1
|
Kieliszek AM, Mobilio D, Bassey-Archibong BI, Johnson JW, Piotrowski ML, de Araujo ED, Sedighi A, Aghaei N, Escudero L, Ang P, Gwynne WD, Zhang C, Quaile A, McKenna D, Subapanditha M, Tokar T, Vaseem Shaikh M, Zhai K, Chafe SC, Gunning PT, Montenegro-Burke JR, Venugopal C, Magolan J, Singh SK. De novo GTP synthesis is a metabolic vulnerability for the interception of brain metastases. Cell Rep Med 2024; 5:101755. [PMID: 39366383 PMCID: PMC11513854 DOI: 10.1016/j.xcrm.2024.101755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/21/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Patients with brain metastases (BM) face a 90% mortality rate within one year of diagnosis and the current standard of care is palliative. Targeting BM-initiating cells (BMICs) is a feasible strategy to treat BM, but druggable targets are limited. Here, we apply Connectivity Map analysis to lung-, breast-, and melanoma-pre-metastatic BMIC gene expression signatures and identify inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo GTP synthesis pathway, as a target for BM. We show that pharmacological and genetic perturbation of IMPDH attenuates BMIC proliferation in vitro and the formation of BM in vivo. Metabolomic analyses and CRISPR knockout studies confirm that de novo GTP synthesis is a potent metabolic vulnerability in BM. Overall, our work employs a phenotype-guided therapeutic strategy to uncover IMPDH as a relevant target for attenuating BM outgrowth, which may provide an alternative treatment strategy for patients who are otherwise limited to palliation.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Blessing I Bassey-Archibong
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mathew L Piotrowski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Elvin D de Araujo
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Abootaleb Sedighi
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Nikoo Aghaei
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Laura Escudero
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrew Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Patrick T Gunning
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Department of Surgery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Chan JK, Gwynne WD, Lieng BY, Quaile AT, Venugopal C, Singh SK, Montenegro-Burke JR. Protocol for mapping the metabolome and lipidome of medulloblastoma cells using liquid chromatography-mass spectrometry. STAR Protoc 2023; 4:102736. [PMID: 37999971 PMCID: PMC10709382 DOI: 10.1016/j.xpro.2023.102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics and lipidomics have recently been used to show that MYC-amplified group 3 medulloblastoma tumors are driven by metabolic reprogramming. Here, we present a protocol to extract metabolites and lipids from human medulloblastoma brain tumor-initiating cells and normal neural stem cells. We describe untargeted LC-MS methods that can be used to achieve extensive coverage of the polar metabolome and lipidome. Finally, we detail strategies for metabolite identification and data analysis. For complete details on the use and execution of this protocol, please refer to Gwynne et al.1.
Collapse
Affiliation(s)
- Jeremy K Chan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - William D Gwynne
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Brandon Y Lieng
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Andrew T Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Sheila K Singh
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
3
|
Bakhshinyan D, Suk Y, Kuhlmann L, Adile AA, Ignatchenko V, Custers S, Gwynne WD, Macklin A, Venugopal C, Kislinger T, Singh SK. Dynamic profiling of medulloblastoma surfaceome. Acta Neuropathol Commun 2023; 11:111. [PMID: 37430373 PMCID: PMC10331972 DOI: 10.1186/s40478-023-01609-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain cancer. The current standard of care (SOC) involves maximal safe resection and chemoradiotherapy in individuals older than 3 years, often leading to devastating neurocognitive and developmental deficits. Out of the four distinct molecular subgroups, Group 3 and 4 have the poorest patient outcomes due to the aggressive nature of the tumor and propensity to metastasize and recur post therapy. The toxicity of the SOC and lack of response in specific subtypes to the SOC underscores the urgent need for developing and translating novel treatment options including immunotherapies. To identify differentially enriched surface proteins that could be evaluated for potential future immunotherapeutic interventions, we leveraged N-glycocapture surfaceome profiling on Group 3 MB cells from primary tumor, through therapy, to recurrence using our established therapy-adapted patient derived xenograft model. Integrin 𝛼5 (ITGA5) was one of the most differentially enriched targets found at recurrence when compared to engraftment and untreated timepoints. In addition to being enriched at recurrence, shRNA-mediated knockdown and small molecule inhibition of ITGA5 have resulted in marked decrease in proliferation and self-renewal in vitro and demonstrated a survival advantage in vivo. Together, our data highlights the value of dynamic profiling of cells as they evolve through therapy and the identification of ITGA5 as a promising therapeutic target for recurrent Group 3 MB.
Collapse
Affiliation(s)
- David Bakhshinyan
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
| | - Ashley A Adile
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stefan Custers
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sheila K Singh
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Martell E, Kuzmychova H, Kaul E, Senthil H, Chowdhury SR, Morrison LC, Fresnoza A, Zagozewski J, Venugopal C, Anderson CM, Singh SK, Banerji V, Werbowetski-Ogilvie TE, Sharif T. Metabolism-based targeting of MYC via MPC-SOD2 axis-mediated oxidation promotes cellular differentiation in group 3 medulloblastoma. Nat Commun 2023; 14:2502. [PMID: 37130865 PMCID: PMC10154337 DOI: 10.1038/s41467-023-38049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Group 3 medulloblastoma (G3 MB) carries the worst prognosis of all MB subgroups. MYC oncoprotein is elevated in G3 MB tumors; however, the mechanisms that support MYC abundance remain unclear. Using metabolic and mechanistic profiling, we pinpoint a role for mitochondrial metabolism in regulating MYC. Complex-I inhibition decreases MYC abundance in G3 MB, attenuates the expression of MYC-downstream targets, induces differentiation, and prolongs male animal survival. Mechanistically, complex-I inhibition increases inactivating acetylation of antioxidant enzyme SOD2 at K68 and K122, triggering the accumulation of mitochondrial reactive oxygen species that promotes MYC oxidation and degradation in a mitochondrial pyruvate carrier (MPC)-dependent manner. MPC inhibition blocks the acetylation of SOD2 and oxidation of MYC, restoring MYC abundance and self-renewal capacity in G3 MB cells following complex-I inhibition. Identification of this MPC-SOD2 signaling axis reveals a role for metabolism in regulating MYC protein abundance that has clinical implications for treating G3 MB.
Collapse
Affiliation(s)
- Emma Martell
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Helgi Kuzmychova
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Esha Kaul
- Faculty of Science, University of Manitoba, Winnipeg, MB, Canada
| | - Harshal Senthil
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Ludivine Coudière Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Agnes Fresnoza
- Central Animal Care Services, University of Manitoba, Winnipeg, MB, Canada
| | - Jamie Zagozewski
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chris M Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Versha Banerji
- CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Tanveer Sharif
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Ke NY, Zhao TY, Wang WR, Qian YT, Liu C. Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders. World J Stem Cells 2023; 15:235-247. [PMID: 37181007 PMCID: PMC10173807 DOI: 10.4252/wjsc.v15.i4.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Different fates of neural stem/progenitor cells (NSPCs) and their progeny are determined by the gene regulatory network, where a chromatin-remodeling complex affects synergy with other regulators. Here, we review recent research progress indicating that the BRG1/BRM-associated factor (BAF) complex plays an important role in NSPCs during neural development and neural developmental disorders. Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation, which can also lead to various diseases in humans. We discussed BAF complex subunits and their main characteristics in NSPCs. With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs, we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs. Considering recent progress in these research areas, we suggest that three approaches should be used in investigations in the near future. Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders. More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications.
Collapse
Affiliation(s)
- Nai-Yu Ke
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Tian-Yi Zhao
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Wan-Rong Wang
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yu-Tong Qian
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Chao Liu
- Institute of Stem cells and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui Province, China.
| |
Collapse
|
6
|
Gwynne WD, Suk Y, Custers S, Mikolajewicz N, Chan JK, Zador Z, Chafe SC, Zhai K, Escudero L, Zhang C, Zaslaver O, Chokshi C, Shaikh MV, Bakhshinyan D, Burns I, Chaudhry I, Nachmani O, Mobilio D, Maich WT, Mero P, Brown KR, Quaile AT, Venugopal C, Moffat J, Montenegro-Burke JR, Singh SK. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma. Cancer Cell 2022; 40:1488-1502.e7. [PMID: 36368321 DOI: 10.1016/j.ccell.2022.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.
Collapse
Affiliation(s)
- William D Gwynne
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Michael G DeGroote School of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Stefan Custers
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Nicholas Mikolajewicz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Jeremy K Chan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zsolt Zador
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Shawn C Chafe
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Kui Zhai
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Laura Escudero
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Cunjie Zhang
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Olga Zaslaver
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chirayu Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Muhammad Vaseem Shaikh
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - David Bakhshinyan
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Ian Burns
- Michael G DeGroote School of Medicine, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Iqra Chaudhry
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Omri Nachmani
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - William T Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Patricia Mero
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kevin R Brown
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Andrew T Quaile
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Jason Moffat
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J Rafael Montenegro-Burke
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Sheila K Singh
- Department of Surgery, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada; Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|