1
|
Waibl F, Fernández-Quintero ML, Wedl FS, Kettenberger H, Georges G, Liedl KR. Comparison of hydrophobicity scales for predicting biophysical properties of antibodies. Front Mol Biosci 2022; 9:960194. [PMID: 36120542 PMCID: PMC9475378 DOI: 10.3389/fmolb.2022.960194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
While antibody-based therapeutics have grown to be one of the major classes of novel medicines, some antibody development candidates face significant challenges regarding expression levels, solubility, as well as stability and aggregation, under physiological and storage conditions. A major determinant of those properties is surface hydrophobicity, which promotes unspecific interactions and has repeatedly proven problematic in the development of novel antibody-based drugs. Multiple computational methods have been devised for in-silico prediction of antibody hydrophobicity, often using hydrophobicity scales to assign values to each amino acid. Those approaches are usually validated by their ability to rank potential therapeutic antibodies in terms of their experimental hydrophobicity. However, there is significant diversity both in the hydrophobicity scales and in the experimental methods, and consequently in the performance of in-silico methods to predict experimental results. In this work, we investigate hydrophobicity of monoclonal antibodies using hydrophobicity scales. We implement several scoring schemes based on the solvent-accessibility and the assigned hydrophobicity values, and compare the different scores and scales based on their ability to predict retention times from hydrophobic interaction chromatography. We provide an overview of the strengths and weaknesses of several commonly employed hydrophobicity scales, thereby improving the understanding of hydrophobicity in antibody development. Furthermore, we test several datasets, both publicly available and proprietary, and find that the diversity of the dataset affects the performance of hydrophobicity scores. We expect that this work will provide valuable guidelines for the optimization of biophysical properties in future drug discovery campaigns.
Collapse
Affiliation(s)
- Franz Waibl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | | | - Florian S. Wedl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Hubert Kettenberger
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Large Molecule Research, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
- *Correspondence: Klaus R. Liedl,
| |
Collapse
|
2
|
Zhou Y, Xie S, Yang Y, Jiang L, Liu S, Li W, Abagna HB, Ning L, Huang J. SSH2.0: A Better Tool for Predicting the Hydrophobic Interaction Risk of Monoclonal Antibody. Front Genet 2022; 13:842127. [PMID: 35368659 PMCID: PMC8965096 DOI: 10.3389/fgene.2022.842127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Therapeutic antibodies play a crucial role in the treatment of various diseases. However, the success rate of antibody drug development is low partially because of unfavourable biophysical properties of antibody drug candidates such as the high aggregation tendency, which is mainly driven by hydrophobic interactions of antibody molecules. Therefore, early screening of the risk of hydrophobic interaction of antibody drug candidates is crucial. Experimental screening is laborious, time-consuming, and costly, warranting the development of efficient and high-throughput computational tools for prediction of hydrophobic interactions of therapeutic antibodies. In the present study, 131 antibodies with hydrophobic interaction experiment data were used to train a new support vector machine-based ensemble model, termed SSH2.0, to predict the hydrophobic interactions of antibodies. Feature selection was performed against CKSAAGP by using the graph-based algorithm MRMD2.0. Based on the antibody sequence, SSH2.0 achieved the sensitivity and accuracy of 100.00 and 83.97%, respectively. This approach eliminates the need of three-dimensional structure of antibodies and enables rapid screening of therapeutic antibody candidates in the early developmental stage, thereby saving time and cost. In addition, a web server was constructed that is freely available at http://i.uestc.edu.cn/SSH2/.
Collapse
Affiliation(s)
- Yuwei Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shiyang Xie
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Yang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixu Jiang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Siqi Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hamza Bukari Abagna
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Khetan R, Curtis R, Deane CM, Hadsund JT, Kar U, Krawczyk K, Kuroda D, Robinson SA, Sormanni P, Tsumoto K, Warwicker J, Martin ACR. Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs 2022; 14:2020082. [PMID: 35104168 PMCID: PMC8812776 DOI: 10.1080/19420862.2021.2020082] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Therapeutic monoclonal antibodies and their derivatives are key components of clinical pipelines in the global biopharmaceutical industry. The availability of large datasets of antibody sequences, structures, and biophysical properties is increasingly enabling the development of predictive models and computational tools for the "developability assessment" of antibody drug candidates. Here, we provide an overview of the antibody informatics tools applicable to the prediction of developability issues such as stability, aggregation, immunogenicity, and chemical degradation. We further evaluate the opportunities and challenges of using biopharmaceutical informatics for drug discovery and optimization. Finally, we discuss the potential of developability guidelines based on in silico metrics that can be used for the assessment of antibody stability and manufacturability.
Collapse
Affiliation(s)
- Rahul Khetan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Robin Curtis
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | | | | | - Uddipan Kar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jim Warwicker
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Andrew C R Martin
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| |
Collapse
|
4
|
Waibl F, Kraml J, Fernández-Quintero ML, Loeffler JR, Liedl KR. Explicit solvation thermodynamics in ionic solution: extending grid inhomogeneous solvation theory to solvation free energy of salt-water mixtures. J Comput Aided Mol Des 2022; 36:101-116. [PMID: 35031880 PMCID: PMC8907097 DOI: 10.1007/s10822-021-00429-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022]
Abstract
Hydration thermodynamics play a fundamental role in fields ranging from the pharmaceutical industry to environmental research. Numerous methods exist to predict solvation thermodynamics of compounds ranging from small molecules to large biomolecules. Arguably the most precise methods are those based on molecular dynamics (MD) simulations in explicit solvent. One theory that has seen increased use is inhomogeneous solvation theory (IST). However, while many applications require accurate description of salt-water mixtures, no implementation of IST is currently able to estimate solvation properties involving more than one solvent species. Here, we present an extension to grid inhomogeneous solvation theory (GIST) that can take salt contributions into account. At the example of carbazole in 1 M NaCl solution, we compute the solvation energy as well as first and second order entropies. While the effect of the first order ion entropy is small, both the water-water and water-ion entropies contribute strongly. We show that the water-ion entropies are efficiently approximated using the Kirkwood superposition approximation. However, this approach cannot be applied to the water-water entropy. Furthermore, we test the quantitative validity of our method by computing salting-out coefficients and comparing them to experimental data. We find a good correlation to experimental salting-out constants, while the absolute values are overpredicted due to the approximate second order entropy. Since ions are frequently used in MD, either to neutralize the system or as a part of the investigated process, our method greatly extends the applicability of GIST. The use-cases range from biopharmaceuticals, where many assays require high salt concentrations, to environmental research, where solubility in sea water is important to model the fate of organic substances.
Collapse
Affiliation(s)
- Franz Waibl
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Johannes Kraml
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Johannes R Loeffler
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Han X, Shih J, Lin Y, Chai Q, Cramer SM. Development of QSAR models for in silico screening of antibody solubility. MAbs 2022; 14:2062807. [PMID: 35442164 PMCID: PMC9037471 DOI: 10.1080/19420862.2022.2062807] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although monoclonal antibodies (mAbs) have been shown to be extremely effective in treating a number of diseases, they often suffer from poor developability attributes, such as high viscosity and low solubility at elevated concentrations. Since experimental candidate screening is often materials and labor intensive, there is substantial interest in developing in silico tools for expediting mAb design. Here, we present a strategy using machine learning-based QSAR models for the a priori estimation of mAb solubility. The extrapolated protein solubilities of a set of 111 antibodies in a histidine buffer were determined using a high throughput PEG precipitation assay. 3D homology models of the antibodies were determined, and a large set of in house and commercially available molecular descriptors were then calculated. The resulting experimental and descriptor data were then used for the development of QSAR models of mAb solubilities. After feature selection and training with different machine learning algorithms, the models were evaluated with external test sets. The resulting regression models were able to estimate the solubility values of external test set data with R2 of 0.81 and 0.85 for the two regression models developed. In addition, three class and binary classification models were developed and shown to be good estimators of mAb solubility behavior, with overall test set accuracies of 0.70 and 0.95, respectively. The analysis of the selected molecular descriptors in these models was also found to be informative and suggested that several charge-based descriptors and isotype may play important roles in mAb solubility. The combination of high throughput relative solubility experimental techniques in concert with efficient machine learning QSAR models offers an opportunity to rapidly screen potential mAb candidates and to design therapeutics with improved solubility characteristics.
Collapse
Affiliation(s)
- Xuan Han
- Department of Chemical and Biological Engineering and Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - James Shih
- Biotechnology Discovery Research, Eli Lilly Biotechnology Center, San Diego, California, USA
| | - Yuhao Lin
- Research Information & Digital Solutions, Eli Lilly Biotechnology Center, San Diego, California, USA
| | - Qing Chai
- Biotechnology Discovery Research, Eli Lilly Biotechnology Center, San Diego, California, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
6
|
Heads JT, Kelm S, Tyson K, Lawson ADG. A computational method for predicting the aggregation propensity of IgG1 and IgG4(P) mAbs in common storage buffers. MAbs 2022; 14:2138092. [PMID: 36418193 PMCID: PMC9704409 DOI: 10.1080/19420862.2022.2138092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.
Collapse
Affiliation(s)
- James T. Heads
- UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK,CONTACT James T. Heads UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK
| | | | - Kerry Tyson
- UCB Pharma, 208 Bath Road, SloughSL1 3WE, UK
| | | |
Collapse
|
7
|
Chi B, De Oliveira G, Gallagher T, Mitchell L, Knightley L, Gonzalez CC, Russell S, Germaschewski V, Pearce C, Sellick CA. Pragmatic mAb lead molecule engineering from a developability perspective. Biotechnol Bioeng 2021; 118:3733-3743. [PMID: 33913507 DOI: 10.1002/bit.27802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
As the number of antibody drugs being approved and marketed increases, our knowledge of what makes potential drug candidates a successful product has increased tremendously. One of the critical parameters that have become clear in the field is the importance of mAb "developability." Efforts are being increasingly focused on simultaneously selecting molecules that exhibit both desirable biological potencies and manufacturability attributes. In the current study mutations to improve the developability profile of a problematic antibody that inconsistently precipitates in a batch scale-dependent fashion using a standard platform purification process are described. Initial bioinformatic analysis showed the molecule has no obvious sequence or structural liabilities that might lead it to precipitate. Subsequent analysis of the molecule revealed the presence of two unusual positively charged mutations on the light chain at the interface of VH and VL domains, which were hypothesized to be the primary contributor to molecule precipitation during process development. To investigate this hypothesis, straightforward reversion to the germline of these residues was carried out. The resulting mutants have improved expression titers and recovered stability within a forced precipitation assay, without any change to biological activity. Given the time pressures of drug development in industry, process optimization of the lead molecule was carried out in parallel to the "retrospective" mutagenesis approach. Bespoke process optimization for large-scale manufacturing was successful. However, we propose that such context-dependent sequence liabilities should be included in the arsenal of in silico developability screening early in development; particularly since this specific issue can be efficiently mitigated without the requirement for extensive screening of lead molecule variants.
Collapse
Affiliation(s)
| | | | - Tom Gallagher
- Kymab Ltd., Cambridge, UK.,F-star Therapeutics Ltd., Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, Yu Y, Park J, Raghava S, Welsh J, Rauscher M, Raghunathan G, Hsieh M, Chen YL, Nguyen HT, Nguyen N, Cipriano D, Fayadat-Dilman L. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. MAbs 2021; 12:1743053. [PMID: 32249670 PMCID: PMC7153844 DOI: 10.1080/19420862.2020.1743053] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monoclonal antibodies play an increasingly important role for the development of new drugs across multiple therapy areas. The term 'developability' encompasses the feasibility of molecules to successfully progress from discovery to development via evaluation of their physicochemical properties. These properties include the tendency for self-interaction and aggregation, thermal stability, colloidal stability, and optimization of their properties through sequence engineering. Selection of the best antibody molecule based on biological function, efficacy, safety, and developability allows for a streamlined and successful CMC phase. An efficient and practical high-throughput developability workflow (100 s-1,000 s of molecules) implemented during early antibody generation and screening is crucial to select the best lead candidates. This involves careful assessment of critical developability parameters, combined with binding affinity and biological properties evaluation using small amounts of purified material (<1 mg), as well as an efficient data management and database system. Herein, a panel of 152 various human or humanized monoclonal antibodies was analyzed in biophysical property assays. Correlations between assays for different sets of properties were established. We demonstrated in two case studies that physicochemical properties and key assay endpoints correlate with key downstream process parameters. The workflow allows the elimination of antibodies with suboptimal properties and a rank ordering of molecules for further evaluation early in the candidate selection process. This enables any further engineering for problematic sequence attributes without affecting program timelines.
Collapse
Affiliation(s)
- Marc Bailly
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Carl Mieczkowski
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Veronica Juan
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Essam Metwally
- Computation and Structural Chemistry, South San Francisco, CA, USA
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Makiko Uchida
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Ester Kofman
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Soha Motlagh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yao Yu
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Jihea Park
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Smita Raghava
- Pharmaceutical Sciences, Sterile FormulationSciences, Kenilworth, NJ, USA
| | - John Welsh
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | - Michael Rauscher
- Downstream Process Development andEngineering, Kenilworth, NJ, USA
| | | | - Mark Hsieh
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Yi-Ling Chen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Hang Thu Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Nhung Nguyen
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | - Dan Cipriano
- Discovery Biologics, Protein Sciences, South San Francisco, CA, USA
| | | |
Collapse
|
9
|
Khanal O, Lenhoff AM. Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 2021; 13:1903664. [PMID: 33843449 PMCID: PMC8043180 DOI: 10.1080/19420862.2021.1903664] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Today's biologics manufacturing practices incur high costs to the drug makers, which can contribute to high prices for patients. Timely investment in the development and implementation of continuous biomanufacturing can increase the production of consistent-quality drugs at a lower cost and a faster pace, to meet growing demand. Efficient use of equipment, manufacturing footprint, and labor also offer the potential to improve drug accessibility. Although technological efforts enabling continuous biomanufacturing have commenced, challenges remain in the integration, monitoring, and control of traditionally segmented unit operations. Here, we discuss recent developments supporting the implementation of continuous biomanufacturing, along with their benefits.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
10
|
Waibl F, Fernández-Quintero ML, Kamenik AS, Kraml J, Hofer F, Kettenberger H, Georges G, Liedl KR. Conformational Ensembles of Antibodies Determine Their Hydrophobicity. Biophys J 2020; 120:143-157. [PMID: 33220303 PMCID: PMC7820740 DOI: 10.1016/j.bpj.2020.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
A major challenge in the development of antibody biotherapeutics is their tendency to aggregate. One root cause for aggregation is exposure of hydrophobic surface regions to the solvent. Many current techniques predict the relative aggregation propensity of antibodies via precalculated scales for the hydrophobicity or aggregation propensity of single amino acids. However, those scales cannot describe the nonadditive effects of a residue’s surrounding on its hydrophobicity. Therefore, they are inherently limited in their ability to describe the impact of subtle differences in molecular structure on the overall hydrophobicity. Here, we introduce a physics-based approach to describe hydrophobicity in terms of the hydration free energy using grid inhomogeneous solvation theory (GIST). We apply this method to assess the effects of starting structures, conformational sampling, and protonation states on the hydrophobicity of antibodies. Our results reveal that high-quality starting structures, i.e., crystal structures, are crucial for the prediction of hydrophobicity and that conformational sampling can compensate errors introduced by the starting structure. On the other hand, sampling of protonation states only leads to good results when combined with high-quality structures, whereas it can even be detrimental otherwise. We conclude by pointing out that a single static homology model may not be adequate for predicting hydrophobicity.
Collapse
Affiliation(s)
- Franz Waibl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anna S Kamenik
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofer
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
Karlberg M, de Souza JV, Fan L, Kizhedath A, Bronowska AK, Glassey J. QSAR Implementation for HIC Retention Time Prediction of mAbs Using Fab Structure: A Comparison between Structural Representations. Int J Mol Sci 2020; 21:ijms21218037. [PMID: 33126648 PMCID: PMC7663183 DOI: 10.3390/ijms21218037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) constitute a rapidly growing biopharmaceutical sector. However, their growth is impeded by high failure rates originating from failed clinical trials and developability issues in process development. There is, therefore, a growing need for better in silico tools to aid in risk assessment of mAb candidates to promote early-stage screening of potentially problematic mAb candidates. In this study, a quantitative structure–activity relationship (QSAR) modelling workflow was designed for the prediction of hydrophobic interaction chromatography (HIC) retention times of mAbs. Three novel descriptor sets derived from primary sequence, homology modelling, and atomistic molecular dynamics (MD) simulations were developed and assessed to determine the necessary level of structural resolution needed to accurately capture the relationship between mAb structures and HIC retention times. The results showed that descriptors derived from 3D structures obtained after MD simulations were the most suitable for HIC retention time prediction with a R2 = 0.63 in an external test set. It was found that when using homology modelling, the resulting 3D structures became biased towards the used structural template. Performing an MD simulation therefore proved to be a necessary post-processing step for the mAb structures in order to relax the structures and allow them to attain a more natural conformation. Based on the results, the proposed workflow in this paper could therefore potentially contribute to aid in risk assessment of mAb candidates in early development.
Collapse
Affiliation(s)
- Micael Karlberg
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
| | - João Victor de Souza
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Lanyu Fan
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Arathi Kizhedath
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
| | - Agnieszka K. Bronowska
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Jarka Glassey
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
- Correspondence:
| |
Collapse
|
12
|
SSH: A Tool for Predicting Hydrophobic Interaction of Monoclonal Antibodies Using Sequences. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3508107. [PMID: 32596302 PMCID: PMC7288208 DOI: 10.1155/2020/3508107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022]
Abstract
Therapeutic antibodies are one of the most important parts of the pharmaceutical industry. They are widely used in treating various diseases such as autoimmune diseases, cancer, inflammation, and infectious diseases. Their development process however is often brought to a standstill or takes a longer time and is then more expensive due to their hydrophobicity problems. Hydrophobic interactions can cause problems on half-life, drug administration, and immunogenicity at all stages of antibody drug development. Some of the most widely accepted and used technologies for determining the hydrophobic interactions of antibodies include standup monolayer adsorption chromatography (SMAC), salt-gradient affinity-capture self-interaction nanoparticle spectroscopy (SGAC-SINS), and hydrophobic interaction chromatography (HIC). However, to measure SMAC, SGAC-SINS, and HIC for hundreds of antibody drug candidates is time-consuming and costly. To save time and money, a predictor called SSH is developed. Based on the antibody's sequence only, it can predict the hydrophobic interactions of monoclonal antibodies (mAbs). Using the leave-one-out crossvalidation, SSH achieved 91.226% accuracy, 96.396% sensitivity or recall, 84.196% specificity, 87.754% precision, 0.828 Mathew correlation coefficient (MCC), 0.919 f-score, and 0.961 area under the receiver operating characteristic (ROC) curve (AUC).
Collapse
|
13
|
Vormittag P, Klamp T, Hubbuch J. Ensembles of Hydrophobicity Scales as Potent Classifiers for Chimeric Virus-Like Particle Solubility - An Amino Acid Sequence-Based Machine Learning Approach. Front Bioeng Biotechnol 2020; 8:395. [PMID: 32432098 PMCID: PMC7217080 DOI: 10.3389/fbioe.2020.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Virus-like particles (VLPs) are protein-based nanoscale structures that show high potential as immunotherapeutics or cargo delivery vehicles. Chimeric VLPs are decorated with foreign peptides resulting in structures that confer immune responses against the displayed epitope. However, insertion of foreign sequences often results in insoluble proteins, calling for methods capable of assessing a VLP candidate's solubility in silico. The prediction of VLP solubility requires a model that can identify critical hydrophobicity-related parameters, distinguishing between VLP-forming aggregation and aggregation leading to insoluble virus protein clusters. Therefore, we developed and implemented a soft ensemble vote classifier (sEVC) framework based on chimeric hepatitis B core antigen (HBcAg) amino acid sequences and 91 publicly available hydrophobicity scales. Based on each hydrophobicity scale, an individual decision tree was induced as classifier in the sEVC. An embedded feature selection algorithm and stratified sampling proved beneficial for model construction. With a learning experiment, model performance in the space of model training set size and number of included classifiers in the sEVC was explored. Additionally, seven models were created from training data of 24-384 chimeric HBcAg constructs, which were validated by 100-fold Monte Carlo cross-validation. The models predicted external test sets of 184-544 chimeric HBcAg constructs. Best models showed a Matthew's correlation coefficient of >0.6 on the validation and the external test set. Feature selection was evaluated for classifiers with best and worst performance in the chimeric HBcAg VLP solubility scenario. Analysis of the associated hydrophobicity scales allowed for retrieval of biological information related to the mechanistic backgrounds of VLP solubility, suggesting a special role of arginine for VLP assembly and solubility. In the future, the developed sEVC could further be applied to hydrophobicity-related problems in other domains, such as monoclonal antibodies.
Collapse
Affiliation(s)
- Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
14
|
Breidert M, Eftekhari P, Louis F, Rotoiu C, Rath T, Neurath MF, Atreya R. Functional Molecular Network Analysis Enables Prediction of Response to Vedolizumab Therapy in Anti-TNF Refractory IBD Patients. CROHN'S & COLITIS 360 2020; 2:otaa037. [PMID: 32776006 PMCID: PMC7397736 DOI: 10.1093/crocol/otaa037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We applied for the first time 2 label-free technologies, physiological intermolecular modulation spectroscopy (PIMS) and nematic protein organization technic (NPOT) in anti-tumor necrosis factor (TNF) refractory inflammatory bowel disease (IBD) patients to identify clinical responders to vedolizumab therapy and elucidate their underlying functional molecular network. METHODS PIMS analysis was performed in peripheral blood taken prior to the first vedolizumab application in 20 IBD patients (Crohn disease n = 13; ulcerative colitis n = 7) refractory to at least 1 previous anti-TNF agent therapy. Peripheral blood taken from clinical responders and nonresponders at week 14 of vedolizumab therapy were additionally subjected to NPOT analysis. Response to therapy was assessed by respective clinical disease activity scores (partial Mayo Score and Harvey-Bradshaw Index). RESULTS Clinical response to vedolizumab treatment was observed in 7 of 13 Crohn disease and 4 of 7 ulcerative colitis patients at week 14. Response to therapy was accurately predicted by PIMS blood analysis in 100% of ulcerative colitis and 77% of Crohn disease patients. Overall prediction of clinical response with PIMS blood analysis was achieved with a 89% positive predictive value and a 82% negative predictive value. NPOT analysis revealed the heightened expression of the proteins ITGB7, ITGAV, ITG3, PF4, and ASGH in the peripheral blood of vedolizumab responders compared to nonresponders. CONCLUSIONS PIMS analysis of the blood of anti-TNF refractory IBD patients was able to stratify responders to vedolizumab therapy with high accuracy and specificity. NPOT technology could decipher underling molecular networks in the blood of responders, enabling subsequent personalized therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Matthias Breidert
- Department of Gastroenterology and Hepatology, City Hospital Waid and Triemli, Zürich, Switzerland
| | | | - François Louis
- Inoviem Scientific, BIOPARC 3, Illkirch-Graffenstaden, France
| | - Claudia Rotoiu
- Department of Gastroenterology and Hepatology, City Hospital Waid and Triemli, Zürich, Switzerland
| | - Timo Rath
- Department of Medicine I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine I, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- The Transregio 241 IBDome Consortium
| |
Collapse
|
15
|
Hebditch M, Warwicker J. Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ 2019; 7:e8199. [PMID: 31976163 PMCID: PMC6967001 DOI: 10.7717/peerj.8199] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 01/05/2023] Open
Abstract
Improved understanding of properties that mediate protein solubility and resistance to aggregation are important for developing biopharmaceuticals, and more generally in biotechnology and synthetic biology. Recent acquisition of large datasets for antibody biophysical properties enables the search for predictive models. In this report, machine learning methods are used to derive models for 12 biophysical properties. A physicochemical perspective is maintained in analysing the models, leading to the observation that models cluster largely according to charge (cross-interaction measurements) and hydrophobicity (self-interaction methods). These two properties also overlap in some cases, for example in a new interpretation of variation in hydrophobic interaction chromatography. Since the models are developed from differences of antibody variable loops, the next stage is to extend models to more diverse protein sets. AVAILABILITY The web application for the sequence-based algorithms are available on the protein-sol webserver, at https://protein-sol.manchester.ac.uk/abpred, with models and virtualisation software available at https://protein-sol.manchester.ac.uk/software.
Collapse
Affiliation(s)
- Max Hebditch
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|