1
|
Thapa P, Guo J, Pradhan K, Thapa D, Madhavarapu S, Zou J, Potts J, Li H, O’Hair J, Wang C, Zhou S, Yang Y, Fish T, Thannhauser TW. Cell-Type-Specific Heat-Induced Changes in the Proteomes of Pollen Mother Cells and Microspores Provide New Insights into Tomato Pollen Production Under Elevated Temperature. Proteomes 2025; 13:13. [PMID: 40265418 PMCID: PMC12015871 DOI: 10.3390/proteomes13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Tomatoes are self-pollinating plants, and successful fruit set depends on the production of functional pollen within the same flower. Our previous studies have shown that the 'Black Vernissage' tomato variety exhibits greater resilience to heat stress in terms of pollen productivity compared to the 'Micro-Tom' variety. Pollen productivity is determined by meiotic activity during microsporogenesis and the development of free microspores during gametogenesis. This study focused on identifying heat stress (HS)-induced proteomes in pollen mother cells (PMCs) and microspores. METHODS Tomato plants were grown under two temperature conditions: 26 °C (non-heat-treated control) and 37 °C (heat-treated). Homogeneous cell samples of meiotic PMCs (prior to the tetrad stage) and free microspores were collected using laser capture microdissection (LCM). The heat-induced proteomes were identified using tandem mass tag (TMT)-quantitative proteomics analysis. RESULTS The enrichment of the meiotic cell cycle in PMCs and the pre-mitotic process in free microspores confirmed the correlation between proteome expression and developmental stage. Under HS, PMCs in both tomato varieties were enriched with heat shock proteins (HSPs). However, the 'Black Vernissage' variety exhibited a greater diversity of HSP species and a higher level of enrichment compared to the 'Micro-Tom' variety. Additionally, several proteins involved in gene expression and protein translation were downregulated in PMCs and microspores of both varieties. In the PMC proteomes, the relative abundance of proteins showed no significant differences between the two varieties under normal conditions, with very few exceptions. However, HS induced significant differential expression both within and between the varieties. More importantly, these heat-induced differentially abundant proteins (DAPs) in PMCs are directly involved in meiotic cell division, including the meiosis-specific protein ASY3 (Solyc01g079080), the cell division protein kinase 2 (Solyc11g070140), COP9 signalosome complex subunit 1 (Solyc01g091650), the kinetochore protein ndc80 (Solyc01g104570), MORC family CW-type zinc finger 3 (Solyc02g084700), and several HSPs that function in protecting the fidelity of the meiotic processes, including the DNAJ chaperone (Solyc04g009770, Solyc05g055160), chaperone protein htpG (Solyc04g081570), and class I and class II HSPs. In the microspores, most of the HS-induced DAPs were consistently observed across both varieties, with only a few proteins showing significant differences between them under heat stress. These HS-induced DAPs include proteases, antioxidant proteins, and proteins related to cell wall remodeling and the generation of pollen exine. CONCLUSIONS HS induced more dynamic proteomic changes in meiotic PMCs compared to microspores, and the inter-varietal differences in the PMC proteomes align with the effects of HS on pollen productivity observed in the two varieties. This research highlights the importance of the cell-type-specific proteomics approach in identifying the molecular mechanisms that are critical for the pollen developmental process under elevated temperature conditions.
Collapse
Affiliation(s)
- Priya Thapa
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jun Guo
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Kajol Pradhan
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Dibya Thapa
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Sudhakar Madhavarapu
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jing Zou
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Jesse Potts
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Hui Li
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Joshua O’Hair
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Chen Wang
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Suping Zhou
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA; (P.T.); (J.G.); (D.T.); (S.M.); (J.Z.); (J.P.); (J.O.)
| | - Yong Yang
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| | - Tara Fish
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| | - Theodore W. Thannhauser
- R.W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA (T.F.)
| |
Collapse
|
2
|
Steckenborn S, Marques A. Centromere diversity and its evolutionary impacts on plant karyotypes and plant reproduction. THE NEW PHYTOLOGIST 2025; 245:1879-1886. [PMID: 39763092 PMCID: PMC11798908 DOI: 10.1111/nph.20376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025]
Abstract
Karyotype changes are a formidable evolutionary force by directly impacting cross-incompatibility, gene dosage, genetic linkage, chromosome segregation, and meiotic recombination landscape. These changes often arise spontaneously and are commonly detected within plant lineages, even between closely related accessions. One element that can influence drastic karyotype changes after only one (or few) plant generations is the alteration of the centromere position, number, distribution, or even its strength. Here, we briefly explore how these different centromere configurations can directly result in karyotype rearrangements, impacting plant reproduction and meiotic recombination.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| | - André Marques
- Department of Chromosome BiologyMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829CologneGermany
| |
Collapse
|
3
|
Liu Y, Liu Q, Yi C, Liu C, Shi Q, Wang M, Han F. Past innovations and future possibilities in plant chromosome engineering. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:695-708. [PMID: 39612312 PMCID: PMC11869185 DOI: 10.1111/pbi.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Plant chromosome engineering has emerged as a pivotal tool in modern plant breeding, facilitating the transfer of desirable traits through the incorporation of alien chromosome fragments into plants. Here, we provide a comprehensive overview of the past achievements, current methodologies and future prospects of plant chromosome engineering. We begin by examining the successful integration of specific examples such as the incorporation of rye chromosome segments (e.g. the 1BL/1RS translocation), Dasypyrum villosum segments (e.g. the 6VS segment for powdery mildew resistance), Thinopyrum intermedium segments (e.g. rust resistance genes) and Thinopyrum elongatum segments (e.g. Fusarium head blight resistance genes). In addition to trait transfer, advancements in plant centromere engineering have opened new possibilities for chromosomal manipulation. This includes the development of plant minichromosomes via centromere-mediated techniques, the generation of haploids through CENH3 gene editing, and the induction of aneuploidy using KaryoCreate. The advent of CRISPR/Cas technology has further revolutionized chromosome engineering, enabling large-scale chromosomal rearrangements, such as inversions and translocations, as well as enabling targeted insertion of large DNA fragments and increasing genetic recombination frequency. These advancements have significantly expanded the toolkit for genetic improvement in plants, opening new horizons for the future of plant breeding.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qian Liu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Congyang Yi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- Center for Plant Biology, School of Life SciencesTsinghua UniversityBeijingChina
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina
| | - Qinghua Shi
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mian Wang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Fangpu Han
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Zhao 赵 J嘉, Fu H, Wang Z, Zhang M, Liang Y, Cui X, Pan W, Ren Z, Wu Z, Zhang Y, Gui X, Huo L, Lei X, Wang C, Schnittger A, Pawlowski WP, Liu B. Genetic variation in Arabidopsis thaliana reveals the existence of natural heat resilience factors for meiosis. PLANT PHYSIOLOGY 2024; 197:kiae671. [PMID: 39711182 DOI: 10.1093/plphys/kiae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Heat interferes with multiple meiotic processes, leading to genome instability and sterility in flowering plants, including many crops. Despite its importance for food security, the mechanisms underlying heat tolerance of meiosis are poorly understood. In this study, we analyzed different meiotic processes in the Arabidopsis (Arabidopsis thaliana) accessions Col and Ler, their F1 hybrids, and the F2 offspring under heat stress (37 °C). At 37 °C, Col exhibits significantly reduced formation of double-strand breaks and completely abolished homolog pairing, synapsis, and crossover (CO) formation. Strikingly, Ler and Col/Ler hybrids exhibit normal CO formation and show mildly impacted homolog pairing and synapsis. Interestingly, only 10% to 20% of F2 offspring behave as Ler, revealing that heat tolerance of meiotic recombination in Arabidopsis is genetically controlled by several loci. Moreover, F2 offspring show defects in chromosome morphology and integrity and sister chromatid segregation, the levels of which exceed those in either inbreds or hybrids, thus implying a transgressive effect on heat tolerance of meiosis. Furthermore, correlation and cytogenetic analyses suggest that homolog pairing and synapsis have an impact on heat tolerance of chromosome morphology and stability at postrecombination stages. This study reveals natural heat resilience factors for meiosis in Arabidopsis, which have the great potential to be exploited in breeding programs.
Collapse
Affiliation(s)
- Jiayi 嘉怡 Zhao 赵
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Huiqi Fu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Zhengze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Yaoqiong Liang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xueying Cui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Wenjing Pan
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yujie Zhang
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xin Gui
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Li Huo
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Hamburg 22609, Germany
| | | | - Bing Liu
- Arameiosis Lab, Research Center for Biotechnology Application, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
5
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Song J, Datla R, Zou J, Xiang D. Haploid induction: an overview of parental factor manipulation during seed formation. FRONTIERS IN PLANT SCIENCE 2024; 15:1439350. [PMID: 39297013 PMCID: PMC11408167 DOI: 10.3389/fpls.2024.1439350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
In plants, in vivo haploid induction has gained increasing attention for its significant potential applications in crop breeding and genetic research. This strategy reduces the chromosome number in progeny after fertilization, enabling the rapid production of homozygous plants through double haploidization, contrasting with traditional inbreeding over successive generations. Haploidy typically initiates at the onset of seed development, with several key genes identified as paternal or maternal factors that play critical roles during meiosis, fertilization, gamete communication, and chromosome integrity maintenance. The insights gained have led to the development of efficient haploid inducer lines. However, the molecular and genetic mechanisms underlying these factors vary considerably, making it challenging to create broadly applicable haploidy induction systems for plants. In this minireview, we summarize recent discoveries and advances in paternal and maternal haploid induction factors, examining their current understanding and functionalities to further develop efficient haploid inducer systems through the application of parental factor manipulation.
Collapse
Affiliation(s)
- Jingpu Song
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jitao Zou
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Fu H, Zhong J, Zhao J, Huo L, Wang C, Ma D, Pan W, Sun L, Ren Z, Fan T, Wang Z, Wang W, Lei X, Yu G, Li J, Zhu Y, Geelen D, Liu B. Ultraviolet attenuates centromere-mediated meiotic genome stability and alters gametophytic ploidy consistency in flowering plants. THE NEW PHYTOLOGIST 2024; 243:2214-2234. [PMID: 39039772 DOI: 10.1111/nph.19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Ultraviolet (UV) radiation influences development and genome stability in organisms; however, its impact on meiosis, a special cell division essential for the delivery of genetic information across generations in eukaryotes, has not yet been elucidated. In this study, by performing cytogenetic studies, we reported that UV radiation does not damage meiotic chromosome integrity but attenuates centromere-mediated chromosome stability and induces unreduced gametes in Arabidopsis thaliana. We showed that functional centromere-specific histone 3 (CENH3) is required for obligate crossover formation and plays a role in the protection of sister chromatid cohesion under UV stress. Moreover, we found that UV specifically alters the orientation and organization of spindles and phragmoplasts at meiosis II, resulting in meiotic restitution and unreduced gametes. We determined that UV-induced meiotic restitution does not rely on the UV Resistance Locus8-mediated UV perception and the Tapetal Development and Function1- and Aborted Microspores-dependent tapetum development, but possibly occurs via altered JASON function and downregulated Parallel Spindle1. This study provides evidence that UV radiation influences meiotic genome stability and gametophytic ploidy consistency in flowering plants.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiaqi Zhong
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Li Huo
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Chong Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dexuan Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenjing Pan
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Limin Sun
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Ziming Ren
- Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tianyi Fan
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Ze Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenyi Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoning Lei
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guanghui Yu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Jing Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yan Zhu
- Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Danny Geelen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Bing Liu
- College of Life Sciences, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
8
|
Li X, Bruckmann A, Dresselhaus T, Begcy K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. PLANT PHYSIOLOGY 2024; 195:2111-2128. [PMID: 38366643 PMCID: PMC11213256 DOI: 10.1093/plphys/kiae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
For successful double fertilization in flowering plants (angiosperms), pollen tubes deliver 2 nonmotile sperm cells toward female gametes (egg and central cell, respectively). Heatwaves, especially during the reproduction period, threaten male gametophyte (pollen) development, resulting in severe yield losses. Using maize (Zea mays) as a crop and grass model system, we found strong seed set reduction when moderate heat stress was applied for 2 d during the uni- and bicellular stages of pollen development. We show that heat stress accelerates pollen development and impairs pollen germination capabilities when applied at the unicellular stage. Heat stress at the bicellular stage impairs sperm cell development and transport into pollen tubes. To understand the course of the latter defects, we used marker lines and analyzed the transcriptomes of isolated sperm cells. Heat stress affected the expression of genes associated with transcription, RNA processing and translation, DNA replication, and the cell cycle. This included the genes encoding centromeric histone 3 (CENH3) and α-tubulin. Most genes that were misregulated encode proteins involved in the transition from metaphase to anaphase during pollen mitosis II. Heat stress also activated spindle assembly check point and meta- to anaphase transition genes in sperm cells. In summary, misregulation of the identified genes during heat stress at the bicellular stage results in sperm cell development and transport defects ultimately leading to sterility.
Collapse
Affiliation(s)
- Xingli Li
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL32611, USA
| |
Collapse
|
9
|
Manape TK, Satheesh V, Somasundaram S, Soumia PS, Khade YP, Mainkar P, Mahajan V, Singh M, Anandhan S. RNAi-mediated downregulation of AcCENH3 can induce in vivo haploids in onion (Allium cepa L.). Sci Rep 2024; 14:14481. [PMID: 38914600 PMCID: PMC11196721 DOI: 10.1038/s41598-024-64432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Haploid induction (HI) holds great promise in expediting the breeding process in onion, a biennial cross-pollinated crop. We used the CENH3-based genome elimination technique in producing a HI line in onion. Here, we downregulated AcCENH3 using the RNAi approach without complementation in five independent lines. Out of five events, only three could produce seeds upon selfing. The progenies showed poor seed set and segregation distortion, and we were unable to recover homozygous knockdown lines. The knockdown lines showed a decrease in accumulation of AcCENH3 transcript and protein in leaf tissue. The decrease in protein content in transgenic plants was correlated with poor seed set. When the heterozygous knockdown lines were crossed with wild-type plants, progenies showed HI by genome elimination of the parental chromosomes from AcCENH3 knockdown lines. The HI efficiency observed was between 0 and 4.63% in the three events, and it was the highest (4.63%) when E1 line was crossed with wildtype. Given the importance of doubled haploids in breeding programmes, the findings from our study are poised to significantly impact onion breeding.
Collapse
Affiliation(s)
- Tushar K Manape
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Viswanathan Satheesh
- ICAR-National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, 50010, USA
| | - Saravanakumar Somasundaram
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Parakkattu S Soumia
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Yogesh P Khade
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Pawan Mainkar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India
| | - Sivalingam Anandhan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, 410505, India.
| |
Collapse
|
10
|
Karimi-Ashtiyani R, Banaei-Moghaddam AM, Ishii T, Weiss O, Fuchs J, Schubert V, Houben A. Centromere sequence-independent but biased loading of subgenome-specific CENH3 variants in allopolyploid Arabidopsis suecica. PLANT MOLECULAR BIOLOGY 2024; 114:74. [PMID: 38874679 PMCID: PMC11178584 DOI: 10.1007/s11103-024-01474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Centromeric nucleosomes are determined by the replacement of the canonical histone H3 with the centromere-specific histone H3 (CENH3) variant. Little is known about the centromere organization in allopolyploid species where different subgenome-specific CENH3s and subgenome-specific centromeric sequences coexist. Here, we analyzed the transcription and centromeric localization of subgenome-specific CENH3 variants in the allopolyploid species Arabidopsis suecica. Synthetic A. thaliana x A. arenosa hybrids were generated and analyzed to mimic the early evolution of A. suecica. Our expression analyses indicated that CENH3 has generally higher expression levels in A. arenosa compared to A. thaliana, and this pattern persists in the hybrids. We also demonstrated that despite a different centromere DNA composition, the centromeres of both subgenomes incorporate CENH3 encoded by both subgenomes, but with a positive bias towards the A. arenosa-type CENH3. The intermingled arrangement of both CENH3 variants demonstrates centromere plasticity and may be an evolutionary adaption to handle more than one CENH3 variant in the process of allopolyploidization.
Collapse
Affiliation(s)
- Raheleh Karimi-Ashtiyani
- Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, 1497713111, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Ali Mohammad Banaei-Moghaddam
- Laboratory of Genomics and Epigenomics (LGE), Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, 1417614335, Iran
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Takayoshi Ishii
- Arid Land Research Center (ALRC), Tottori University, 1390 Hamasaka, Tottori, 680-0001, Japan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Oda Weiss
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
11
|
Crhak Khaitova L, Mikulkova P, Pecinkova J, Kalidass M, Heckmann S, Lermontova I, Riha K. Heat stress impairs centromere structure and segregation of meiotic chromosomes in Arabidopsis. eLife 2024; 12:RP90253. [PMID: 38629825 PMCID: PMC11023694 DOI: 10.7554/elife.90253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
Collapse
Affiliation(s)
| | | | | | - Manikandan Kalidass
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenGaterslebenGermany
| | - Karel Riha
- CEITEC Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
12
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
13
|
Pan Z, Li Z, Han Y, Sun J. Genome-Wide Identification and Expression Analysis of the DMP and MTL Genes in Sweetpotato ( Ipomoea batatas L.). Genes (Basel) 2024; 15:354. [PMID: 38540413 PMCID: PMC10970459 DOI: 10.3390/genes15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 06/14/2024] Open
Abstract
Sweetpotato (Ipomoea batatas L.) is a strategic crop with both economic and energy value. However, improving sweetpotato varieties through traditional breeding approaches can be a time-consuming and labor-intensive process due to the complex genetic nature of sweetpotato as a hexaploid species (2n = 6x = 90). Double haploid (DH) breeding, based on in vivo haploid induction, provides a new approach for rapid breeding of crops. The success of haploid induction can be achieved by manipulating specific genes. Two of the most critical genes, DMP (DUF679 membrane proteins) and MTL (MATRILINEAL), have been shown to induce haploid production in several species. Here, we identified and characterized DMP and MTL genes in sweetpotato using gene family analysis. In this study, we identified 5 IbDMPs and 25 IbpPLAs. IbDMP5 and IbPLAIIs (IbPLAIIκ, IbPLAIIλ, and IbPLAIIμ) were identified as potential haploid induction (HI) genes in sweetpotato. These results provide valuable information for the identification and potential function of HI genes in sweetpotato and provide ideas for the breeding of DH lines.
Collapse
Affiliation(s)
- Zhiyuan Pan
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| | - Yonghua Han
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Sun
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Z.P.); (Z.L.)
| |
Collapse
|
14
|
Quiroz LF, Gondalia N, Brychkova G, McKeown PC, Spillane C. Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants. THE NEW PHYTOLOGIST 2024; 241:1936-1949. [PMID: 38180262 DOI: 10.1111/nph.19523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Nikita Gondalia
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Peter C McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, Galway, H91 REW4, Ireland
| |
Collapse
|
15
|
Puchta H, Houben A. Plant chromosome engineering - past, present and future. THE NEW PHYTOLOGIST 2024; 241:541-552. [PMID: 37984056 DOI: 10.1111/nph.19414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Spontaneous chromosomal rearrangements (CRs) play an essential role in speciation, genome evolution and crop domestication. To be able to use the potential of CRs for breeding, plant chromosome engineering was initiated by fragmenting chromosomes by X-ray irradiation. With the rise of the CRISPR/Cas system, it became possible to induce double-strand breaks (DSBs) in a highly efficient manner at will at any chromosomal position. This has enabled a completely new level of predesigned chromosome engineering. The genetic linkage between specific genes can be broken by inducing chromosomal translocations. Natural inversions, which suppress genetic exchange, can be reverted for breeding. In addition, various approaches for constructing minichromosomes by downsizing regular standard A or supernumerary B chromosomes, which could serve as future vectors in plant biotechnology, have been developed. Recently, a functional synthetic centromere could be constructed. Also, different ways of genome haploidization have been set up, some based on centromere manipulations. In the future, we expect to see even more complex rearrangements, which can be combined with previously developed engineering technologies such as recombinases. Chromosome engineering might help to redefine genetic linkage groups, change the number of chromosomes, stack beneficial genes on mini cargo chromosomes, or set up genetic isolation to avoid outcrossing.
Collapse
Affiliation(s)
- Holger Puchta
- Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP) - Molecular Biology, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| |
Collapse
|
16
|
Resentini F, Orozco-Arroyo G, Cucinotta M, Mendes MA. The impact of heat stress in plant reproduction. FRONTIERS IN PLANT SCIENCE 2023; 14:1271644. [PMID: 38126016 PMCID: PMC10732258 DOI: 10.3389/fpls.2023.1271644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
The increment in global temperature reduces crop productivity, which in turn threatens food security. Currently, most of our food supply is produced by plants and the human population is estimated to reach 9 billion by 2050. Gaining insights into how plants navigate heat stress in their reproductive phase is essential for effectively overseeing the future of agricultural productivity. The reproductive success of numerous plant species can be jeopardized by just one exceptionally hot day. While the effects of heat stress on seedlings germination and root development have been extensively investigated, studies on reproduction are limited. The intricate processes of gamete development and fertilization unfold within a brief timeframe, largely concealed within the flower. Nonetheless, heat stress is known to have important effects on reproduction. Considering that heat stress typically affects both male and female reproductive structures concurrently, it remains crucial to identify cultivars with thermotolerance. In such cultivars, ovules and pollen can successfully undergo development despite the challenges posed by heat stress, enabling the completion of the fertilization process and resulting in a robust seed yield. Hereby, we review the current understanding of the molecular mechanisms underlying plant resistance to abiotic heat stress, focusing on the reproductive process in the model systems of Arabidopsis and Oryza sativa.
Collapse
Affiliation(s)
| | | | | | - Marta A. Mendes
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
17
|
Jin C, Sun L, Trinh HK, Danny G. Heat stress promotes haploid formation during CENH3-mediated genome elimination in Arabidopsis. PLANT REPRODUCTION 2023; 36:147-155. [PMID: 36692584 DOI: 10.1007/s00497-023-00457-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/09/2023] [Indexed: 06/09/2023]
Abstract
Impaired activity of centromeric histone CENH3 causes inaccurate chromosome segregation and in crosses between the Arabidopsis recombinant CENH3 mutant GFP-tailswap and CENH3G83E with wild-type pollen it results in chromosome loss with the formation of haploids. This genome elimination in the zygote and embryo is not absolute as also aneuploid and diploid progeny is formed. Here, we report that a temporal and moderate heat stress during fertilization and early embryogenesis shifts the ratio in favour of haploid progeny in CENH3 mutant lines. Micronuclei formation, a proxy for genome elimination, was similar in control and heat-treated flowers, indicating that heat-induced seed abortion occurred at a late stage during the development of the seed. In the seeds derived from heat-treated crosses, the endosperm did not cellularize and many seeds aborted. Haploid seeds were formed, however, resulting in increased frequencies of haploids in CENH3-mediated genome elimination crosses performed under heat stress. Therefore, heat stress application is a selective force during genome elimination that promotes haploid formation and may be used to improve the development and efficacy of in vivo haploid induction systems.
Collapse
Affiliation(s)
- Chunlian Jin
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
- Floricultural Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Limin Sun
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, 900000, Vietnam
| | - Geelen Danny
- Faculty of Bioscience Engineering, HortiCell, Ghent University, Coupure Links, 9000, Ghent, Belgium.
| |
Collapse
|
18
|
Wang Z, Chen M, Yang H, Hu Z, Yu Y, Xu H, Yan S, Yi K, Li J. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. NATURE PLANTS 2023; 9:699-705. [PMID: 37012429 DOI: 10.1038/s41477-023-01389-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/02/2023] [Indexed: 05/23/2023]
Abstract
Haploid production by outcrossing with inducers is one of the key technologies to revolutionize breeding. A promising approach for developing haploid inducers is by manipulating centromere-specific histone H3 (CENH3/CENPA)1. GFP-tailswap, a CENH3-based inducer, induces paternal haploids at around 30% and maternal haploids at around 5% (ref. 2). However, male sterility of GFP-tailswap makes high-demand maternal haploid induction more challenging. Our study describes a simple and highly effective method for improving both directions of haploid production. Lower temperatures dramatically enhance pollen vigour but reduce haploid induction efficiency, while higher temperatures act oppositely. Importantly, the effects of temperatures on pollen vigour and on haploid induction efficiency are independent. These features enable us to easily induce maternal haploids at around 24.8% by using pollen of inducers grown at lower temperatures to pollinate target plants, followed by switching to high temperatures for haploid induction. Moreover, paternal haploid induction can be simplified and enhanced by growing the inducer at higher temperatures pre- and post-pollination. Our findings provide new clues for developing and using CENH3-based haploid inducers in crops.
Collapse
Affiliation(s)
- Ze Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Min Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Zhengdao Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Youfeng Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Hao Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, China.
- College of Tropical Crops, Hainan University, Haikou, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
19
|
Reis RS. Thermomorphogenesis: Opportunities and challenges in posttranscriptional regulation. JOURNAL OF EXPERIMENTAL BOTANY 2023:7134107. [PMID: 37082809 DOI: 10.1093/jxb/erad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
Plants exposed to mildly elevated temperatures display morphological and developmental changes collectively termed thermomorphogenesis. This adaptative process has several undesirable consequences to food production, including yield reduction and increased vulnerability to pathogens. Understanding thermomorphogenesis is, thus, critical for understanding how plants will respond to increasingly warmer temperature conditions, such as those caused by climate change. Recently, we have made major advances in that direction, and it has become apparent that plants resource to a broad range of molecules and molecular mechanisms to perceive and respond to increases in environmental temperature. However, most of our efforts have been focused on regulation of transcription and protein abundance and activity, with an important gap encompassing nearly all processes involving RNA (i.e., posttranscriptional regulation). Here, I summarized our current knowledge of thermomorphogenesis involving transcriptional, posttranscriptional, and posttranslational regulation, focused on opportunities and challenges in understanding posttranscriptional regulation-a fertile field for exciting new discoveries.
Collapse
Affiliation(s)
- Rodrigo S Reis
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|