1
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
2
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Inhibitor of DNA binding in heart development and cardiovascular diseases. Cell Commun Signal 2019; 17:51. [PMID: 31126344 PMCID: PMC6534900 DOI: 10.1186/s12964-019-0365-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Id proteins, inhibitors of DNA binding, are transcription regulators containing a highly conserved helix-loop-helix domain. During multiple stages of normal cardiogenesis, Id proteins play major roles in early development and participate in the differentiation and proliferation of cardiac progenitor cells and mature cardiomyocytes. The fact that a depletion of Ids can cause a variety of defects in cardiac structure and conduction function is further evidence of their involvement in heart development. Multiple signalling pathways and growth factors are involved in the regulation of Ids in a cell- and tissue- specific manner to affect heart development. Recent studies have demonstrated that Ids are related to multiple aspects of cardiovascular diseases, including congenital structural, coronary heart disease, and arrhythmia. Although a growing body of research has elucidated the important role of Ids, no comprehensive review has previously compiled these scattered findings. Here, we introduce and summarize the roles of Id proteins in heart development, with the hope that this overview of key findings might shed light on the molecular basis of consequential cardiovascular diseases. Furthermore, we described the future prospective researches needed to enable advancement in the maintainance of the proliferative capacity of cardiomyocytes. Additionally, research focusing on increasing embryonic stem cell culture adaptability will help to improve the future therapeutic application of cardiac regeneration.
Collapse
|
4
|
Bisgrove BW, Su YC, Yost HJ. Maternal Gdf3 is an obligatory cofactor in Nodal signaling for embryonic axis formation in zebrafish. eLife 2017; 6:28534. [PMID: 29140249 PMCID: PMC5745076 DOI: 10.7554/elife.28534] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022] Open
Abstract
Zebrafish Gdf3 (Dvr1) is a member of the TGFβ superfamily of cell signaling ligands that includes Xenopus Vg1 and mammalian Gdf1/3. Surprisingly, engineered homozygous mutants in zebrafish have no apparent phenotype. Elimination of Gdf3 in oocytes of maternal-zygotic mutants results in embryonic lethality that can be fully rescued with gdf3 RNA, demonstrating that Gdf3 is required only early in development, beyond which mutants are viable and fertile. Gdf3 mutants are refractory to Nodal ligands and Nodal repressor Lefty1. Signaling driven by TGFβ ligand Activin and constitutively active receptors Alk4 and Alk2 remain intact in gdf3 mutants, indicating that Gdf3 functions at the same pathway step as Nodal. Targeting gdf3 and ndr2 RNA to specific lineages indicates that exogenous gdf3 is able to fully rescue mutants only when co-expressed with endogenous Nodal. Together, these findings demonstrate that Gdf3 is an essential cofactor of Nodal signaling during establishment of the embryonic axis. All vertebrates – animals with backbones like fish and humans – have body plans with three clear axes: head-to-tail, back-to-front and left-to-right. Animals lay down these plans as embryos, when signaling molecules bind to receptors on the surface of their cells. These signaling molecules include related proteins called “Nodal” and “Growth and Differentiation Factors”. However, there has been much debate in the field of developmental biology about whether these proteins work together or independently during the early development of vertebrates. Zebrafish are often used to study animal development, and Bisgrove et al. decided to test whether these fish need a Growth and Differentiation Factor known as Gdf3 by deleting it using genome editing. It turns out that zebrafish can survive and develop as normal without the gene for Gdf3, just as long as their mothers still had a working copy of the gene. Yet, when the offspring of mutant females did not inherit the instructions to make Gdf3 from their mothers, they died within a couple of days. This was true even if the offspring inherited a working copy of the gene from their fathers. Bisgrove et al. then went on to show that embryos from a mutant mother could be saved with an injection of short-lived RNA molecules that include the instructions to make some Gdf3 proteins. The injected mutant embryos could live to adulthood. This shows that Gdf3 is only needed during the embryo’s early development. Further experiments suggested that Gdf3 does cannot activate its receptors on its own. Instead, it is likely that Gdf3 interacts with Nodal to form a two-protein complex that activates the receptors. Two other groups of researchers have independently reported similar findings. Mutations affecting proteins very similar to Gdf3 have been found in people with congenital heart defects. By revealing the interaction between Gdf3 and Nodal, these new findings could help scientists to understand the genetic causes of this condition in more detail. Further studies using the mutant zebrafish could also be used to explore the causes of other developmental diseases.
Collapse
Affiliation(s)
- Brent W Bisgrove
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| | - Yi-Chu Su
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| | - H Joseph Yost
- Molecular Medicine Program, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
5
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
6
|
Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y. TGF-β Signaling Regulates the Differentiation of Motile Cilia. Cell Rep 2015; 11:1000-7. [PMID: 25959824 DOI: 10.1016/j.celrep.2015.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 11/24/2022] Open
Abstract
The cilium is a small cellular organelle with motility- and/or sensory-related functions that plays a crucial role during developmental and homeostatic processes. Although many molecules or signal transduction pathways that control cilia assembly have been reported, the mechanisms of ciliary length control have remained enigmatic. Here, we report that Smad2-dependent transforming growth factor β (TGF-β) signaling impacts the length of motile cilia at the Xenopus left-right (LR) organizer, the gastrocoel roof plate (GRP), as well as at the neural tube and the epidermis. Blocking TGF-β signaling resulted in the absence of the transition zone protein B9D1/MSKR-1 from cilia in multi-ciliated cells (MCCs) of the epidermis. Interestingly, this TGF-β activity is not mediated by Mcidas, Foxj1, and RFX2, the known major regulators of ciliogenesis. These data indicate that TGF-β signaling is crucial for the function of the transition zone, which in turn may affect the regulation of cilia length.
Collapse
Affiliation(s)
- Janos Tözser
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany
| | - Ryan Earwood
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Akiko Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Jacob Brown
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Koichi Tanaka
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Ruth Didier
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrtraβe 30, 70593 Stuttgart, Germany.
| | - Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
7
|
Anuppalle M, Maddirevula S, Huh TL, Rhee M. Trb3 regulates LR axis formation in zebrafish embryos. Mol Cells 2013; 36:542-7. [PMID: 24292884 PMCID: PMC3887966 DOI: 10.1007/s10059-013-0237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 01/13/2023] Open
Abstract
Tribless family proteins are pseudokinases that lack DFG (Asp-Phe-Gly) motif in the functional kinase domain, regulating Akt and BMP pathways, insulin metabolism, hypoxia, and ubiquitination. This report concerns expression patterns and functional roles of trb3 in zebrafish embryonic development. trb3 is evolutionarily well-conserved and located on zebrafish chromosome 11. Spatiotemporal expression studies show that trb3 transcripts are abundant throughout embryogenesis, but confined to mesendodermal cells during the late blastula phase. Over-expression of trb3 ventralizes the embryos while a knockdown of trb3 using morpholino alters positioning of the heart, liver, and pancreatic buds as well as gut looping. Furthermore, constitutive activation of TGF-signaling with TARAM-A* (TGF-related type I receptor) significantly increases the level of trb3 transcripts during the late blastula phase. Over-expression of trb3 reduces the level of smurf1 transcripts, a member of TGF-signaling. We thus propose that Trb3 governs left-right (LR) axis patterning as a component of TGF-signaling in vertebrate embryonic development.
Collapse
Affiliation(s)
| | | | - Tae-Lin Huh
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701,
Korea
| | | |
Collapse
|
8
|
Blackiston DJ, Levin M. Inversion of left-right asymmetry alters performance of Xenopus tadpoles in nonlateralized cognitive tasks. Anim Behav 2013; 86:459-466. [PMID: 24039274 PMCID: PMC3768024 DOI: 10.1016/j.anbehav.2013.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Left-right behavioural biases are well documented across the animal kingdom, and handedness has long been associated with cognitive performance. However, the relationship between body laterality and cognitive ability is poorly understood. The embryonic pathways dictating normal left-right patterning have been molecularly dissected in model vertebrates, and numerous genetic and pharmacological treatments now facilitate experimental randomization or reversal of the left-right axis in these animals. Several recent studies showed a link between brain asymmetry and strongly lateralized behaviours such as eye use preference. However, links between laterality of the body and performance on cognitive tasks utilizing nonlateralized cues remain unknown. Xenopus tadpoles are an established model for the study of early left-right patterning, and protocols were recently developed to quantitatively evaluate learning and memory in these animals. Using an automated testing and training platform, we tested wild-type, left-right-randomized and left-right-reversed tadpoles for their ability to learn colour cues in an automated assay. Our results indicate that animals with either randomization or reversal of somatic left-right patterning learned more slowly than wild-type siblings, although all groups were able to reach the same performance optimum given enough training sessions. These results are the first analysis of the link between body laterality and learning of nonlateralized cues, and they position the Xenopus tadpole as an attractive and tractable model for future studies of the links between asymmetry of the body, lateralization of the brain and behaviour.
Collapse
Affiliation(s)
- Douglas J. Blackiston
- Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, Medford, MA, U.S.A
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Department of Biology, Tufts University, Medford, MA, U.S.A
| |
Collapse
|
9
|
Ripoche D, Gout J, Pommier RM, Jaafar R, Zhang CX, Bartholin L, Bertolino P. Generation of a conditional mouse model to target Acvr1b disruption in adult tissues. Genesis 2012; 51:120-7. [PMID: 23109354 DOI: 10.1002/dvg.22352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/11/2012] [Accepted: 10/13/2012] [Indexed: 11/06/2022]
Abstract
Alk4 is a type I receptor that belongs to the transforming growth factor-beta (TGF-β) family. It takes part in the signaling of TGF-β ligands such as Activins, Gdfs, and Nodal that had been demonstrated to participate in numerous mechanisms ranging from early embryonic development to adult-tissue homeostasis. Evidences indicate that Alk4 is a key regulator of many embryonic processes, but little is known about its signaling in adult tissues and in pathological conditions where Alk4 mutations had been reported. Conventional deletion of Alk4 gene (Acvr1b) results in early embryonic lethality prior gastrulation, which has precluded study of Alk4 functions in postnatal and adult mice. To circumvent this problem, we have generated a conditional Acvr1b floxed-allele by flanking the fifth and sixth exons of the Acvr1b gene with loxP sites. Cre-mediated deletion of the floxed allele generates a deleted allele, which behaves as an Acvr1b null allele leading to embryonic lethality in homozygous mutant animals. A tamoxifen-inducible approach to target disruption of Acvr1b specifically in adult tissues was used and proved to be efficient for studying Alk4 functions in various organs. We report, therefore, a novel conditional model allowing investigation of biological role played by Alk4 in a variety of tissue-specific contexts.
Collapse
Affiliation(s)
- Doriane Ripoche
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Kato Y. The multiple roles of Notch signaling during left-right patterning. Cell Mol Life Sci 2011; 68:2555-67. [PMID: 21544546 PMCID: PMC11114802 DOI: 10.1007/s00018-011-0695-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/28/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
The establishment of left-right (LR) asymmetry is regulated by intricate signaling mechanisms during embryogenesis and this asymmetry is critical for morphogenesis as well as the positioning of internal organs within the organism. Recent progress including elucidation of ion transporters, leftward nodal flow, and regulation of asymmetric gene expression contributes to our understanding of how the breaking of the symmetry is initiated and how this laterality information is subsequently transmitted to the organ primordium. A number of developmental signaling pathways have been implicated in this complex process. In this review, we will focus on the roles of the Notch signaling pathway during development of LR asymmetry. The Notch signaling pathway is a short-range communication system between neighboring cells. While Notch signaling plays essential roles in regulating the morphogenesis of the node and left-specific expression of Nodal in the lateral plate mesoderm, a hallmark gene in LR patterning, Notch signaling also suppresses the expression of Pitx2 that is a direct downstream target of Nodal during later stages of development. This negative activity of Notch signaling towards left-specific activity was recently shown to be inhibited by the B cell lymphoma 6 (BCL6)/BCL6 co-repressor (BcoR) transcriptional repressor complex in a target-specific manner. The complex regulation of Notch-dependent gene expression for LR asymmetry will be highlighted in this review.
Collapse
Affiliation(s)
- Yoichi Kato
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA.
| |
Collapse
|
11
|
Kaltenbrun E, Tandon P, Amin NM, Waldron L, Showell C, Conlon FL. Xenopus: An emerging model for studying congenital heart disease. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:495-510. [PMID: 21538812 PMCID: PMC3125675 DOI: 10.1002/bdra.20793] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/18/2011] [Accepted: 01/28/2011] [Indexed: 02/02/2023]
Abstract
Congenital heart defects affect nearly 1% of all newborns and are a significant cause of infant death. Clinical studies have identified a number of congenital heart syndromes associated with mutations in genes that are involved in the complex process of cardiogenesis. The African clawed frog, Xenopus, has been instrumental in studies of vertebrate heart development and provides a valuable tool to investigate the molecular mechanisms underlying human congenital heart diseases. In this review, we discuss the methodologies that make Xenopus an ideal model system to investigate heart development and disease. We also outline congenital heart conditions linked to cardiac genes that have been well studied in Xenopus and describe some emerging technologies that will further aid in the study of these complex syndromes.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute
- Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599
| | - Panna Tandon
- University of North Carolina McAllister Heart Institute
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599
| | - Nirav M. Amin
- University of North Carolina McAllister Heart Institute
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599
| | - Lauren Waldron
- University of North Carolina McAllister Heart Institute
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599
| | - Chris Showell
- University of North Carolina McAllister Heart Institute
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599
| | - Frank L. Conlon
- University of North Carolina McAllister Heart Institute
- Department of Biology, UNC-Chapel Hill, Chapel Hill, NC 27599
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
12
|
Conditional activin receptor type 1B (Acvr1b) knockout mice reveal hair loss abnormality. J Invest Dermatol 2010; 131:1067-76. [PMID: 21191412 DOI: 10.1038/jid.2010.400] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The in vivo functions of the activin A receptor type 1b (Acvr1b) have been difficult to study because Acvr1b(-/-) mice die during embryogenesis. To investigate the roles of Acvr1b in the epithelial tissues, we created mice with a conditional disruption of Acvr1b (Acvr1b(flox/flox)) and crossed them with K14-Cre mice. Acvr1b(flox/flox); K14-Cre mice displayed various degrees of hairlessness at postnatal day 5, and the phenotype is exacerbated by age. Histological analyses showed that those hair follicles that developed during morphogenesis were later disrupted by delays in hair cycle reentry. Failure in cycling of the hair follicles and regrowth of the hair shaft and the inner root sheath resulted in subsequent severe hair loss. Apart from previous reports of other members of the transforming growth factor-β/activin/bone morphogenic protein pathways, we demonstrate a specialized role for Acvr1b in hair cycling in addition to hair follicle development. Acvr1b(flox/flox); K14-Cre mice also had a thicker epidermis than did wild-type mice, which resulted from persistent proliferation of skin epithelial cells; however, no tumor formation was observed by 18 months of age. Our analysis of this Acvr1b knockout mouse line provides direct genetic evidence that Acvr1b signaling is required for both hair follicle development and cycling.
Collapse
|
13
|
Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc Natl Acad Sci U S A 2010; 107:2521-6. [PMID: 20133783 DOI: 10.1073/pnas.0914396107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dorsal organizer formation is one of the most critical steps in early embryonic development. Several genes and signaling pathways that positively regulate the dorsal organizer development have been identified; however, little is known about the factor(s) that negatively regulates the organizer formation. Here, we show that Setdb2, a SET domain-containing protein possessing potential histone H3K9 methyltransferase activity, restricts dorsal organizer development and regulates left-right asymmetry by suppressing fibroblast growth factor 8 (fgf8) expression. Knockdown of Setdb2 results in a massive expansion of dorsal organizer markers floating head (flh), goosecoid (gsc), and chordin (chd), as well as a significant increase of fgf8, but not fgf4 mRNAs. Consequently, disrupted midline patterning and resultant randomization of left-right asymmetry are observed in Setdb2-deficient embryos. These characteristic changes induced by Setdb2 deficiency can be nearly corrected by either overexpression of a dominant-negative fgf receptor or knockdown of fgf8, suggesting an essential role for Setdb2-Fgf8 signaling in restricting dorsal organizer territory and regulating left-right asymmetry. These results provide unique evidence that a SET domain-containing protein potentially involved in the epigenetic control negatively regulates dorsal organizer formation during early embryonic development.
Collapse
|
14
|
Foley AC, Korol O, Timmer AM, Mercola M. Multiple functions of Cerberus cooperate to induce heart downstream of Nodal. Dev Biol 2006; 303:57-65. [PMID: 17123501 PMCID: PMC1855199 DOI: 10.1016/j.ydbio.2006.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 10/05/2006] [Accepted: 10/22/2006] [Indexed: 11/25/2022]
Abstract
The TGFbeta family member Nodal has been implicated in heart induction through misexpression of a dominant negative version of the type I Nodal receptor (Alk4) and targeted deletion of the co-receptor Cripto in murine ESCs and mouse embryos; however, whether Nodal acts directly or indirectly to induce heart tissue or interacts with other signaling molecules or pathways remained unclear. Here we present Xenopus embryological studies demonstrating an unforeseen role for the DAN family protein Cerberus within presumptive foregut endoderm as essential for differentiation of cardiac mesoderm in response to Nodal. Ectopic activation of Nodal signaling in non-cardiogenic ventroposterior mesendoderm, either by misexpression of the Nodal homologue XNr1 together with Cripto or by a constitutively active Alk4 (caAlk4), induced both cardiac markers and Cerberus. Mosaic lineage tracing studies revealed that Nodal/Cripto and caAlk4 induced cardiac markers cell non-autonomously, thus supporting the idea that Cerberus or another diffusible factor is an essential mediator of Nodal-induced cardiogenesis. Cerberus alone was found sufficient to initiate cardiogenesis at a distance from its site of synthesis. Conversely, morpholino-mediated specific knockdown of Cerberus reduced both endogenous cardiomyogenesis and ectopic heart induction resulting from misactivation of Nodal/Cripto signaling. Since the specific knockdown of Cerberus did not abrogate heart induction by the Wnt antagonist Dkk1, Nodal/Cripto and Wnt antagonists appear to initiate cardiogenesis through distinct pathways. This idea was further supported by the combinatorial effect of morpholino-medicated knockdown of Cerberus and Hex, which is required for Dkk1-induced cardiogenesis, and the differential roles of essential downstream effectors: Nodal pathway activation did not induce the transcriptional repressor Hex while Dkk-1 did not induce Cerberus. These studies demonstrated that cardiogenesis in mesoderm depends on Nodal-mediated induction of Cerberus in underlying endoderm, and that this pathway functions in a pathway parallel to cardiogenesis initiated through the induction of Hex by Wnt antagonists. Both pathways operate in endoderm to initiate cardiogenesis in overlying mesoderm.
Collapse
Affiliation(s)
| | | | | | - Mark Mercola
- *author for correspondence, E-mail: , Telephone: (858) 795-5242, Fax: (858) 713 6274
| |
Collapse
|
15
|
Vonica A, Brivanlou AH. The left-right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev Biol 2006; 303:281-94. [PMID: 17239842 DOI: 10.1016/j.ydbio.2006.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 11/22/2022]
Abstract
Formation of the left-right axis involves a symmetry-breaking signal originating in the node or its equivalents, which increases TGF-beta signaling on the left side of the embryo and ultimately leads to asymmetric patterning of the viscera. DAN domain proteins are extracellular inhibitors of TGF-beta ligands, and are involved in regulating the left-right axis in chick, mouse and zebrafish. We find that Coco, a Xenopus DAN family member, and two TGF-beta ligands, Xnr1 and derrière, are coexpressed in the posterior paraxial mesoderm at neurula stage. Side-specific protein depletion demonstrated that left-right patterning requires Coco exclusively on the right side, and Xnr1 and derrière exclusively on the left, despite their bilateral expression pattern. In the absence of Coco, the TGF-beta signal is bilateral. Interactions among the three proteins show that derrière is required for normal levels of Xnr1 expression, while Coco directly inhibits both ligands. We conclude that derrière, Xnr1, and Coco define a posttranscriptionally regulated signaling center, which is a necessary link in the signaling chain leading to an increased TGF-beta signal on the left side of the embryo.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
16
|
Abstract
Early in vertebrate development, endodermal signals act on mesoderm to induce cardiogenesis. The F-type SOXs SOX7 and SOX18beta are expressed in the cardiogenic region of the early Xenopus embryo. Injection of RNAs encoding SOX7 or SOX18beta, but not the related F-type SOX, SOX17, leads to the nodal-dependent expression of markers of cardiogenesis in animal cap explants. Injection of morpholinos directed against either SOX7 or SOX18mRNAs lead to a partial inhibition of cardiogenesis in vivo, while co-injection of SOX7 and SOX18 morpholinos strongly inhibited cardiogenesis. SOX7 RNA rescued the effects of the SOX18 morpholino and visa versa, indicating that the proteins have redundant functions. In animal cap explants, it appears that SOX7 and SOX18 act indirectly through Xnr2 to induce mesodermal (Eomesodermin, Snail, Wnt11), organizer (Cerberus) and endodermal (endodermin, Hex) tissues, which then interact to initiate cardiogenesis. Versions of SOX7 and SOX18 with their C-terminal, beta-catenin interaction domains replaced by a transcriptional activator domain failed to antagonize beta-catenin activation of Siamois, but still induced cardiogenesis. These observations identify SOX7 and SOX18 as important, and previously unsuspected, regulators of cardiogenesis in Xenopus.
Collapse
|
17
|
Ramsdell AF, Bernanke JM, Trusk TC. Left-right lineage analysis of the embryonic Xenopus heart reveals a novel framework linking congenital cardiac defects and laterality disease. Development 2006; 133:1399-410. [PMID: 16527986 DOI: 10.1242/dev.02292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The significant morbidity and mortality associated with laterality disease almost always are attributed to complex congenital heart defects (CHDs), reflecting the extreme susceptibility of the developing heart to disturbances in the left-right (LR) body plan. To determine how LR positional information becomes ;translated' into anatomical asymmetry, left versus right side cardiomyocyte cell lineages were traced in normal and laterality defective embryos of the frog, Xenopus laevis. In normal embryos, myocytes in some regions of the heart were derived consistently from a unilateral lineage, whereas other regions were derived consistently from both left and right side lineages. However, in heterotaxic embryos experimentally induced by ectopic activation or attenuation of ALK4 signaling, hearts contained variable LR cell composition, not only compared with controls but also compared with hearts from other heterotaxic embryos. In most cases, LR cell lineage defects were associated with abnormal cardiac morphology and were preceded by abnormal Pitx2c expression in the lateral plate mesoderm. In situs inversus embryos there was a mirror image reversal in Pitx2c expression and LR lineage composition. Surprisingly, most of the embryos that failed to develop heterotaxy or situs inversus in response to misregulated ALK4 signaling nevertheless had altered Pitx2c expression, abnormal cardiomyocyte LR lineage composition and abnormal heart structure, demonstrating that cardiac laterality defects can occur even in instances of otherwise normal body situs. These results indicate that: (1) different regions of the heart contain distinct LR myocyte compositions; (2) LR cardiomyocyte lineages and Pitx2c expression are altered in laterality defective embryos; and (3) abnormal LR cardiac lineage composition frequently is associated with cardiac malformations. We propose that proper LR cell composition is necessary for normal morphogenesis, and that misallocated LR cell lineages may be causatively linked with CHDs that are present in heterotaxic individuals, as well as some 'isolated' CHDs that are found in individuals lacking overt features of laterality disease.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, 29208, USA.
| | | | | |
Collapse
|
18
|
Ho DM, Chan J, Bayliss P, Whitman M. Inhibitor-resistant type I receptors reveal specific requirements for TGF-beta signaling in vivo. Dev Biol 2006; 295:730-42. [PMID: 16684517 DOI: 10.1016/j.ydbio.2006.03.050] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 03/29/2006] [Accepted: 03/31/2006] [Indexed: 11/22/2022]
Abstract
Activin/nodal-like TGF-beta superfamily ligands signal through the type I receptors Alk4, Alk5, and Alk7, and are responsible for mediating a number of essential processes in development. SB-431542, a chemical inhibitor of activin/nodal signaling, acts by specifically interfering with type I receptors. Here, we use inhibitor-resistant mutant receptors to examine the efficacy and specificity of SB-431542 in Xenopus and zebrafish embryos. Treatment with SB-431542 eliminates Smad2 phosphorylation in vivo and generates a phenotype very similar to those observed in genetic mutants in the nodal signaling pathway. Inhibitor-resistant Alk4 efficiently rescues Smad2 signaling, developmental phenotype, and marker gene expression after inhibitor treatment. This system was used to examine type I receptor specificity for several activin/nodal ligands. We find that Alk4 can efficiently rescue signaling by a wide range of ligands, while Alk7 can only weakly rescue signaling by the same ligands. In whole embryos, nodal signaling during gastrulation can be rescued with Alk4, but not Alk7, while Alk5 can only mediate signaling by ligands expressed later in development. The combination of the ALK inhibitor SB-431542 with inhibitor-resistant ALKs provides a powerful set of tools for examining nodal/activin signaling during embryogenesis.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Ramsdell AF, Bernanke JM, Johnson J, Trusk TC. Left-right lineage analysis of AV cushion tissue in normal and laterality defective Xenopus hearts. ACTA ACUST UNITED AC 2006; 287:1176-82. [PMID: 16294330 DOI: 10.1002/ar.a.20269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of complex congenital heart defects occur in individuals who are afflicted by laterality disease. We hypothesize that the prevalence of valvuloseptal defects in this population is due to defective left-right patterning of the embryonic atrioventricular (AV) canal cushions, which are the progenitor tissue for valve and septal structures in the mature heart. Using embryos of the frog Xenopus laevis, this hypothesis was tested by performing left-right lineage analysis of myocytes and cushion mesenchyme cells of the superior and inferior cushion regions of the AV canal. Lineage analyses were conducted in both wild-type and laterality mutant embryos experimentally induced by misexpression of ALK4, a type I TGF-beta receptor previously shown to modulate left-right axis determination in Xenopus. We find that abnormalities in overall amount and left-right cell lineage composition are present in a majority of ALK4-induced laterality mutant embryos and that much variation in the nature of these abnormalities exists in embryos that exhibit the same overall body situs. We propose that these two parameters of cushion tissue formation-amount and left-right lineage origin-are important for normal processes of valvuloseptal morphogenesis and that defective allocation of cells in the AV canal might be causatively linked to the high incidence of valvuloseptal defects associated with laterality disease.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, USA.
| | | | | | | |
Collapse
|
20
|
Onuma Y, Yeo CY, Whitman M. XCR2, one of three Xenopus EGF-CFC genes, has a distinct role in the regulation of left-right patterning. Development 2005; 133:237-50. [PMID: 16339189 DOI: 10.1242/dev.02188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the EGF-CFC family facilitate signaling by a subset of TGFbeta superfamily ligands that includes the nodal-related factors and GDF1/VG1. Studies in mouse, zebrafish, and chick point to an essential role for EGF-CFC proteins in the action of nodal/GDF1 signals in the early establishment of the mesendoderm and later visceral left-right patterning. Antisense knockdown of the only known frog EGF-CFC factor (FRL1), however, has argued against an essential role for this factor in nodal/GDF1 signaling. To address this apparent paradox, we have identified two additional Xenopus EGF-CFC family members. The three Xenopus EGF-CFC factors show distinct patterns of expression. We have examined the role of XCR2, the only Xenopus EGF-CFC factor expressed in post-gastrula embryos, in embryogenesis. Antisense morpholino oligonucleotide-mediated depletion of XCR2 disrupts left-right asymmetry of the heart and gut. Although XCR2 is expressed bilaterally at neurula stage, XCR2 is required on the left side, but not the right side, for normal left-right patterning. Left-side expression of XNR1 in the lateral plate mesoderm depends on XCR2, whereas posterior bilateral expression of XNR1 does not, suggesting that distinct mechanisms maintain XNR1 expression in different regions of neurula-tailbud embryos. Ectopic XCR2 on the right side initiates premature right-side expression of XNR1 and XATV, and can reverse visceral patterning. This activity of XCR2 depends on its co-receptor function. These observations indicate that XCR2 has a crucial limiting role in maintaining a bistable asymmetry in nodal family signaling across the left-right axis.
Collapse
Affiliation(s)
- Yasuko Onuma
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
21
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
22
|
Bamberger C, Schärer A, Antsiferova M, Tychsen B, Pankow S, Müller M, Rülicke T, Paus R, Werner S. Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:733-47. [PMID: 16127153 PMCID: PMC1698729 DOI: 10.1016/s0002-9440(10)62047-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The transforming growth factor-beta family member activin is a potent regulator of skin morphogenesis and repair. Transgenic mice overexpressing activin in keratinocytes display epidermal hyper-thickening and dermal fibrosis in normal skin and enhanced granulation tissue formation after wounding. Mice overexpressing the secreted activin antagonist follistatin, however, have the opposite wound-healing phenotype. To determine whether activin affects skin morphogenesis and repair via activation of keratinocytes and/or stromal cells, we generated transgenic mice expressing a dominant-negative activin receptor IB mutant (dnActRIB) in keratinocytes. The architecture of adult skin was unaltered in these mice, but delays were observed in postnatal pelage hair follicle morphogenesis and in the first catagen-telogen transformation of hair follicles. Although dnActRIB-transgenic mice showed slightly delayed wound re-epithelialization after skin injury, the strong inhibition of granulation tissue formation seen in follistatin-transgenic mice was not observed. Therefore, although endogenous activin appeared to affect skin morphogenesis and repair predominantly via stromal cells, overexpressed activin strongly affected the epidermis. The epidermal phenotype of activin-overexpressing mice was partially rescued by breeding these animals with dnActRIB-transgenic mice. These results demonstrate that activin affects both stromal cells and keratinocytes in normal and wounded skin and that the effect on keratinocytes is dose-dependent in vivo.
Collapse
Affiliation(s)
- Casimir Bamberger
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Whitaker LL, Ramsdell AF. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis. Dev Dyn 2005; 232:393-8. [PMID: 15614766 DOI: 10.1002/dvdy.20232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The type I transforming growth factor-beta (TGFbeta) receptor, activin-like kinase-4 (ALK4), is an important regulator of vertebrate development, with roles in mesoderm induction, primitive streak formation, gastrulation, dorsoanterior patterning, and left-right axis determination. To complement previous ALK4 functional studies, we have analyzed ALK4 expression in embryos of the frog, Xenopus laevis. Results obtained with reverse transcriptase-polymerase chain reaction indicate that ALK4 is present in both the animal and vegetal poles of blastula stage embryos and that expression levels are relatively constant amongst embryos examined at blastula, gastrula, neurula, and early tail bud stages. However, the tissue distribution of ALK4 mRNA, as assessed by whole-mount in situ hybridization, was found to change over this range of developmental stages. In the blastula stage embryo, ALK4 is detected in cells of the animal pole and the marginal zone. During gastrulation, ALK4 is detected in the outer ectoderm, involuting mesoderm, blastocoele roof, dorsal lip, and to a lesser extent, in the endoderm. At the onset of neurulation, ALK4 expression is prominent in the dorsoanterior region of the developing head, the paraxial mesoderm, and midline structures, including the prechordal plate and neural folds. Expression in older neurula stage embryos resolves to the developing brain, somites, notochord, and neural crest; thereafter, additional sites of ALK4 expression in tail bud stage embryos include the spinal cord, otic placode, developing eye, lateral plate mesoderm, branchial arches, and the bilateral heart fields. Together, these results not only reflect the multiple developmental roles that have been proposed for this TGFbeta receptor but also define spatiotemporal windows in which ALK4 may function to modulate fundamental embryological events.
Collapse
Affiliation(s)
- Yumei Chen
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
24
|
Bianco C, Strizzi L, Normanno N, Khan N, Salomon DS. Cripto-1: an oncofetal gene with many faces. Curr Top Dev Biol 2005; 67:85-133. [PMID: 15949532 DOI: 10.1016/s0070-2153(05)67003-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human Cripto-1 (CR-1), a member of the epidermal growth factor (EGF)-CFC family, has been implicated in embryogenesis and in carcinogenesis. During early vertebrate development, CR-1 functions as a co-receptor for Nodal, a transforming growth factor beta (TGFbeta) family member and is essential for mesoderm and endoderm formation and anterior-posterior and left-right axis establishment. In adult tissues, CR-1 is expressed at a low level in all stages of mammary gland development and expression increases during pregnancy and lactation. Overexpression of CR-1 in mouse mammary epithelial cells leads to their transformation in vitro and, when injected into mammary glands, produces ductal hyperplasias. CR-1 can also enhance migration, invasion, branching morphogenesis and epithelial to mesenchymal transition (EMT) of several mouse mammary epithelial cell lines. Furthermore, transgenic mouse studies have shown that overexpression of a human CR-1 transgene in the mammary gland under the transcriptional control of the mouse mammary tumor virus (MMTV) promoter results in mammary hyperplasias and papillary adenocarcinomas. Finally, CR-1 is expressed at high levels in approximately 50 to 80% of different types of human carcinomas, including breast, cervix, colon, stomach, pancreas, lung, ovary, and testis. In conclusion, EGF-CFC proteins play dual roles as embryonic pattern formation genes and as oncogenes. While during embryogenesis EGF-CFC proteins perform specific and regulatory functions related to cell and tissue patterning, inappropriate expression of these molecules in adult tissues can lead to cellular proliferation and transformation and therefore may be important in the etiology and/or progression of cancer.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Raya A, Izpisúa Belmonte JC. Sequential transfer of left–right information during vertebrate embryo development. Curr Opin Genet Dev 2004; 14:575-81. [PMID: 15380250 DOI: 10.1016/j.gde.2004.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The establishment of left-right asymmetries in the vertebrate embryo is carried out by complex genetic interactions that impart left- or right-sided information to the developing organs and structures. The origin of LR information is still unclear, but recent advances have provided new insights as to how it is relayed to the embryo node, and thereafter to the lateral plate mesoderm. In both steps, signaling by members of the transforming growth factor-beta superfamily plays critical roles in amplifying and spreading LR cues, which are reviewed here.
Collapse
Affiliation(s)
- Angel Raya
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA
| | | |
Collapse
|