1
|
Serri C, Quagliariello V, Cruz-Maya I, Guarino V, Maurea N, Giunchedi P, Rassu G, Gavini E. Hyaluronic Acid-Based Nanoparticles Loaded with Rutin as Vasculo-Protective Tools against Anthracycline-Induced Endothelial Damages. Pharmaceutics 2024; 16:985. [PMID: 39204330 PMCID: PMC11357640 DOI: 10.3390/pharmaceutics16080985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Anthracycline-based therapies exert endothelial damages through peroxidation and the production of proinflammatory cytokines, resulting in a high risk of cardiovascular complications in cancer patients. Hyaluronic acid-based hybrid nanoparticles (LicpHA) are effective pharmacological tools that can target endothelial cells and deliver drugs or nutraceuticals. This study aimed to prepared and characterized a novel LicpHA loaded with Rutin (LicpHA Rutin), a flavonoid with high antioxidant and anti-inflammatory properties, to protect endothelial cells against epirubicin-mediated endothelial damages. LicpHA Rutin was prepared using phosphatidylcholine, cholesterol, poloxamers, and hyaluronic acid by a modified nanoprecipitation technique. The chemical-physical characterization of the nanoparticles was carried out (size, zeta potential, morphology, stability, thermal analysis, and encapsulation efficiency). Cytotoxicity studies were performed in human endothelial cells exposed to epirubicin alone or in combination with Free-Rutin or LicpHA Rutin. Anti-inflammatory studies were performed through the intracellular quantification of NLRP-3, MyD-88, IL-1β, IL-6, IL17-α, TNF-α, IL-10, and IL-4 using selective ELISA methods. Morphological studies via TEM and image analysis highlighted a heterogeneous population of LicpHA particles with non-spherical shapes (circularity equal to 0.78 ± 0.14), and the particle size was slightly affected by Rutin entrapment (the mean diameter varied from 179 ± 4 nm to 209 ± 4 nm). Thermal analysis and zeta potential analyses confirmed the influence of Rutin on the chemical-physical properties of LicpHA Rutin, mainly indicated by the decrease in the surface negative charge (from -35 ± 1 mV to -30 ± 0.5 mV). Cellular studies demonstrated that LicpHA Rutin significantly reduced cell death and inflammation when compared to epirubicin alone. The levels of intracellular NLRP3, Myd-88, and proinflammatory cytokines were significantly lower in epirubicin + LicpHA Rutin-exposed cells when compared to epirubicin groups (p < 0.001). Hyaluronic acid-based nanoparticles loaded with Rutin exerts significant vasculo-protective properties during exposure to anthracyclines. The overall picture of this study pushes towards preclinical and clinical studies in models of anthracycline-induced vascular damages.
Collapse
Affiliation(s)
- Carla Serri
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (C.S.); (P.G.); (E.G.)
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (V.Q.); (N.M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.G.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad. 20, V.le J.F. Kennedy 54, 80125 Naples, Italy; (I.C.-M.); (V.G.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (V.Q.); (N.M.)
| | - Paolo Giunchedi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (C.S.); (P.G.); (E.G.)
| | - Giovanna Rassu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (C.S.); (P.G.); (E.G.)
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (C.S.); (P.G.); (E.G.)
| |
Collapse
|
2
|
Arslanov VV, Krylov DI. Reassembly of the vesicular structure of niosomes after their destruction in a mechanical field. J Colloid Interface Sci 2024; 662:342-356. [PMID: 38354561 DOI: 10.1016/j.jcis.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/28/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
This paper presents, for the first time, evidence for vesicle destruction and payload loss at the stage of purification of niosome dispersions by centrifugation, an important operation in the assembly of vesicular materials. The ability of niosomes of different compositions to reassemble, i.e., to restore the vesicular structure after destruction in the field of centrifugal forces, was demonstrated by dynamic light scattering and fluorescence spectroscopy. The kinetics of reassembly of vesicular structures is determined by the strength of the centrifugal field and the composition of niosomes. In contrast to ternary compositions, where particle size and modality are essentially unchanged after redispersion of the precipitate resulting from centrifugation, niosome dispersions containing anionic dicetyl phosphate includes micron-sized particles after redispersion, which vary in size over a wide range throughout the observation period. The reassembly process is complicated by the presence of charge on the surface of the niosomes. Elastic niosomes - ethosomes have been synthesised which, due to the high deformability of the shells, are less susceptible to destruction in the centrifugal field and retain the contents of the aqueous core. Using the "energy landscape" approximation, it is shown that vesicular structures assembled during hydration and reassembled after their centrifugation occupy different positions in the energetic pathway of their preparation. The results obtained should also be taken into account when determining the entrapment efficiency, since this procedure uses centrifugation to separate the load. It is important to note that the physical stability of niosomes, which is usually considered in terms of the functional activity of particles, is manifest and should be considered at the material preparation stage.
Collapse
Affiliation(s)
- Vladimir V Arslanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia.
| | - Daniil I Krylov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia.
| |
Collapse
|
3
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and Characterization of Epalrestat-Loaded Polysorbate 60 Cationic Niosomes for Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041247. [PMID: 37111732 PMCID: PMC10142600 DOI: 10.3390/pharmaceutics15041247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to develop niosomes for the ocular delivery of epalrestat, a drug that inhibits the polyol pathway and protects diabetic eyes from damage linked to sorbitol production and accumulation. Cationic niosomes were made using polysorbate 60, cholesterol, and 1,2-di-O-octadecenyl-3-trimethylammonium propane. The niosomes were characterized using dynamic light scattering, zeta-potential, and transmission electron microscopy to determine their size (80 nm; polydispersity index 0.3 to 0.5), charge (-23 to +40 mV), and shape (spherical). The encapsulation efficiency (99.76%) and the release (75% drug release over 20 days) were measured with dialysis. The ocular irritability potential (non-irritating) was measured using the Hen's Egg Test on the Chorioallantoic Membrane model, and the blood glucose levels (on par with positive control) were measured using the gluc-HET model. The toxicity of the niosomes (non-toxic) was monitored using a zebrafish embryo model. Finally, corneal and scleral permeation was assessed with the help of Franz diffusion cells and confirmed with Raman spectroscopy. Niosomal permeation was higher than an unencapsulated drug in the sclera, and accumulation in tissues was confirmed with Raman. The prepared niosomes show promise to encapsulate and carry epalrestat through the eye to meet the need for controlled drug systems to treat the diabetic eye.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022; 14:pharmaceutics14122818. [PMID: 36559311 PMCID: PMC9785322 DOI: 10.3390/pharmaceutics14122818] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The delivery of drugs via transdermal routes is an attractive approach due to ease of administration, bypassing of the first-pass metabolism, and the large skin surface area. However, a major drawback is an inability to surmount the skin's stratum corneum (SC) layer. Therefore, techniques reversibly modifying the stratum corneum have been a classical approach. Surmounting the significant barrier properties of the skin in a well-organised, momentary, and harmless approach is still challenging. Chemical permeation enhancers (CPEs) with higher activity are associated with certain side effects restricting their advancement in transdermal drug delivery. Furthermore, complexity in the interaction of CPEs with the skin has led to difficulty in elucidating the mechanism of action. Nevertheless, CPEs-aided transdermal drug delivery will accomplish its full potential due to advancements in analytical techniques, synthetic chemistry, and combinatorial studies. This review focused on techniques such as drug-vehicle interaction, vesicles and their analogues, and novel CPEs such as lipid synthesis inhibitors (LSIs), cell-penetrating peptides (CPPs), and ionic liquids (ILs). In addition, different types of microneedles, including 3D-printed microneedles, have been focused on in this review.
Collapse
|
6
|
Wongrakpanich A, Leanpolchareanchai J, Morakul B, Parichatikanond W, Teeranachaideekul V. Phyllanthus emblica Extract-loaded Transfersomes for Hair Follicle Targeting: Phytoconstituents, Characterization, and Hair Growth Promotion. J Oleo Sci 2022; 71:1085-1096. [PMID: 35781257 DOI: 10.5650/jos.ess21425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phyllanthus emblica Linn. (PE) has been used to promote hair growth for decades. In this study, dried PE fruit powder was extracted, tested for biological activities, and loaded into transfersomes for hair follicle targeting. Before lyophilization, PE fruit powder was extracted using 2 solvent systems, water and 30% ethanol. The PE 30% ethanolic extract had higher antioxidant activity and total phenolic content than the PE aqueous extract. However, the cytotoxicity of the PE 30% ethanolic extract was higher than that of PE aqueous extract. As a result, the PE aqueous extract was analyzed using ultra-performance liquid chromatography and found that the major component of the PE aqueous extract was gallic acid. Afterward, the PE aqueous extract was tested for its potential to activate the expression of genes involved in hair growth promotion in human keratinocytes. At a non-toxic concentration (10 µg/mL), this extract promoted various growth factors comparable to 1% minoxidil. PE-loaded transfersomes were prepared to deliver the PE aqueous extract to the hair follicle. The particle size and polydispersity index of PE-loaded transfersomes were 228 nm and 0.25, respectively. After 3 months of storage, the particle size at 4°C and 30°C was 218 nm and 241 nm, respectively, which was comparable to its initial size. However, at 40°C, the particle size dramatically increased (315 nm). The fluorescent agent, rhodamine B, was used to evaluate the potential of transfersomes to target hair follicles. Rhodamine B transfersomes had better penetration and accumulation in hair follicles than rhodamine B solution. To conclude, the PE aqueous extract, mainly composed of gallic acid, can activate hair growth gene expression. The extract can be loaded into hair follicles targeting transfersomes. Thus, PE-loaded transfersomes are a promising delivery system for hair follicle targeting to promote hair growth.
Collapse
Affiliation(s)
| | | | | | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University.,Center of Biopharmaceutical Science of Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University
| | | |
Collapse
|
7
|
Vilela JDMV, Moghassemi S, Dadashzadeh A, Dolmans MM, Azevedo RB, Amorim CA. Safety of Lavender Oil-Loaded Niosomes for In Vitro Culture and Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1999. [PMID: 35745338 PMCID: PMC9229298 DOI: 10.3390/nano12121999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/22/2022]
Abstract
(1) Background: Essential oils have long been used as therapeutic agents. Lavender (Lavandula angustifolia) oil (LO) is an antispasmodic, anticonvulsant, relaxant, painkilling, and antimicrobial essential oil investigated as a natural substance for biomedical therapies. Nanoparticles have shown significant promise in improving drug delivery and efficacy. Considering these benefits, the aim of this study was to evaluate the toxicity of LO and lavender oil niosomes (LONs) in stem cells and myofibroblast models cultured in vitro. (2) Methods: Adipose tissue-derived stem cells and myometrial cells were cultured with LO or LONs at different concentrations (0, 0.016%, 0.031%, and 0.063%) and toxicity was evaluated with PrestoBlue™ and live/dead assay using calcein and ethidium homodimer. (3) Results: Cell viability was similar to controls in all groups, except in 0.063% LO for myometrial cells, which showed lower viability than the control medium. (4) Conclusion: These results suggest that both LO and LONs are safe for cell culture and may be used for pharmaceutical and biomedical therapies in future applications in regenerative medicine.
Collapse
Affiliation(s)
- Janice de M. V. Vilela
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
- Gynecology and Andrology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (J.d.M.V.V.); (S.M.); (A.D.); (M.-M.D.)
| |
Collapse
|
8
|
Wang L, Wei L, Long W, Zhang Q, Zou Y. Sustained transdermal delivery of human growth hormone from niosomal gel: in vitro and in vivo studies. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1198-1212. [PMID: 35192434 DOI: 10.1080/09205063.2022.2045667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human growth hormone (hGH) is widely used to treat several diseases for decades. However, the current treatment regime requires frequent injections via subcutaneous route due to short in vivo half-life, which leads to pain and poor patient compliance. In this study, a novel transdermal (non-invasive) hGH loaded niosomes gel was prepared to reduce the frequency of subcutaneous injections and to improve the patient compliance. Niosomes were prepared by film hydration technique at three levels of cholesterol. The particle size and entrapment efficiency increases with an increase in the level of cholesterol. Transmission electron microscopy images confirmed the spherical shape of niosomes without aggregation. Texture profiles analysis indicates that the niosomal gel has the required mechanical properties for transdermal application. The ex vivo permeation profile showed sustain hGH release for 4 days from the niosomal gel compared to 24 h from the control gel without niosomes. A rabbit skin irritation study showed no sign of irritation after application of niosomal gel. The pharmacokinetic parameters in the rat model showed 7.22-fold higher bioavailability with niosomal gel compared to control gel. In conclusion, the study demonstrated the potential of niosomal gel as an effective long-term sustained release strategy for hGH delivery to replace traditional subcutaneous injections.
Collapse
Affiliation(s)
- Liming Wang
- Department of Laboratory Medicine the First Affiliated Hospital, Jiamusi University, Jiamusi City, China
| | - Lulu Wei
- Department of Child Health, The First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| | - Wenbin Long
- Department of Laboratory Medicine the First Affiliated Hospital, Jiamusi University, Jiamusi City, China
| | - Quan Zhang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi City, China
| | - Yanhong Zou
- Department of Child Health, The First Affiliated Hospital of Jiamusi University, Jiamusi City, China
| |
Collapse
|
9
|
Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry-The European and North America Regulation Challenges. Molecules 2022; 27:molecules27051669. [PMID: 35268769 PMCID: PMC8911847 DOI: 10.3390/molecules27051669] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
“Flawless skin is the most universally desired human feature” is an iconic statement by Desmond Morris. Skin indicates one´s health and is so important that it affects a person’s emotional and psychological behavior, these facts having propelled the development of the cosmetics industry. It is estimated that in 2023, this industry will achieve more than 800 billion dollars. This boost is due to the development of new cosmetic formulations based on nanotechnology. Nanocarriers have been able to solve problems related to active ingredients regarding their solubility, poor stability, and release. Even though nanocarriers have evident benefits, they also present some problems related to the high cost, low shelf life, and toxicity. Regulation and legislation are two controversial topics regarding the use of nanotechnology in the field of cosmetics. In this area, the U.S. FDA has taken the lead and recommended several biosafety studies and post-market safety evaluations. The lack of a global definition that identifies nanomaterials as a cosmetic ingredient is a hindrance to the development of global legislation. In the EU, the legislation regarding the biosafety of nanomaterials in cosmetics is stricter. “The cost is not the only important issue, safety and the application of alternative testing methods for toxicity are of crucial importance as well”.
Collapse
|