1
|
Rodrigues M, Cezar E, Dos Santos GLAA, Reis AS, de Oliveira RB, de Melo Teixeira L, Nanni MR. Unveiling the potential of Brachiaria ruziziensis: Comparative analysis of multivariate and machine learning models for biomass and NPK prediction using Vis-NIR-SWIR spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125930. [PMID: 39987605 DOI: 10.1016/j.saa.2025.125930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
This study investigated the development and validation of predictive models for estimating foliar nitrogen (N), phosphorus (P), and potassium (K) contents, along with shoot dry mass (SDM) of Brachiaria ruziziensis L. The approach utilized Vis-NIR-SWIR spectroscopy coupled with multivariate statistical techniques (PLS, PCR) and machine learning algorithms (SVM, RF). A triple-factorial, completely randomized design with ten replications per treatment was employed in a greenhouse setting. Treatments included type of input (limestone-mining coproducts), input particle size (filler and powder), and soil class (Arenosol and Ferralsol). Following input incubation, B. ruziziensis was sown. Forty days later, foliar spectra and leaves were collected. Chemical analysis determined NPK content, along with SDM. The study developed predictive models utilizing Vis-NIR-SWIR spectroscopy, Partial Least Squares (PLS), and machine learning algorithms like Support Vector Machine (SVM) and Random Forest (RF) to estimate foliar N, P, K, and biomass. Model adjustments achieved R2p > 0.70 and RPDp > 1.80 for PLS, SVM, and RF models across all variables (SDM, N, P, and K). These results highlight the effectiveness of specific spectral bands for nutrient and biomass discrimination and emphasize the potential of these techniques for rapid, non-destructive nutrient content estimation. The findings support the integration of advanced spectroscopic methods with machine learning algorithms for improved precision agriculture practices, providing a more sustainable alternative for nutrient and biomass analysis in forage crops. This approach optimizes forage production and minimizes atmospheric CO2 emissions.
Collapse
Affiliation(s)
- Marlon Rodrigues
- Department of Agronomy, Federal Institute of Paraná, União da Vitória, Paraná, Brazil; Department of Biological and Environmental Sciences, Federal University of Technology - Paraná, Medianeira, Paraná, Brazil.
| | - Everson Cezar
- Department of Agricultural and Earth Sciences, University of Minas Gerais State, Passos, Minas Gerais, Brazil
| | | | | | | | | | - Marcos Rafael Nanni
- Department of Agronomy, University of Maringá State, Maringá, Paraná, Brazil
| |
Collapse
|
2
|
Corbin JPM, Best RJ, Garthwaite IJ, Cooper HF, Doughty CE, Gehring CA, Hultine KR, Allan GJ, Whitham TG. Hyperspectral Leaf Reflectance Detects Interactive Genetic and Environmental Effects on Tree Phenotypes, Enabling Large-Scale Monitoring and Restoration Planning Under Climate Change. PLANT, CELL & ENVIRONMENT 2025; 48:1842-1857. [PMID: 39497286 PMCID: PMC11788971 DOI: 10.1111/pce.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf-level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6-year-old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%-98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%-23% of spectral variation within populations and 14%-48% of the variation across all populations. Second, we found gene by environment interactions leading to population-specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.
Collapse
Affiliation(s)
- Jaclyn P. M. Corbin
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca J. Best
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Iris J. Garthwaite
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Hillary F. Cooper
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Christopher E. Doughty
- School of Informatics, Computing and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine A. Gehring
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kevin R. Hultine
- Department of Research, Conservation and CollectionsDesert Botanical GardenPhoenixArizonaUSA
| | - Gerard J. Allan
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
3
|
Shi T, Gao Y, Song J, Ao M, Hu X, Yang W, Chen W, Liu Y, Feng H. Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains. Food Chem 2024; 461:140651. [PMID: 39154465 DOI: 10.1016/j.foodchem.2024.140651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
High-throughput and low-cost quantification of the nutrient content in crop grains is crucial for food processing and nutritional research. However, traditional methods are time-consuming and destructive. A high-throughput and low-cost method of quantification of wheat nutrients with VIS-NIR (400-1700 nm) hyperspectral imaging is proposed in this study. Stepwise linear regression (SLR) was used to predict hundreds of nutrients accurately (R2 > 0.6); results improved when the hyperspectral data was processed with the first derivative. Knockout materials were also used to verify their practical application value. Various nutrients' characteristic wavelengths were mainly concentrated in the visible regions of 400-500 nm and 900-1000 nm. Finally, we proposed an improved pix2pix conditional generative network model to visualize the nutrients distribution and showed better results compared with the original. This research highlights the potential of hyperspectral technology in high-throughput and non-destructive determination and visualization of grain nutrients with deep learning.
Collapse
Affiliation(s)
- Taotao Shi
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yuan Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Jingyan Song
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Min Ao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Xin Hu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | - Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | - Hui Feng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| |
Collapse
|
4
|
Thorp KR, Thompson AL, Herritt MT. Phenotyping cotton leaf chlorophyll via in situ hyperspectral reflectance sensing, spectral vegetation indices, and machine learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1495593. [PMID: 39640991 PMCID: PMC11617151 DOI: 10.3389/fpls.2024.1495593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Cotton (Gossypium hirsutum L.) leaf chlorophyll (Chl) has been targeted as a phenotype for breeding selection to improve cotton tolerance to environmental stress. However, high-throughput phenotyping methods based on hyperspectral reflectance sensing are needed to rapidly screen cultivars for chlorophyll in the field. The objectives of this study were to deploy a cart-based field spectroradiometer to measure cotton leaf reflectance in two field experiments over four growing seasons at Maricopa, Arizona and to evaluate 148 spectral vegetation indices (SVI's) and 14 machine learning methods (MLM's) for estimating leaf chlorophyll from spectral information. Leaf tissue was sampled concurrently with reflectance measurements, and laboratory processing provided leaf Chl a, Chl b, and Chl a+b as both areas-basis (µg cm-2) and mass-basis (mg g-1) measurements. Leaf reflectance along with several data transformations involving spectral derivatives, log-inverse reflectance, and SVI's were evaluated as MLM input. Models trained with 2019-2020 data performed poorly in tests with 2021-2022 data (e.g., RMSE=23.7% and r2 = 0.46 for area-basis Chl a+b), indicating difficulty transferring models between experiments. Performance was more satisfactory when training and testing data were based on a random split of all data from both experiments (e.g., RMSE=10.5% and r2 = 0.88 for area basis Chl a+b), but performance beyond the conditions of the present study cannot be guaranteed. Performance of SVI's was in the middle (e.g., RMSE=16.2% and r2 = 0.69 for area-basis Chl a+b), and SVI's provided more consistent error metrics compared to MLM's. Ensemble MLM's which combined estimates from several base estimators (e.g., random forest, gradient booting, and AdaBoost regressors) and a multi-layer perceptron neural network method performed best among MLM's. Input features based on spectral derivatives or SVI's improved MLM's performance compared to inputting reflectance data. Spectral reflectance data and SVI's involving red edge radiation were the most important inputs to MLM's for estimation of cotton leaf chlorophyll. Because MLM's struggled to perform beyond the constraints of their training data, SVI's should not be overlooked as practical plant trait estimators for high-throughput phenotyping, whereas MLM's offer great opportunity for data mining to develop more robust indices.
Collapse
Affiliation(s)
- Kelly R. Thorp
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Grassland Soil and Water Research Laboratory, Temple, TX, United States
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Alison L. Thompson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, United States
| | - Matthew T. Herritt
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| |
Collapse
|
5
|
Sadeh R, Ben-David R, Herrmann I, Peleg Z. Spectral-genomic chain-model approach enhances the wheat yield component prediction under the Mediterranean climate. PHYSIOLOGIA PLANTARUM 2024; 176:e14480. [PMID: 39187437 DOI: 10.1111/ppl.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 08/28/2024]
Abstract
In light of the changing climate that jeopardizes future food security, genomic selection is emerging as a valuable tool for breeders to enhance genetic gains and introduce high-yielding varieties. However, predicting grain yield is challenging due to the genetic and physiological complexities involved and the effect of genetic-by-environment interactions on prediction accuracy. We utilized a chained model approach to address these challenges, breaking down the complex prediction task into simpler steps. A diversity panel with a narrow phenological range was phenotyped across three Mediterranean environments for various morpho-physiological and yield-related traits. The results indicated that a multi-environment model outperformed a single-environment model in prediction accuracy for most traits. However, prediction accuracy for grain yield was not improved. Thus, in an attempt to ameliorate the grain yield prediction accuracy, we integrated a spectral estimation of spike number, being a major wheat yield component, with genomic data. A machine learning approach was used for spike number estimation from canopy hyperspectral reflectance captured by an unmanned aerial vehicle. The spectral-based estimated spike number was utilized as a secondary trait in a multi-trait genomic selection, significantly improving grain yield prediction accuracy. Moreover, the ability to predict the spike number based on data from previous seasons implies that it could be applied to new trials at various scales, even in small plot sizes. Overall, we demonstrate here that incorporating a novel spectral-genomic chain-model workflow, which utilizes spectral-based phenotypes as a secondary trait, improves the predictive accuracy of wheat grain yield.
Collapse
Affiliation(s)
- Roy Sadeh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roi Ben-David
- Institute of Plant Sciences, Agriculture Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Ittai Herrmann
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
6
|
Castillo-Argaez R, Sapes G, Mallen N, Lippert A, John GP, Zare A, Hammond WM. Spectral ecophysiology: hyperspectral pressure-volume curves to estimate leaf turgor loss. THE NEW PHYTOLOGIST 2024; 242:935-946. [PMID: 38482720 DOI: 10.1111/nph.19669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Turgor loss point (TLP) is an important proxy for plant drought tolerance, species habitat suitability, and drought-induced plant mortality risk. Thus, TLP serves as a critical tool for evaluating climate change impacts on plants, making it imperative to develop high-throughput and in situ methods to measure TLP. We developed hyperspectral pressure-volume curves (PV curves) to estimate TLP using leaf spectral reflectance. We used partial least square regression models to estimate water potential (Ψ) and relative water content (RWC) for two species, Frangula caroliniana and Magnolia grandiflora. RWC and Ψ's model for each species had R2 ≥ 0.7 and %RMSE = 7-10. We constructed PV curves with model estimates and compared the accuracy of directly measured and spectra-predicted TLP. Our findings indicate that leaf spectral measurements are an alternative method for estimating TLP. F. caroliniana TLP's values were -1.62 ± 0.15 (means ± SD) and -1.62 ± 0.34 MPa for observed and reflectance predicted, respectively (P > 0.05), while M. grandiflora were -1.78 ± 0.34 and -1.66 ± 0.41 MPa (P > 0.05). The estimation of TLP through leaf reflectance-based PV curves opens a broad range of possibilities for future research aimed at understanding and monitoring plant water relations on a large scale with spectral ecophysiology.
Collapse
Affiliation(s)
| | - Gerard Sapes
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole Mallen
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Alston Lippert
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Grace P John
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Alina Zare
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
7
|
Sherstneva O, Abdullaev F, Kior D, Yudina L, Gromova E, Vodeneev V. Prediction of biomass accumulation and tolerance of wheat seedlings to drought and elevated temperatures using hyperspectral imaging. FRONTIERS IN PLANT SCIENCE 2024; 15:1344826. [PMID: 38371404 PMCID: PMC10869465 DOI: 10.3389/fpls.2024.1344826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Early prediction of important agricultural traits in wheat opens up broad prospects for the development of approaches to accelerate the selection of genotypes for further breeding trials. This study is devoted to the search for predictors of biomass accumulation and tolerance of wheat to abiotic stressors. Hyperspectral (HS) and chlorophyll fluorescence (ChlF) parameters were analyzed as predictors under laboratory conditions. The predictive ability of reflectance and normalized difference indices (NDIs), as well as their relationship with parameters of photosynthetic activity, which is a key process influencing organic matter production and crop yields, were analyzed. HS parameters calculated using the wavelengths in Red (R) band and the spectral range next to the red edge (FR-NIR) were found to be correlated with biomass accumulation. The same ranges showed potential for predicting wheat tolerance to elevated temperatures. The relationship of HS predictors with biomass accumulation and heat tolerance were of opposite sign. A number of ChlF parameters also showed statistically significant correlation with biomass accumulation and heat tolerance. A correlation between HS and ChlF parameters, that demonstrated potential for predicting biomass accumulation and tolerance, has been shown. No predictors of drought tolerance were found among the HS and ChlF parameters analyzed.
Collapse
Affiliation(s)
- Oksana Sherstneva
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | | | | | | | | |
Collapse
|
8
|
McGrath JM, Siebers MH, Fu P, Long SP, Bernacchi CJ. To have value, comparisons of high-throughput phenotyping methods need statistical tests of bias and variance. FRONTIERS IN PLANT SCIENCE 2024; 14:1325221. [PMID: 38312358 PMCID: PMC10835710 DOI: 10.3389/fpls.2023.1325221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
The gap between genomics and phenomics is narrowing. The rate at which it is narrowing, however, is being slowed by improper statistical comparison of methods. Quantification using Pearson's correlation coefficient (r) is commonly used to assess method quality, but it is an often misleading statistic for this purpose as it is unable to provide information about the relative quality of two methods. Using r can both erroneously discount methods that are inherently more precise and validate methods that are less accurate. These errors occur because of logical flaws inherent in the use of r when comparing methods, not as a problem of limited sample size or the unavoidable possibility of a type I error. A popular alternative to using r is to measure the limits of agreement (LOA). However both r and LOA fail to identify which instrument is more or less variable than the other and can lead to incorrect conclusions about method quality. An alternative approach, comparing variances of methods, requires repeated measurements of the same subject, but avoids incorrect conclusions. Variance comparison is arguably the most important component of method validation and, thus, when repeated measurements are possible, variance comparison provides considerable value to these studies. Statistical tests to compare variances presented here are well established, easy to interpret and ubiquitously available. The widespread use of r has potentially led to numerous incorrect conclusions about method quality, hampering development, and the approach described here would be useful to advance high throughput phenotyping methods but can also extend into any branch of science. The adoption of the statistical techniques outlined in this paper will help speed the adoption of new high throughput phenotyping techniques by indicating when one should reject a new method, outright replace an old method or conditionally use a new method.
Collapse
Affiliation(s)
- Justin M. McGrath
- Global Change and Photosynthesis Research Unit, USDA-Agricultural Research Service (ARS), Urbana, IL, United States
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Matthew H. Siebers
- Global Change and Photosynthesis Research Unit, USDA-Agricultural Research Service (ARS), Urbana, IL, United States
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Peng Fu
- Center for Advanced Agriculture and Sustainability, Harrisburg University of Science and Technology, Harrisburg, PA, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Stephen P. Long
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Carl J. Bernacchi
- Global Change and Photosynthesis Research Unit, USDA-Agricultural Research Service (ARS), Urbana, IL, United States
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Pengphorm P, Thongrom S, Daengngam C, Duangpan S, Hussain T, Boonrat P. Optimal-Band Analysis for Chlorophyll Quantification in Rice Leaves Using a Custom Hyperspectral Imaging System. PLANTS (BASEL, SWITZERLAND) 2024; 13:259. [PMID: 38256812 PMCID: PMC10819252 DOI: 10.3390/plants13020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Hyperspectral imaging (HSI) is a promising tool in chlorophyll quantification, providing a non-invasive method to collect important information for effective crop management. HSI contributes to food security solutions by optimising crop yields. In this study, we presented a custom HSI system specifically designed to provide a quantitative analysis of leaf chlorophyll content (LCC). To ensure precise estimation, significant wavelengths were identified using optimal-band analysis. Our research was centred on two sets of 120 leaf samples sourced from Thailand's unique Chaew Khing rice variant. The samples were subjected to (i) an analytical LCC assessment and (ii) HSI imaging for spectral reflectance data capture. A linear regression comparison of these datasets revealed that the green (575 ± 2 nm) and near-infrared (788 ± 2 nm) bands were the most outstanding performers. Notably, the green normalised difference vegetation index (GNDVI) was the most reliable during cross-validation (R2=0.78 and RMSE = 2.4 µg∙cm-2), outperforming other examined vegetable indices (VIs), such as the simple ratio (RED/GREEN) and the chlorophyll index. The potential development of a streamlined sensor dependent only on these two wavelengths is a significant outcome of identifying these two optimal bands. This innovation can be seamlessly integrated into farming landscapes or attached to UAVs, allowing real-time monitoring and rapid, targeted N management interventions.
Collapse
Affiliation(s)
- Panuwat Pengphorm
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (P.P.); (S.T.); (C.D.)
- National Astronomical Research Institute of Thailand (Public Organization), Mae Rim 50180, Chiang Mai, Thailand
| | - Sukrit Thongrom
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (P.P.); (S.T.); (C.D.)
- National Astronomical Research Institute of Thailand (Public Organization), Mae Rim 50180, Chiang Mai, Thailand
| | - Chalongrat Daengngam
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (P.P.); (S.T.); (C.D.)
- National Astronomical Research Institute of Thailand (Public Organization), Mae Rim 50180, Chiang Mai, Thailand
| | - Saowapa Duangpan
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Oil Palm Agronomical Research Center, Faculty of Natural Resources, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Tajamul Hussain
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, USA;
| | - Pawita Boonrat
- Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu 83120, Phuket, Thailand
| |
Collapse
|
10
|
Fu P, Montes C, Meacham-Hensold K. Hyperspectral Proximal Sensing for Estimating Photosynthetic Capacities at Leaf and Canopy Scales. Methods Mol Biol 2024; 2790:355-372. [PMID: 38649580 DOI: 10.1007/978-1-0716-3790-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Agronomists, plant breeders, and plant biologists have been promoting the need to develop high-throughput methods to measure plant traits of interest for decades. Measuring these plant traits or phenotypes is often a bottleneck since skilled personnel, resources, and ample time are required. Additionally, plant phenotypic traits from only a select number of breeding lines or varieties can be quantified because the "gold standard" measurement of a desired trait cannot be completed in a timely manner. As such, numerous approaches have been developed and implemented to better understand the biology and production of crops and ecosystems. In this chapter, we explain one of the recent approaches leveraging hyperspectral measurements to estimate different aspects of photosynthesis. Notably, we outline the use of hyperspectral radiometer and imaging to rapidly estimate two of the rate-limiting steps of photosynthesis: the maximum rate of the carboxylation of Rubisco (Vcmax) and the maximum rate of electron transfer or regeneration of RuBP (Jmax).
Collapse
Affiliation(s)
- Peng Fu
- Center for Advanced Agriculture and Sustainability, Harrisburg University, Harrisburg, PA, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher Montes
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- USDA-ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Wijewardane NK, Zhang H, Yang J, Schnable JC, Schachtman DP, Ge Y. A leaf-level spectral library to support high throughput plant phenotyping: Predictive accuracy and model transfer. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad129. [PMID: 37018460 PMCID: PMC10400152 DOI: 10.1093/jxb/erad129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Leaf-level hyperspectral reflectance has become an effective tool for high-throughput phenotyping of plant leaf traits due to its rapid, low-cost, multi-sensing, and non-destructive nature. However, collecting samples for model calibration can still be expensive; and models show poor transferability among different datasets. This study had three specific objectives: (i) assemble a large library of leaf hyperspectral data (n=2460) from maize and sorghum, (ii) evaluate two machine-learning approaches to estimate nine leaf properties (chlorophyll, thickness, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and sulfur), and (iii) investigate the usefulness of this spectral library for predicting external datasets (n=445) including soybean and camelina using extra-weighted spiking. Internal cross-validation showed satisfactory performance of the spectral library to estimate all nine traits (average R 2 0.688), with Partial Least Squares Regression outperforming Deep Neural Network models. Models calibrated solely using the spectral library showed degraded performance on external datasets (average R 2 0.159 for camelina, 0.337 for soybean). Models improved significantly when a small portion of external samples (n=20) was added to the library via extra-weighted spiking (average R 2 0.574 for camelina, 0.536 for soybean). The leaf-level spectral library greatly benefits plant physiological and biochemical phenotyping; whereas extra-weight spiking improves model transferability and extends its utility.
Collapse
Affiliation(s)
- Nuwan K Wijewardane
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS, USA
| | - Huichun Zhang
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yufeng Ge
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
12
|
Han P, Zhai Y, Liu W, Lin H, An Q, Zhang Q, Ding S, Zhang D, Pan Z, Nie X. Dissection of Hyperspectral Reflectance to Estimate Photosynthetic Characteristics in Upland Cotton ( Gossypium hirsutum L.) under Different Nitrogen Fertilizer Application Based on Machine Learning Algorithms. PLANTS (BASEL, SWITZERLAND) 2023; 12:455. [PMID: 36771540 PMCID: PMC9919998 DOI: 10.3390/plants12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Hyperspectral technology has enabled rapid and efficient nitrogen monitoring in crops. However, most approaches involve direct monitoring of nitrogen content or physiological and biochemical indicators directly related to nitrogen, which cannot reflect the overall plant nutritional status. Two important photosynthetic traits, the fraction of absorbed photosynthetically active radiation (FAPAR) and the net photosynthetic rate (Pn), were previously shown to respond positively to nitrogen changes. Here, Pn and FAPAR were used for correlation analysis with hyperspectral data to establish a relationship between nitrogen status and hyperspectral characteristics through photosynthetic traits. Using principal component and band autocorrelation analyses of the original spectral reflectance, two band positions (350-450 and 600-750 nm) sensitive to nitrogen changes were obtained. The performances of four machine learning algorithm models based on six forms of hyperspectral transformations showed that the light gradient boosting machine (LightGBM) model based on the hyperspectral first derivative could better invert the Pn of function-leaves in cotton, and the random forest (RF) model based on hyperspectral first derivative could better invert the FAPAR of the cotton canopy. These results provide advanced metrics for non-destructive tracking of cotton nitrogen status, which can be used to diagnose nitrogen nutrition and cotton growth status in large farms.
Collapse
Affiliation(s)
- Peng Han
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Yaping Zhai
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Wenhong Liu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Hairong Lin
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qi Zhang
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Shugen Ding
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Dawei Zhang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| |
Collapse
|
13
|
Wong CYS, Gilbert ME, Pierce MA, Parker TA, Palkovic A, Gepts P, Magney TS, Buckley TN. Hyperspectral Remote Sensing for Phenotyping the Physiological Drought Response of Common and Tepary Bean. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0021. [PMID: 37040284 PMCID: PMC10076057 DOI: 10.34133/plantphenomics.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 06/19/2023]
Abstract
Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits (R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening.
Collapse
|
14
|
Che S, Du G, Zhong X, Mo Z, Wang Z, Mao Y. Quantification of Photosynthetic Pigments in Neopyropia yezoensis Using Hyperspectral Imagery. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0012. [PMID: 37040513 PMCID: PMC10076050 DOI: 10.34133/plantphenomics.0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
Phycobilisomes and chlorophyll-a (Chla) play important roles in the photosynthetic physiology of red macroalgae and serve as the primary light-harvesting antennae and reaction center for photosystem II. Neopyropia is an economically important red macroalga widely cultivated in East Asian countries. The contents and ratios of 3 main phycobiliproteins and Chla are visible traits to evaluate its commercial quality. The traditional analytical methods used for measuring these components have several limitations. Therefore, a high-throughput, nondestructive, optical method based on hyperspectral imaging technology was developed for phenotyping the pigments phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC), and Chla in Neopyropia thalli in this study. The average spectra from the region of interest were collected at wavelengths ranging from 400 to 1000 nm using a hyperspectral camera. Following different preprocessing methods, 2 machine learning methods, partial least squares regression (PLSR) and support vector machine regression (SVR), were performed to establish the best prediction models for PE, PC, APC, and Chla contents. The prediction results showed that the PLSR model performed the best for PE (R Test 2 = 0.96, MAPE = 8.31%, RPD = 5.21) and the SVR model performed the best for PC (R Test 2 = 0.94, MAPE = 7.18%, RPD = 4.16) and APC (R Test 2 = 0.84, MAPE = 18.25%, RPD = 2.53). Two models (PLSR and SVR) performed almost the same for Chla (PLSR: R Test 2 = 0.92, MAPE = 12.77%, RPD = 3.61; SVR: R Test 2 = 0.93, MAPE = 13.51%, RPD =3.60). Further validation of the optimal models was performed using field-collected samples, and the result demonstrated satisfactory robustness and accuracy. The distribution of PE, PC, APC, and Chla contents within a thallus was visualized according to the optimal prediction models. The results showed that hyperspectral imaging technology was effective for fast, accurate, and noninvasive phenotyping of the PE, PC, APC, and Chla contents of Neopyropia in situ. This could benefit the efficiency of macroalgae breeding, phenomics research, and other related applications.
Collapse
Affiliation(s)
- Shuai Che
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guoying Du
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuefeng Zhong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaolan Mo
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhendong Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Ministry of Education), College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572002, China
- Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, 572025, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266073, China
| |
Collapse
|
15
|
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100344. [PMID: 35655429 PMCID: PMC9700174 DOI: 10.1016/j.xplc.2022.100344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.
Collapse
Affiliation(s)
- Haiyu Tao
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shan Xu
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yongchao Tian
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhaofeng Li
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yan Ge
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaoping Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Guodong Zhou
- Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Xiong Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ze Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yanfeng Ding
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Dong Jiang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
16
|
Yu S, Fan J, Lu X, Wen W, Shao S, Guo X, Zhao C. Hyperspectral Technique Combined With Deep Learning Algorithm for Prediction of Phenotyping Traits in Lettuce. FRONTIERS IN PLANT SCIENCE 2022; 13:927832. [PMID: 35845657 PMCID: PMC9279906 DOI: 10.3389/fpls.2022.927832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The currently available methods for evaluating most biochemical traits of plant phenotyping are destructive and have extremely low throughput. However, hyperspectral techniques can non-destructively obtain the spectral reflectance characteristics of plants, which can provide abundant biophysical and biochemical information. Therefore, plant spectra combined with machine learning algorithms can be used to predict plant phenotyping traits. However, the raw spectral reflectance characteristics contain noise and redundant information, thus can easily affect the robustness of the models developed via multivariate analysis methods. In this study, two end-to-end deep learning models were developed based on 2D convolutional neural networks (2DCNN) and fully connected neural networks (FCNN; Deep2D and DeepFC, respectively) to rapidly and non-destructively predict the phenotyping traits of lettuces from spectral reflectance. Three linear and two nonlinear multivariate analysis methods were used to develop models to weigh the performance of the deep learning models. The models based on multivariate analysis methods require a series of manual feature extractions, such as pretreatment and wavelength selection, while the proposed models can automatically extract the features in relation to phenotyping traits. A visible near-infrared hyperspectral camera was used to image lettuce plants growing in the field, and the spectra extracted from the images were used to train the network. The proposed models achieved good performance with a determination coefficient of prediction ( R p 2 ) of 0.9030 and 0.8490 using Deep2D for soluble solids content and DeepFC for pH, respectively. The performance of the deep learning models was compared with five multivariate analysis method. The quantitative analysis showed that the deep learning models had higher R p 2 than all the multivariate analysis methods, indicating better performance. Also, wavelength selection and different pretreatment methods had different effects on different multivariate analysis methods, and the selection of appropriate multivariate analysis methods and pretreatment methods increased more time and computational cost. Unlike multivariate analysis methods, the proposed deep learning models did not require any pretreatment or dimensionality reduction and thus are more suitable for application in high-throughput plant phenotyping platforms. These results indicate that the deep learning models can better predict phenotyping traits of plants using spectral reflectance.
Collapse
Affiliation(s)
- Shuan Yu
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Jiangchuan Fan
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xianju Lu
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Weiliang Wen
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Song Shao
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Xinyu Guo
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| | - Chunjiang Zhao
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
- Beijing Key Laboratory of Digital Plant, China National Engineering Research Center for Information Technology in Agriculture, Beijing, China
| |
Collapse
|
17
|
Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Bernacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3157-3172. [PMID: 35218184 PMCID: PMC9126737 DOI: 10.1093/jxb/erac077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/22/2023]
Abstract
Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis.
Collapse
Affiliation(s)
- Peng Fu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Nuria Gomez-Casanovas
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin M McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
18
|
Robles-Zazueta CA, Pinto F, Molero G, Foulkes MJ, Reynolds MP, Murchie EH. Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. FRONTIERS IN PLANT SCIENCE 2022; 13:828451. [PMID: 35481146 PMCID: PMC9036448 DOI: 10.3389/fpls.2022.828451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
To achieve food security, it is necessary to increase crop radiation use efficiency (RUE) and yield through the enhancement of canopy photosynthesis to increase the availability of assimilates for the grain, but its study in the field is constrained by low throughput and the lack of integrative measurements at canopy level. In this study, partial least squares regression (PLSR) was used with high-throughput phenotyping (HTP) data in spring wheat to build predictive models of photosynthetic, biophysical, and biochemical traits for the top, middle, and bottom layers of wheat canopies. The combined layer model predictions performed better than individual layer predictions with a significance as follows for photosynthesis R 2 = 0.48, RMSE = 5.24 μmol m-2 s-1 and stomatal conductance: R 2 = 0.36, RMSE = 0.14 mol m-2 s-1. The predictions of these traits from PLSR models upscaled to canopy level compared to field observations were statistically significant at initiation of booting (R 2 = 0.3, p < 0.05; R 2 = 0.29, p < 0.05) and at 7 days after anthesis (R 2 = 0.15, p < 0.05; R 2 = 0.65, p < 0.001). Using HTP allowed us to increase phenotyping capacity 30-fold compared to conventional phenotyping methods. This approach can be adapted to screen breeding progeny and genetic resources for RUE and to improve our understanding of wheat physiology by adding different layers of the canopy to physiological modeling.
Collapse
Affiliation(s)
- Carlos A. Robles-Zazueta
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Francisco Pinto
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Gemma Molero
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - M. John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| | - Matthew P. Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
19
|
Grieco M, Schmidt M, Warnemünde S, Backhaus A, Klück HC, Garibay A, Tandrón Moya YA, Jozefowicz AM, Mock HP, Seiffert U, Maurer A, Pillen K. Dynamics and genetic regulation of leaf nutrient concentration in barley based on hyperspectral imaging and machine learning. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111123. [PMID: 35067296 DOI: 10.1016/j.plantsci.2021.111123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Biofortification, the enrichment of nutrients in crop plants, is of increasing importance to improve human health. The wild barley nested association mapping (NAM) population HEB-25 was developed to improve agronomic traits including nutrient concentration. Here, we evaluated the potential of high-throughput hyperspectral imaging in HEB-25 to predict leaf concentration of 15 mineral nutrients, sampled from two field experiments and four developmental stages. Particularly accurate predictions were obtained by partial least squares regression (PLS) modeling of leaf concentrations for N, P and K reaching coefficients of determination of 0.90, 0.75 and 0.89, respectively. We recognized nutrient-specific patterns of variation of leaf nutrient concentration between developmental stages. A number of quantitative trait loci (QTL) associated with the simultaneous expression of leaf nutrients were detected, indicating their potential co-regulation in barley. For example, the wild barley allele of QTL-4H-1 simultaneously increased leaf concentration of N, P, K and Cu. Similar effects of the same QTL were previously reported for nutrient concentrations in grains, supporting a potential parallel regulation of N, P, K and Cu in leaves and grains of HEB-25. Our study provides a new approach for nutrient assessment in large-scale field experiments to ultimately select genes and genotypes supporting plant biofortification.
Collapse
Affiliation(s)
- Michele Grieco
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Maria Schmidt
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Sebastian Warnemünde
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Backhaus
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Hans-Christian Klück
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Adriana Garibay
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Yudelsy Antonia Tandrón Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Anna Maria Jozefowicz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Corrensstraße 3, 06466, Seeland OT, Gatersleben, Germany
| | - Udo Seiffert
- Fraunhofer Institute for Factory Operation and Automation (IFF), Sandtorstraße 22, 39106, Magdeburg, Germany
| | - Andreas Maurer
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Klaus Pillen
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120, Halle, Germany.
| |
Collapse
|