-Yun Chen
- 1 The PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei.,2 Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei
| |
Collapse
|
16
|
Ahmad S, Kindelin A, Khan SA, Ahmed M, Hoda MN, Bhatia K, Ducruet AF. C3a Receptor Inhibition Protects Brain Endothelial Cells Against Oxygen-glucose Deprivation/Reperfusion. Exp Neurobiol 2019; 28:216-228. [PMID: 31138990 PMCID: PMC6526115 DOI: 10.5607/en.2019.28.2.216] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
The complement cascade is a central component of innate immunity which plays a critical role in brain inflammation. Complement C3a receptor (C3aR) is a key mediator of post-ischemic cerebral injury, and pharmacological antagonism of the C3a receptor is neuroprotective in stroke. Cerebral ischemia injures brain endothelial cells, causing blood brain barrier (BBB) disruption which further exacerbates ischemic neuronal injury. In this study, we used an in vitro model of ischemia (oxygen glucose deprivation; OGD) to investigate the protective effect of a C3aR antagonist (C3aRA, SB290157) on brain endothelial cells (bEnd.3). Following 24 hours of reperfusion, OGD-induced cell death was assessed by TUNEL and Caspase-3 staining. Western blot and immunocytochemistry were utilized to demonstrate that OGD upregulates inflammatory, oxidative stress and antioxidant markers (ICAM-1, Cox-2, Nox-2 and MnSOD) in endothelial cells and that C3aRA treatment significantly attenuate these markers. We also found that C3aRA administration restored the expression level of the tight junction protein occludin in endothelial cells following OGD. Interestingly, OGD/reperfusion injury increased the phosphorylation of ERK1/2 and C3aR inhibition significantly reduced the activation of ERK suggesting that endothelial C3aR may act via ERK signaling. Furthermore, exogenous C3a administration stimulates these same inflammatory mechanisms both with and without OGD, and C3aRA suppresses these C3a-mediated responses, supporting an antagonist role for C3aRA. Based on these results, we conclude that C3aRA administration attenuates inflammation, oxidative stress, ERK activation, and protects brain endothelial cells following experimental brain ischemia.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Shah Alam Khan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,Oman Medical College, Muscat 130, Sultanate of Oman
| | - Maaz Ahmed
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Md Nasrul Hoda
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA.,School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Dignity Health, Phoenix, Arizona 85013, USA
| |
Collapse
|
17
|
Faustino-Mendes T, Machado-Pereira M, Castelo-Branco M, Ferreira R. The Ischemic Immature Brain: Views on Current Experimental Models. Front Cell Neurosci 2018; 12:277. [PMID: 30210301 PMCID: PMC6123378 DOI: 10.3389/fncel.2018.00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/08/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Marta Machado-Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| | - Miguel Castelo-Branco
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal.,Hospital Center of Cova da Beira, Covilhã, Portugal
| | - Raquel Ferreira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
18
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
19
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Hersom M, Helms HC, Pretzer N, Goldeman C, Jensen AI, Severin G, Nielsen MS, Holm R, Brodin B. Transferrin receptor expression and role in transendothelial transport of transferrin in cultured brain endothelial monolayers. Mol Cell Neurosci 2016; 76:59-67. [PMID: 27567687 DOI: 10.1016/j.mcn.2016.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 12/26/2022] Open
Abstract
Receptor-mediated transcytosis of the transferrin receptor has been suggested as a potential transport system to deliver therapeutic molecules into the brain. Recent studies have however shown that therapeutic antibodies, which have been reported to cross the brain endothelium, reach greater brain exposure when the affinity of the antibodies to the transferrin receptor is lowered. The lower affinity of the antibodies to the transferrin receptor facilitates the dissociation from the receptor within the endosomal compartments, which may indicate that the receptor itself does not necessarily move across the endothelial cells by transcytosis. The aim of the present study was to investigate transferrin receptor expression and role in transendothelial transferrin transport in cultured bovine brain endothelial cell monolayers. Transferrin receptor mRNA and protein levels were investigated in endothelial mono-cultures and co-cultures with astrocytes, as well as in freshly isolated brain capillaries using qPCR, immunocytochemistry and Western blotting. Transendothelial transport and luminal association of holo-transferrin was investigated using [125I]holo-transferrin or [59Fe]-transferrin. Transferrin receptor mRNA expression in all cell culture configurations was lower than in freshly isolated capillaries, but the expression slightly increased during six days of culture. The mRNA expression levels were similar in mono-cultures and co-cultures. Immunostaining demonstrated comparable transferrin receptor localization patterns in mono-cultures and co-cultures. The endothelial cells demonstrated an up-regulation of transferrin receptor mRNA after treatment with the iron chelator deferoxamine. The association of [125I]holo-transferrin and [59Fe]-transferrin to the endothelial cells was inhibited by an excess of unlabeled holo-transferrin, indicating receptor mediated association. However, over time the cell associated [59Fe]-label exceeded that of [125I]holo-transferrin, which could indicate release of iron in the endothelial cells and receptor recycling. Luminal-to-abluminal transport of [125I]holo-transferrin across endothelial cell monolayers was low and not inhibited by unlabeled holo-transferrin. This indicated that transendothelial transferrin transport was independent of transferrin receptor-mediated transcytosis.
Collapse
Affiliation(s)
- Maria Hersom
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hans Christian Helms
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Natasia Pretzer
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Charlotte Goldeman
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Andreas I Jensen
- Center for Nuclear Technologies, Technical University of Denmark, Frederiksborgvej 339, 4000 Roskilde, Denmark
| | - Gregory Severin
- Center for Nuclear Technologies, Technical University of Denmark, Frederiksborgvej 339, 4000 Roskilde, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000 Aarhus C, Denmark
| | - René Holm
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Pharmaceutical Science and CMC Biologics, H. Lundbeck A/S, 2500 Valby, Denmark
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|