1
|
Soliani C, Sekely J, Zamora‐Ballesteros C, Heer K, Lepais O, Mondino V, Opgenoorth L, Pastorino M, Marchelli P. Restricted Dispersal in the Late Successional Forest Tree Species Nothofagus Pumilio: Consequences Under Global Change. Ecol Evol 2025; 15:e71002. [PMID: 40416772 PMCID: PMC12100765 DOI: 10.1002/ece3.71002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 05/27/2025] Open
Abstract
Plants rely on gamete dispersal to ensure the inheritance of their genes. Gene flow, mediated by pollen and seed dispersal, also fosters species' cohesion across space, facilitates population migration, and influences local adaptation. Nothofagus pumilio is an ecologically important wind-dispersed tree species of the Patagonian Andes. We aim to uncover its current and historic effective dispersal distances and characterize its fine-scale genetic structure. In a naturally monospecific stand of N. pumilio, we sampled 200 adults and 400 seedlings. Using a modern sequencing approach (SSRseq), we developed 15 nuclear microsatellite markers for genotyping and used them to characterize genetic diversity and fine-scale genetic structure. We estimated dispersal distances using direct methods (i.e., neighborhood models) and indirect (i.e., inferred from fine-scale spatial genetic structure). Short average seed and pollen dispersal distances were estimated (δs = 13.33 m and δp = 24.08 m respectively), but the fat-tailed distribution of dispersal kernels also suggests some immigration and long-distance dispersal events. Indirect estimates (σ 2 g = 21.62) are closely aligned with direct estimates. The majority of seedlings (84%) could be assigned to at least one sampled adult within the plot, and these seedlings were produced by just 43% of sampled adults. Reproductive success was significantly associated with seed donors' diameters at breast height. N. pumilio's distribution expansion capacity may be limited by short seed dispersal distances, especially in the context of global change. Natural and assisted migration actions should be prioritized to mitigate future change effects.
Collapse
Affiliation(s)
- C. Soliani
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| | - J. Sekely
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
- Plant Ecology and GeobotanyPhilipps‐Universität MarburgMarburgGermany
| | - C. Zamora‐Ballesteros
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
| | - K. Heer
- Eva Mayr Stihl Professorship for Forest GeneticsAlbert‐Ludwigs Universität FreiburgFreiburgGermany
| | - O. Lepais
- Univ. Bordeaux, INRAE, BIOGECOCestasFrance
| | | | - L. Opgenoorth
- Plant Ecology and GeobotanyPhilipps‐Universität MarburgMarburgGermany
| | - M. Pastorino
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| | - P. Marchelli
- INTA Bariloche, Instituto de Investigaciones Forestales y Agropecuarias Bariloche IFAB (INTA‐CONICET)BarilocheArgentina
| |
Collapse
|
2
|
Alaeifar M, Sheidai M, Koohdar F. A multiple computational spatial analysis of genetic, morphological, and anatomical diversity in Pteris cretica L. (Pteridaceae) geographical populations. BMC PLANT BIOLOGY 2025; 25:547. [PMID: 40295900 PMCID: PMC12036204 DOI: 10.1186/s12870-025-06483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025]
Abstract
The brake fern Pteris cretica is an evergreen, perennial plant known for its medicinal properties, particularly in treating hepatitis and jaundice. Despite previous genetic studies, little is known about the landscape genetics of P. cretica and the influence of spatial factors on its genetic structure. This study aimed to examine the effects of spatial and environmental variables on genetic variability and morphological differentiation in P. cretica populations. We analyzed 130 plants from 13 populations in northern Iran using multivariate statistical methods. This is the first study of landscape genetics in P. cretica in Iran and other regions. The study focused on identifying geographical variables that affect population formation and examining climatic factors influencing the species'distribution. SCoT genetic loci related to geographical variables and key morphological traits were identified. The climatic factors affecting the current and future distribution of this species were also examined. Results revealed significant associations between genetic diversity, differentiation (Fst), and environmental variables like longitude, latitude, and altitude. Genetic loci with adaptive potential to climate were identified through RDA, CCA, and FAMD analyses. sPCA analysis indicated significant spatial structuring and genetic cline formation in the populations. PLS-SEM analysis showed complex interactions among genetic factors, climate, resistance, morphology, and anatomy. These findings highlight the role of spatial and environmental factors in shaping the genetic structure of P. cretica populations. The study provides valuable insights for developing conservation strategies to preserve genetic diversity and adapt to environmental changes, contributing to the species' long-term survival and sustainable use.
Collapse
Affiliation(s)
- Maedeh Alaeifar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Chevy ET, Min J, Caudill V, Champer SE, Haller BC, Rehmann CT, Smith CCR, Tittes S, Messer PW, Kern AD, Ramachandran S, Ralph PL. Population Genetics Meets Ecology: A Guide to Individual-Based Simulations in Continuous Landscapes. Ecol Evol 2025; 15:e71098. [PMID: 40235724 PMCID: PMC11997375 DOI: 10.1002/ece3.71098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 04/17/2025] Open
Abstract
Individual-based simulation has become an increasingly crucial tool for many fields of population biology. However, continuous geography is important to many applications, and implementing realistic and stable simulations in continuous space presents a variety of difficulties, from modeling choices to computational efficiency. This paper aims to be a practical guide to spatial simulation, helping researchers to implement individual-based simulations and avoid common pitfalls. To do this, we delve into mechanisms of mating, reproduction, density-dependent feedback, and dispersal, all of which may vary across the landscape, discuss how these affect population dynamics, and describe how to parameterize simulations in convenient ways (for instance, to achieve a desired population density). We also demonstrate how to implement these models using the current version of the individual-based simulator, SLiM. We additionally discuss natural selection-in particular, how genetic variation can affect demographic processes. Finally, we provide four short vignettes: simulations of pikas that shift their range up a mountain as temperatures rise; mosquitoes that live in rivers as juveniles and experience seasonally changing habitat; cane toads that expand across Australia, reaching 120 million individuals; and monarch butterflies whose populations are regulated by an explicitly modeled resource (milkweed).
Collapse
Affiliation(s)
- Elizabeth T. Chevy
- Center for Computational Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - Jiseon Min
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Victoria Caudill
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Samuel E. Champer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | | | - Clara T. Rehmann
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Chris C. R. Smith
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Silas Tittes
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
| | - Philipp W. Messer
- Department of Computational BiologyCornell UniversityIthacaNew YorkUSA
| | - Andrew D. Kern
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- Department of BiologyUniversity of OregonEugeneOregonUSA
| | - Sohini Ramachandran
- Center for Computational Molecular BiologyBrown UniversityProvidenceRhode IslandUSA
| | - Peter L. Ralph
- Institute of Ecology and EvolutionUniversity of OregonEugeneOregonUSA
- Department of Data ScienceUniversity of OregonEugeneOregonUSA
| |
Collapse
|
4
|
Chevy ET, Min J, Caudill V, Champer SE, Haller BC, Rehmann CT, Smith CCR, Tittes S, Messer PW, Kern AD, Ramachandran S, Ralph PL. Population genetics meets ecology: a guide to individual-based simulations in continuous landscapes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.24.604988. [PMID: 39091875 PMCID: PMC11291129 DOI: 10.1101/2024.07.24.604988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Individual-based simulation has become an increasingly crucial tool for many fields of population biology. However, continuous geography is important to many applications, and implementing realistic and stable simulations in continuous space presents a variety of difficulties, from modeling choices to computational efficiency. This paper aims to be a practical guide to spatial simulation, helping researchers to implement individual-based simulations and avoid common pitfalls. To do this, we delve into mechanisms of mating, reproduction, density-dependent feedback, and dispersal, all of which may vary across the landscape, discuss how these affect population dynamics, and describe how to parameterize simulations in convenient ways (for instance, to achieve a desired population density). We also demonstrate how to implement these models using the current version of the individual-based simulator, SLiM. We additionally discuss natural selection - in particular, how genetic variation can affect demographic processes. Finally, we provide four short vignettes: simulations of pikas that shift their range up a mountain as temperatures rise; mosquitoes that live in rivers as juveniles and experience seasonally changing habitat; cane toads that expand across Australia, reaching 120 million individuals; and monarch butterflies whose populations are regulated by an explicitly modeled resource (milkweed).
Collapse
Affiliation(s)
- Elizabeth T Chevy
- Center for Computational Molecular Biology, Brown University, Providence RI 02912, USA
| | - Jiseon Min
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
| | - Victoria Caudill
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca NY 14853, USA
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca NY 14853, USA
| | - Clara T Rehmann
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
| | - Chris C R Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
| | - Silas Tittes
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca NY 14853, USA
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
- Department of Biology, University of Oregon, Eugene OR 97402, USA
| | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown University, Providence RI 02912, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene OR 97402, USA
- Department of Mathematics, University of Oregon, Eugene OR 97402, USA February 12, 2025
| |
Collapse
|
5
|
Sotka EE, Hughes AR, Hanley TC, Hays CG. Restricted Dispersal and Phenotypic Response to Water Depth in a Foundation Seagrass. Mol Ecol 2024; 33:e17565. [PMID: 39474794 PMCID: PMC11589694 DOI: 10.1111/mec.17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres). Because nearshore marine plants like Zostera are commonly distributed across strong selective gradients driven by bathymetry (depth) even within these restricted spatial scales, seeds are capable of dispersing to novel water depths and experiencing profound shifts in light availability, temperature and wave exposure. We documented strong phenotypic variation and genome-wide differentiation among plants separated by approximately the spatial scale of mean realised dispersal. This result suggests genetic isolation by environment in response to depth-related environmental gradients as one plausible explanation for this pattern. The ratio of effective to census size (or Ne/Nc) approximated 0.1%, indicating that a fraction of existing plants provides the genetic variation to allow adaptation to environmental change. Our results suggest that successful conservation of seagrass meadows that can adapt to microspatial and temporal variation in environmental conditions will be low without direct and persistent intervention using large numbers of individuals or a targeted selection of genotypes.
Collapse
Affiliation(s)
- Erik E. Sotka
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - A. Randall Hughes
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
| | - Torrance C. Hanley
- Marine Science Center and Coastal Sustainability InstituteNortheastern UniversityNahantMassachusettsUSA
- Department of BiologySacred Heart UniversityFairfieldConnecticutUSA
| | - Cynthia G. Hays
- Department of BiologyKeene State CollegeKeeneNew HampshireUSA
| |
Collapse
|
6
|
Giudicelli GC, Pezzi PH, Guzmán-Rodriguez S, Turchetto C, Bombarely A, Freitas LB. Historical and ongoing hybridisation in Southern South American grassland species. Sci Rep 2024; 14:27989. [PMID: 39543384 PMCID: PMC11564536 DOI: 10.1038/s41598-024-79584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Natural hybridisation in plants can impact genetic and morphological diversity, including the emergence of better-adapted new populations and the potential extinction of some lineages involved in this intricate process. Under progressive global warming, species often need to migrate to newly suitable areas, which may be an additional challenge for species with low dispersal ability. Throughout the search for new environments, previously allopatric lineages can come into secondary contact and eventually hybridise if reproductive isolation is incomplete. Here, we focused on two taxa representing the natural herbaceous component of southern South American lowland grasslands. We aimed to evaluate the impact of contact zones and potential hybridisation on the evolutionary relationships and population dynamics. We used single nucleotide polymorphisms and morphological data of multiple individuals from allopatric and contact zones between taxa to shed light on hybridisation patterns and demographic scenarios. Our results indicated that the contact zones impact taxa's genetic and morphological diversity, and each contact zone had different patterns of genetic diversity and morphology, constituting stable populations that potentially reflect hybridisation events occurring at distinct evolutionary times.
Collapse
Affiliation(s)
- Giovanna C Giudicelli
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Sebastián Guzmán-Rodriguez
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
| | - Caroline Turchetto
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil
- Department of Botany, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aureliano Bombarely
- Instituto de Biologia Molecular y Celular de Plantas (IBMCP) (CSIC-UPV), Valencia, Spain
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, PoBox 15053, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
7
|
Micolino R, Górski F, Zchonski FL, Gonçalves RNL, da Rosa J, Da-Silva PR. Land use to agriculture and planted forests strongly affect the genetic diversity of Baccharis crispa Spreng., a native herb of South America. AOB PLANTS 2024; 16:plae050. [PMID: 39360266 PMCID: PMC11445655 DOI: 10.1093/aobpla/plae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
Human population growth constantly requires an increase in the production of food and products from the timber industry. To meet this demand, agriculture and planted forests are advancing over natural areas. In view of this, it is necessary to know the effects of land use for different purposes (grain production, pastures, planted forests, fruit production and among other uses) on the genetic diversity of populations of native species. This knowledge can assist in land use planning as well as in the development of conservation strategies for native species. In this study, we evaluated the effect of land use for agriculture (mainly for cereal production) and planted forests on the genetic diversity of Baccharis crispa Spreng., a herb native to South America. To achieve our goals, we compared population genetic data obtained with three molecular markers (microsatellites, inter-simple sequence repeat and isoenzymes) with data on land use for agriculture and planted forests from 15 different locations. Our results showed that regardless of the molecular marker used, the greater the use of land for agriculture and planted forests, the lower was the genetic diversity of B. crispa populations. Baccharis crispa is a semi-perennial species that needs at least one year to reach its reproductive period, which is prevented in agricultural areas due to the land being turned over or dissected with herbicides every 6 months. In the studied regions, the planted forests are of eucalypt and/or pine, which besides being species with a high production of allelopathic substances, produce strong shading and B. crispa is a species that inhabits open grassland that needs a high incidence of sunlight for development. The data obtained in our study can assist in the decision-making to use land in order to reconcile the production of supplies for humanity and for the conservation of nature.
Collapse
Affiliation(s)
- Ricardo Micolino
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Felipe Górski
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Felipe Liss Zchonski
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Rhaniel Nicholas Lisowski Gonçalves
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Juliana da Rosa
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Paulo Roberto Da-Silva
- DNA Laboratory, Universidade Estadual do Centro-Oeste, UNICENTRO, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| |
Collapse
|
8
|
Briscoe Runquist R, Moeller DA. Isolation by environment and its consequences for range shifts with global change: Landscape genomics of the invasive plant common tansy. Mol Ecol 2024; 33:e17462. [PMID: 38993027 DOI: 10.1111/mec.17462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
Invasive species are a growing global economic and ecological problem. However, it is not well understood how environmental factors mediate invasive range expansion. In this study, we investigated the recent and rapid range expansion of common tansy across environmental gradients in Minnesota, USA. We densely sampled individuals across the expanding range and performed reduced representation sequencing to generate a dataset of 3071 polymorphic loci for 176 individuals. We used non-spatial and spatially explicit analyses to determine the relative influences of geographic distance and environmental variation on patterns of genomic variation. We found no evidence for isolation by distance but strong evidence for isolation by environment, indicating that environmental factors may have modulated patterns of range expansion. Land use classification and soils were particularly important variables related to population structure although they operated on different spatial scales; land use classification was related to broad-scale patterns and soils were related to fine-scale patterns. All analyses indicated a distinctive genetic cluster in the most recently invaded portion of the range. Individuals from the far northwestern range margin were separated from the remainder of the range by reduced migration, which was associated with environmental resistance. This portion of the range was invaded primarily in the last 15 years. Ecological niche models also indicated that this cluster was associated with the expansion of the niche. While invasion is often assumed to be primarily influenced by dispersal limitation, our results suggest that ongoing invasion and range shifts with climate change may be strongly affected by environmental heterogeneity.
Collapse
Affiliation(s)
- Ryan Briscoe Runquist
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - David A Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
9
|
Lv Z, Jiang S, Kong S, Zhang X, Yue J, Zhao W, Li L, Lin S. Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1679. [PMID: 38931111 PMCID: PMC11207393 DOI: 10.3390/plants13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
"Omics" typically involves exploration of the structure and function of the entire composition of a biological system at a specific level using high-throughput analytical methods to probe and analyze large amounts of data, including genomics, transcriptomics, proteomics, and metabolomics, among other types. Genomics characterizes and quantifies all genes of an organism collectively, studying their interrelationships and their impacts on the organism. However, conventional transcriptomic sequencing techniques target population cells, and their results only reflect the average expression levels of genes in population cells, as they are unable to reveal the gene expression heterogeneity and spatial heterogeneity among individual cells, thus masking the expression specificity between different cells. Single-cell transcriptomic sequencing and spatial transcriptomic sequencing techniques analyze the transcriptome of individual cells in plant or animal tissues, enabling the understanding of each cell's metabolites and expressed genes. Consequently, statistical analysis of the corresponding tissues can be performed, with the purpose of achieving cell classification, evolutionary growth, and physiological and pathological analyses. This article provides an overview of the research progress in plant single-cell and spatial transcriptomics, as well as their applications and challenges in plants. Furthermore, prospects for the development of single-cell and spatial transcriptomics are proposed.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuaijun Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Yue
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Hendrickson EC, Cruzan MB. Effective dispersal patterns in prairie plant species across human-modified landscapes. Mol Ecol 2024; 33:e17354. [PMID: 38656619 DOI: 10.1111/mec.17354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Effective dispersal among plant populations is dependent on vector behaviour, landscape features and availability of adequate habitats. To capture landscape feature effects on dispersal, studies must be conducted at scales reflecting single-generation dispersal events (mesoscale). Many studies are conducted at large scales where genetic differentiation is due to dispersal occurring over multiple generations, making it difficult to interpret the effects of specific landscape features on vector behaviour. Genetic structure at the mesoscale may be determined by ecological and evolutionary processes, such as the consequences of vector behaviour on patterns of gene flow. We used chloroplast haplotypes and nuclear genome SNP surveys to identify landscape features influencing seed and pollen dispersal at a mesoscale within the Rogue River Valley in southern Oregon. We evaluated biotic and abiotic vector behaviour by contrasting two annual species with differing dispersal mechanisms; Achyrachaena mollis (Asteraceae) is a self-pollinating and anemochoric species, and Plectritis congesta (Caprifoliaceae) is biotically pollinated with barochoric seeds. Using landscape genetics methods, we identified features of the study region that conduct or restrict dispersal. We found chloroplast haplotypes were indicative of historic patterns of gene flow prior to human modification of landscapes. Seed dispersal of A. mollis was best supported by models of isolation by distance, while seed-driven gene flow of P. congesta was determined by the distribution of preserved natural spaces and quality habitat. Nuclear genetic structure was driven by both pollen and seed dispersal, and both species responded to contemporary landscape changes, such as urban and agricultural conversion, and habitat availability.
Collapse
Affiliation(s)
| | - Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, USA
| |
Collapse
|
11
|
Hederström V, Ekroos J, Friberg M, Krausl T, Opedal ØH, Persson AS, Petrén H, Quan Y, Smith HG, Clough Y. Pollinator-mediated effects of landscape-scale land use on grassland plant community composition and ecosystem functioning - seven hypotheses. Biol Rev Camb Philos Soc 2024; 99:675-698. [PMID: 38118437 DOI: 10.1111/brv.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
Environmental change is disrupting mutualisms between organisms worldwide. Reported declines in insect populations and changes in pollinator community compositions in response to land use and other environmental drivers have put the spotlight on the need to conserve pollinators. While this is often motivated by their role in supporting crop yields, the role of pollinators for reproduction and resulting taxonomic and functional assembly in wild plant communities has received less attention. Recent findings suggest that observed and experimental gradients in pollinator availability can affect plant community composition, but we know little about when such shifts are to be expected, or the impact they have on ecosystem functioning. Correlations between plant traits related to pollination and plant traits related to other important ecosystem functions, such as productivity, nitrogen uptake or palatability to herbivores, lead us to expect non-random shifts in ecosystem functioning in response to changes in pollinator communities. At the same time, ecological and evolutionary processes may counteract these effects of pollinator declines, limiting changes in plant community composition, and in ecosystem functioning. Despite calls to investigate community- and ecosystem-level impacts of reduced pollination, the study of pollinator effects on plants has largely been confined to impacts on plant individuals or single-species populations. With this review we aim to break new ground by bringing together aspects of landscape ecology, ecological and evolutionary plant-insect interactions, and biodiversity-ecosystem functioning research, to generate new ideas and hypotheses about the ecosystem-level consequences of pollinator declines in response to land-use change, using grasslands as a focal system. Based on an integrated set of seven hypotheses, we call for more research investigating the putative pollinator-mediated links between landscape-scale land use and ecosystem functioning. In particular, future research should use combinations of experimental and observational approaches to assess the effects of changes in pollinator communities over multiple years and across species on plant communities and on trait distributions both within and among species.
Collapse
Affiliation(s)
- Veronica Hederström
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Johan Ekroos
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Theresia Krausl
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Øystein H Opedal
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Anna S Persson
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yuanyuan Quan
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Henrik G Smith
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
- Department of Biology, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| | - Yann Clough
- Centre for Environmental and Climate Science, Lund University, Sölvegatan 37, Lund, 223 62, Sweden
| |
Collapse
|
12
|
Hou Q, Yu R, Shang C, Deng H, Wen Z, Qiu Z, Qiao G. Molecular characterization and evolutionary relationships of DOFs in four cherry species and functional analysis in sweet cherry. Int J Biol Macromol 2024; 263:130346. [PMID: 38403208 DOI: 10.1016/j.ijbiomac.2024.130346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The DOF (DNA binding with one finger) has multiple functions in plants. However, it has received little attention in the research field of cherries. In this study, the evolutionary relationship and molecular characterization of DOF in four cherry species were analyzed, revealing its expression pattern in sweet cherry. There are 23 members in Prunus avium cv. 'Tieton', 88 in Prunus cerasus, 53 in Cerasus × yedoensis, and 27 in Cerasus serrulata. Most of these genes are intron-less or non-intron, with a conserved C2-C2 domain. Due to heterozygosity and chromosomal ploidy, whole-genome duplication (WGD) events occur to varying degrees, and DOF genes are contracted during evolution. Furthermore, these genes are affected by purifying selection pressure. Under low-temperature treatment, the expression of PavDOF2 and PavDOF18 were significantly up-regulated, while that of PavDOF16 is significantly down-regulated. The expression of PavDOF9, PavDOF12, PavDOF14, PavDOF16, PavDOF17, PavDOF18, and PavDOF19 exhibits an increasing trend during flower development and varies during sweet cherry fruit development. PavDOF1, PavDOF8, PavDOF9, and PavDOF15 are localized in the nucleus but is not transcriptionally active. The findings systemically demonstrate the molecular characteristics of DOF in different cherry varieties, providing a basis for further research on the functions of these genes.
Collapse
Affiliation(s)
- Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Runrun Yu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chunqiong Shang
- College of Forestry, Guizhou University/ Institute for Forest Resources & Environment of Guizhou, Guiyang 550025, Guizhou Province, China
| | - Hong Deng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Zhilang Qiu
- School of Biology & Engineering, School of Health Medicine Modern Industry, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
13
|
Merriam AB, Malone JM, Hereward JP, Gill G, Preston C. Point mutations including a novel Pro-197-Phe mutation confer cross-resistance to acetolactate synthase (ALS) inhibiting herbicides in Lactuca serriola in Australia. PEST MANAGEMENT SCIENCE 2023; 79:5333-5340. [PMID: 37615238 DOI: 10.1002/ps.7743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Control of prickly lettuce has become increasingly difficult for lentil growers in southern Australia because of widespread resistance to common herbicides, a lack of alternative herbicide options and the prolific production of highly mobile seed. This study aimed to quantify acetolactate synthase (ALS)-inhibiting herbicide resistance in the Mid North (MN) and Yorke Peninsula (YP) of South Australia, characterize the resistance mutations present and investigate population structure and gene flow in this species. RESULTS Resistance was identified in all populations tested, with average survival of 92% to chlorsulfuron and 95% to imazamox + imazapyr. Five different amino acid substitutions were identified at proline 197 of the ALS gene. There was no significant difference in the median lethal dose (LD50 ) between plants with these five different substitutions when treated with metsulfuron-methyl; however, the imidazolinone resistance level was higher in plants with a phenylalanine substitution and lower in plants with a serine. Population structure based on 701 single nucleotide polymorphisms and 271 individuals provided evidence for both independent evolution of the same mutation in different populations, as well as frequent short- to medium-distance dispersal accompanied by occasional long-distance dispersal events. The overall inbreeding coefficient (FIS ) was calculated at 0.5174, indicating an intermediate level of outcrossing despite the cross-pollination experiment showing only low outcrossing. In the structure analyses, most individuals from YP were assigned to a single cluster, whereas most individuals from MN were assigned 50% to each of two clusters, indicating some genetic differences between these two regions, but also evidence for dispersal between them. CONCLUSIONS Use of imidazolinone herbicides has selected for mutations conferring higher levels of resistance, such as the Pro-197-Phe mutation, and resulted in further spread of resistance in this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alicia B Merriam
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - James P Hereward
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gurjeet Gill
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia, Australia
| |
Collapse
|
14
|
Nieto Feliner G, Criado Ruiz D, Álvarez I, Villa-Machío I. The puzzle of plant hybridisation: a high propensity to hybridise but few hybrid zones reported. Heredity (Edinb) 2023; 131:307-315. [PMID: 37884616 PMCID: PMC10673867 DOI: 10.1038/s41437-023-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
An interesting conundrum was recently revealed by R. Abbott when he found that the number of hybrid zones reported in the literature for plants is very low, given the propensity of plants to hybridise. In another literature survey on hybrid zones performed over the period 1970-2022, we found that the number of hybrid zones reported for vertebrates was 2.3 times greater than that reported for vascular plants, even though there are about six times more vascular plant species than vertebrates. Looking at the number of papers reporting hybrid zones, there are 4.9 times more on vertebrates than on vascular plants. These figures support the relevance of this conundrum. In this paper we aim to shed light on this question by providing a structured discussion of the causes that may underlie this conundrum. We propose six non-mutually exclusive factors, namely lack or deficit of spatial structure, lack or deficit of genetic structure, effects of hybridisation between non-closely related species, lability of plant hybrid zones over time, botanists' perception of hybridisation, and deficit of population genetic data. There does not appear to be a single factor that explains our puzzle, which applies to all cases of plants where hybridisation is detected but no hybrid zone is reported. It is argued that some plant features suggest that the puzzle is not, at least entirely, due to insufficient knowledge of the specific cases, a hypothesis that should be addressed with a wider range of empirical data across different taxonomic groups.
Collapse
Affiliation(s)
| | - David Criado Ruiz
- Real Jardín Botánico (RJB), CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Inés Álvarez
- Real Jardín Botánico (RJB), CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| | - Irene Villa-Machío
- Real Jardín Botánico (RJB), CSIC, Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
15
|
Teller KG, Pringle JM. Determining the most recent common ancestor in a finite linear habitat with asymmetric dispersal. Theor Popul Biol 2023; 153:91-101. [PMID: 37451507 DOI: 10.1016/j.tpb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Many species that are birthed in one location and become reproductive in another location can be treated as if in a one-dimensional habitat where dispersal is biased downstream. One example of such is planktonic larvae that disperse in coastal oceans, rivers, and streams. In these habitats, the dynamics of the dispersal are dominated by the movement of offspring in one direction and the distance between parents and offspring in the other direction does not matter. We study an idealized species with non-overlapping generations in a finite linear habitat that has no larval input from outside of the habitat and is therefore isolated from other populations. The most non-realistic assumption that we make is that there are non-overlapping generations, and this is an assumption to be considered in future work. We find that a biased dispersal in the habitat reduces the average time to the most recent common ancestor and causes the average location of the most recent common ancestor to move from the center of the habitat to the upstream edge of the habitat. Due to the decrease in the time to the most recent common ancestor and the shift of the average location to the upstream edge, the effective population size (Ne) no longer depends on the census size and is dependent on the dispersal statistics. We determine the average time and location of the most recent common ancestor as a function of the larval dispersal statistics. The location of the most recent common ancestor becomes independent of the length of the habitat and is only dependent on the location of the upstream edge and the larval dispersal statistics.
Collapse
Affiliation(s)
- Kyle G Teller
- Department of Mathematical Sciences, Salisbury University, Salisbury MD 21801, United States of America.
| | - James M Pringle
- Department of Earth Sciences, and the Institute of Earth, Oceans, and Space, University of New Hampshire, Durham NH 03824, United States of America.
| |
Collapse
|
16
|
Mollashahi H, Urbaniak J, Szymura TH, Szymura M. Genetic structure of Trifolium pratense populations in a cityscape. PeerJ 2023; 11:e15927. [PMID: 37692122 PMCID: PMC10487591 DOI: 10.7717/peerj.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/30/2023] [Indexed: 09/12/2023] Open
Abstract
Urban grasslands provide numerous ecosystem services, and their maintenance should be based on naturally regenerating plant populations. However, the urban environment is challenging for preserving viable populations, mostly because of their high fragmentation and small size, which can lead to genetic drift. We examined red clover (Trifolium pratense) in a medium-size city in Central Europe to test the cityscape effect on within- and among-population genetic diversity. We used eight inter-simple sequence repeat markers to examine the genetic structure of 16 populations, each represented by eight individuals. The isolation by resistance was analysed using a least cost patch approach, focusing on gene flow via pollinators. We found great variation among T. pratense populations, with no discernible geographic pattern in genetic diversity. We linked the diversity to the long history of the city and high stochasticity of land use changes that occurred with city development. In particular, we did not find that the Odra River (ca. 100 m wide) was a strong barrier to gene transfer. However, notable isolation was present due to resistance and distance, indicating that the populations are threatened by genetic drift. Therefore, gene movement between populations should be increased by appropriate management of urban green areas. We also found that small urban grassland (UG) patches with small populations can still hold rare alleles which significantly contribute to the overall genetic variation of T. pratense in the city.
Collapse
Affiliation(s)
- Hassanali Mollashahi
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Jacek Urbaniak
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | - Magdalena Szymura
- Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
17
|
Ahmadi N, Barry MB, Frouin J, de Navascués M, Toure MA. Genome Scan of Rice Landrace Populations Collected Across Time Revealed Climate Changes' Selective Footprints in the Genes Network Regulating Flowering Time. RICE (NEW YORK, N.Y.) 2023; 16:15. [PMID: 36947285 PMCID: PMC10033818 DOI: 10.1186/s12284-023-00633-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Analyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas. Second, phenotyping the populations for phenology, we observed significantly earlier heading time in the 2010 samples. Third, implementing two genome-scan methods (one of which specially developed for selfing species) on genotyping by sequencing genotypic data of the two populations, we detected 31 independent selection footprints. Gene ontology analysis detected significant enrichment of these selection footprints in genes involved in reproductive processes. Some of them bore known heading time QTLs and genes, including OsGI, Hd1 and OsphyB. This rapid adaptive evolution, originated from subtle changes in the standing variation in genetic network regulating heading time, did not translate into predominance of multilocus genotypes, as it is often the case in selfing plants, and into notable selective sweeps. The high adaptive potential observed results from the multiline genetic structure of the rice landraces, and the rather large and imbricated genetic diversity of the rice meta-population at the farm, the village and the region levels, that hosted the adaptive variants in multiple genetic backgrounds before the advent of the environmental selective pressure. Our results illustrate the evolution of in situ diversity through processes of human and natural selection, and provide a model for rice breeding and cultivars deployment strategies aiming resilience to climate changes. It also calls for further development of population genetic models for adaptation of plant populations to environmental changes. To our best knowledge, this is the first study dealing with climate-changes' selective footprint in crops.
Collapse
Affiliation(s)
- Nourollah Ahmadi
- UMR AGAP, CIRAD, TA-A 108/03, Avenue Agropolis, 34398, Montpellier Cedex 5, France.
- AGAP, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | | | - Julien Frouin
- UMR AGAP, CIRAD, TA-A 108/03, Avenue Agropolis, 34398, Montpellier Cedex 5, France
- AGAP, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Miguel de Navascués
- CBGP, CIRAD, INRAE, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
18
|
Salmona J, Dresen A, Ranaivoson AE, Manzi S, Le Pors B, Hong-Wa C, Razanatsoa J, Andriaholinirina NV, Rasoloharijaona S, Vavitsara ME, Besnard G. How ancient forest fragmentation and riparian connectivity generate high levels of genetic diversity in a microendemic Malagasy tree. Mol Ecol 2023; 32:299-315. [PMID: 36320175 PMCID: PMC10100191 DOI: 10.1111/mec.16759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Understanding landscape changes is central to predicting evolutionary trajectories and defining conservation practices. While human-driven deforestation is intense throughout Madagascar, exceptions in areas such as the Loky-Manambato region (north) raise questions regarding the causes and age of forest fragmentation. The Loky-Manambato region also harbours a rich and endemic flora, whose evolutionary origin remains poorly understood. We assessed the genetic diversity of an endangered microendemic Malagasy olive species (Noronhia spinifolia Hong-Wa) to better understand the vegetation dynamics in the Loky-Manambato region and its influence on past evolutionary processes. We characterized 72 individuals sampled across eight forests through nuclear and mitochondrial restriction-associated DNA sequencing data and chloroplast microsatellites. Combined population and landscape genetics analyses indicate that N. spinifolia diversity is largely explained by the current forest cover, highlighting a long-standing habitat mosaic in the region. This sustains a major and long-term role of riparian corridors in maintaining connectivity across these antique mosaic habitats, calling for the study of organismal interactions that promote gene flow.
Collapse
Affiliation(s)
- Jordi Salmona
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Axel Dresen
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | - Anicet E Ranaivoson
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France.,Faculté des Sciences, Université de Mahajanga, Mahajanga, Madagascar
| | - Sophie Manzi
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| | | | - Cynthia Hong-Wa
- Claude E. Phillips Herbarium, Delaware State University, Dover, Delaware, USA
| | - Jacqueline Razanatsoa
- Herbier, Département Flore, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar
| | | | | | | | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Tackett M, Berg C, Simmonds T, Lopez O, Brown J, Ruggiero R, Weber J. Breeding system and geospatial variation shape the population genetics of Triodanis perfoliata. Ecol Evol 2022; 12:e9382. [PMID: 36248672 PMCID: PMC9547245 DOI: 10.1002/ece3.9382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Both intrinsic and extrinsic forces work together to shape connectivity and genetic variation in populations across the landscape. Here we explored how geography, breeding system traits, and environmental factors influence the population genetic patterns of Triodanis perfoliata, a widespread mix-mating annual plant in the contiguous US. By integrating population genomic data with spatial analyses and modeling the relationship between a breeding system and genetic diversity, we illustrate the complex ways in which these forces shape genetic variation. Specifically, we used 4705 single nucleotide polymorphisms to assess genetic diversity, structure, and evolutionary history among 18 populations. Populations with more obligately selfing flowers harbored less genetic diversity (π: R 2 = .63, p = .01, n = 9 populations), and we found significant population structuring (F ST = 0.48). Both geographic isolation and environmental factors played significant roles in predicting the observed genetic diversity: we found that corridors of suitable environments appear to facilitate gene flow between populations, and that environmental resistance is correlated with increased genetic distance between populations. Last, we integrated our genetic results with species distribution modeling to assess likely patterns of connectivity among our study populations. Our landscape and evolutionary genetic results suggest that T. perfoliata experienced a complex demographic and evolutionary history, particularly in the center of its distribution. As such, there is no singular mechanism driving this species' evolution. Together, our analyses support the hypothesis that the breeding system, geography, and environmental variables shape the patterns of diversity and connectivity of T. perfoliata in the US.
Collapse
Affiliation(s)
- Morgan Tackett
- Neuroscience Graduate ProgramUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Colette Berg
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Taylor Simmonds
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| | - Olivia Lopez
- Department of BiologySoutheast Missouri State UniversityCape GirardeauMissouriUSA
| | - Jason Brown
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| | - Robert Ruggiero
- Department of BiologySoutheast Missouri State UniversityCape GirardeauMissouriUSA
| | - Jennifer Weber
- School of Biological SciencesSouthern Illinois University, CarbondaleCarbondaleIllinoisUSA
| |
Collapse
|
20
|
Genetic diversity and structure of an endangered medicinal plant species (Pilocarpus microphyllus) in eastern Amazon: implications for conservation. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Klimova A, Ruiz Mondragón KY, Molina Freaner F, Aguirre-Planter E, Eguiarte LE. Genomic Analyses of Wild and Cultivated Bacanora Agave (Agave angustifolia var. pacifica) Reveal Inbreeding, Few Signs of Cultivation History and Shallow Population Structure. PLANTS 2022; 11:plants11111426. [PMID: 35684199 PMCID: PMC9183054 DOI: 10.3390/plants11111426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 01/12/2023]
Abstract
Due to the recent increase in demand for agave-based beverages, many wild agave populations have experienced rapid decline and fragmentation, whereas cultivated plants are now managed at monocultural plantations, in some cases involving clonal propagation. We examined the relative effect of migration, genetic drift, natural selection and human activities on the genetic repertoire of Agave angustifolia var. pacifica, an agave used for bacanora (an alcoholic spirit similar to tequila) production in northwestern Mexico. We sampled 34 wild and cultivated sites and used over eleven thousand genome-wide SNPs. We found shallow genetic structure among wild samples, although we detected differentiation between coastal and inland sites. Surprisingly, no differentiation was found between cultivated and wild populations. Moreover, we detected moderate inbreeding (FIS ~ 0.13) and similar levels of genomic diversity in wild and cultivated agaves. Nevertheless, the cultivated plants had almost no private alleles and presented evidence of clonality. The overall low genetic structure in A. angustifolia var. pacifica is apparently the result of high dispersibility promoted by pollinators and the possibility of clonal reproduction. Incipient cultivation history and reliance on wild seeds and plants are probably responsible for the observed patterns of high genetic connectivity and considerable diversity in cultivated samples.
Collapse
Affiliation(s)
- Anastasia Klimova
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n Annex to the Botanical Garden, Mexico City 04510, Mexico; (K.Y.R.M.); (E.A.-P.)
- Correspondence: (A.K.); (L.E.E.); Tel.: +052-6121716113 (A.K.); +052-5556229006 (L.E.E.)
| | - Karen Y. Ruiz Mondragón
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n Annex to the Botanical Garden, Mexico City 04510, Mexico; (K.Y.R.M.); (E.A.-P.)
| | - Francisco Molina Freaner
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México Hermosillo, Sonora 83250, Mexico;
| | - Erika Aguirre-Planter
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n Annex to the Botanical Garden, Mexico City 04510, Mexico; (K.Y.R.M.); (E.A.-P.)
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n Annex to the Botanical Garden, Mexico City 04510, Mexico; (K.Y.R.M.); (E.A.-P.)
- Correspondence: (A.K.); (L.E.E.); Tel.: +052-6121716113 (A.K.); +052-5556229006 (L.E.E.)
| |
Collapse
|
22
|
Burgin G, Hopkins R. A missing link: Connecting plant and pollinator population structure. AMERICAN JOURNAL OF BOTANY 2022; 109:668-671. [PMID: 35421258 DOI: 10.1002/ajb2.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Grace Burgin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Arnold Arboretum of Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
23
|
Hu G, Wu Y, Guo C, Lu D, Dong N, Chen B, Qiao Y, Zhang Y, Pan Q. Haplotype Analysis of Chloroplast Genomes for Jujube Breeding. FRONTIERS IN PLANT SCIENCE 2022; 13:841767. [PMID: 35360311 PMCID: PMC8961131 DOI: 10.3389/fpls.2022.841767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/11/2022] [Indexed: 05/31/2023]
Abstract
Jujube (family Rhamnaceae) is an important economic fruit tree in China. In this study, we reported 26 chloroplast (cp) sequences of jujube using Illumina paired-end sequencing. The sequence length of cp genome was 161, 367-161, 849 bp, which was composed of a large single-copy region (89053-89437 bp) and a small single-copy region (19356-19362 bp) separated by a pair of reverse repeat regions (26478-26533 bp). Each cp genome encodes the same 130 genes, including 112 unique genes, being quite conserved in genome structure and gene sequence. A total of 118 single base substitutions (SNPs) and 130 InDels were detected in 65 jujube accessions. Phylogenetic and haplotype network construction methods were used to analyze the origin and evolution of jujube and its sour-tasting relatives. We detected 32 effective haplotypes, consisting of 20 unique jujube haplotypes and 9 unique sour-jujube haplotypes. Compared with sour-jujube, jujube showed greater haplotype diversity at the chloroplast DNA level. To cultivate crisp and sweet fruit varieties featuring strong resistance, by combining the characteristics of sour-jujube and cultivated jujube, three hybrid combinations were suggested for reciprocal crosses: "Dongzao" × "Jingzao39," "Dongzao" × "Jingzao60," "Dongzao" × "Jingzao28." This study provides the basis for jujube species' identification and breeding, and lays the foundation for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuping Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qinghua Pan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Engineering Research Center for Deciduous Fruit Trees, Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
24
|
Wang W, Gao L, Cui X. A New Year's spotlight on two years of publication. PLANT COMMUNICATIONS 2022; 3:100274. [PMID: 35059635 PMCID: PMC8760135 DOI: 10.1016/j.xplc.2021.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
25
|
Borokini IT, Klingler KB, Peacock MM. Life in the desert: The impact of geographic and environmental gradients on genetic diversity and population structure of Ivesia webberi. Ecol Evol 2021; 11:17537-17556. [PMID: 34938528 PMCID: PMC8668734 DOI: 10.1002/ece3.8389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/11/2022] Open
Abstract
For range-restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between I. webberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200-0.441; H o = 0.192-0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species' range core have relatively high genetic diversity, supporting in part a central-marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in I. webberi.
Collapse
Affiliation(s)
- Israel T. Borokini
- Ecology, Evolution and Conservation Biology Graduate ProgramDepartment of BiologyUniversity of Nevada, RenoRenoNevadaUSA
- University and Jepson HerbariaDepartment of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Kelly B. Klingler
- Department of Environmental ConservationUniversity of MassachusettsAmherstMassachusettsUSA
| | - Mary M. Peacock
- Ecology, Evolution and Conservation Biology Graduate ProgramDepartment of BiologyUniversity of Nevada, RenoRenoNevadaUSA
- Department of BiologyUniversity of Nevada, RenoRenoNevadaUSA
| |
Collapse
|
26
|
Cruzan MB, Thompson PG, Diaz NA, Hendrickson EC, Gerloff KR, Kline KA, Machiorlete HM, Persinger JM. Weak coupling among barrier loci and waves of neutral and adaptive introgression across an expanding hybrid zone. Evolution 2021; 75:3098-3114. [PMID: 34668193 PMCID: PMC9298192 DOI: 10.1111/evo.14381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 01/02/2023]
Abstract
Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range‐limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per‐generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range‐limited species.
Collapse
Affiliation(s)
- Mitchell B Cruzan
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Pamela G Thompson
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Nicolas A Diaz
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | - Katie R Gerloff
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | - Katie A Kline
- Department of Biology, Portland State University, Portland, Oregon, 97201
| | | | | |
Collapse
|
27
|
Reed PB, Bridgham SD, Pfeifer-Meister LE, Peterson ML, Johnson BR, Roy BA, Bailes GT, Nelson AA, Morris WF, Doak DF. Climate warming threatens the persistence of a community of disturbance-adapted native annual plants. Ecology 2021; 102:e03464. [PMID: 34236709 DOI: 10.1002/ecy.3464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023]
Abstract
With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer-than-ambient experimental conditions and may require more frequent disturbance intervention to sustain populations. Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals' persistence, but even such efforts may prove futile under future climate regimes.
Collapse
Affiliation(s)
- Paul B Reed
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Scott D Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | | | - Megan L Peterson
- Plant Biology Department, University of Georgia, Athens, Georgia, 30606, USA
| | - Bart R Johnson
- Department of Landscape Architecture, University of Oregon, Eugene, Oregon, 97403, USA
| | - Bitty A Roy
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Graham T Bailes
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - Aaron A Nelson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403, USA
| | - William F Morris
- Biology Department, Duke University, Durham, North Carolina, 27708, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
28
|
Zhou C, Zhou H, Ma X, Yang H, Wang P, Wang G, Zheng L, Zhang Y, Liu X. Genome-Wide Identification and Characterization of Main Histone Modifications in Sorghum Decipher Regulatory Mechanisms Involved by mRNA and Long Noncoding RNA Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2337-2347. [PMID: 33555853 DOI: 10.1021/acs.jafc.0c07035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Post-translational modifications of histones play an important chromatic role of a transcript activity in eukaryotes. Even though mRNA and long noncoding RNA (lncRNA) genes share similar biogenetic processes, these transcript classes may differ in many ways. However, knowledge about the crosstalk between histone methylations and the two types of sorghum genes is still ambiguous. In the present study, we reveal the genome-wide distribution of six histone modifications, namely, di- and trimethylation of H3K4 (H3K4me2 and H3K4me3), H3K27 (H3K27me2 and H3K27me3), and H3K36 (H3K36me2 and H3K36me3) in sorghum and analyze their functional relationships. Unlike other histone methylation, the codecoration of H3K4me3 and H3K36me3 is negatively associated with the production of lincRNAs in the context of active expression of mRNA genes. Our data demonstrated that H3K4me3 may act as a complementary component to H3K36me3 in the transcriptional regulatory process. Moreover, we observe that both H3K4me3 and H3K36me3 are involved in the negative-going regulation of plant lincRNA and mRNA genes. Our data provide a genome-wide landscape of histone methylation in sorghum, decrypt its reciprocity, and shed light on its transcriptional regulation roles in mRNA and lncRNA genes.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Xueping Ma
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| |
Collapse
|
29
|
Rieseberg LH, Gao L. Plant Evolutionary Adaptation. PLANT COMMUNICATIONS 2020; 1:100118. [PMID: 33367271 PMCID: PMC7747965 DOI: 10.1016/j.xplc.2020.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver BC V6T1Z4, Canada
| | - Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|