1
|
Tokita S, Nakayama R, Fujishima Y, Goh VST, Anderson D, Uemura I, Ikema H, Shibata J, Kinoshita Y, Shimizu Y, Shinoda H, Goto J, Palmerini MG, Hatha AM, Satoh T, Nakata A, Fukumoto M, Miura T, Yamashiro H. Potential radiosensitive germline biomarkers in the testes of wild mice after the Fukushima accident. FEBS Open Bio 2025; 15:296-310. [PMID: 39621528 PMCID: PMC11788752 DOI: 10.1002/2211-5463.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
We investigated potential germline-specific radiosensitive biomarkers in the testes of large Japanese field mice (Apodemus speciosus) exposed to low-dose-rate (LDR) radiation after the Fukushima accident. Fukushima wild mice testes were analysed via RNA-sequencing to identify genes differentially expressed in the breeding and non-breeding seasons when compared to controls. Results revealed significant changes during the breeding season, with Lsp1 showing a considerable upregulation, while Ptprk and Tspear exhibited significant reductions. Conversely, in the non-breeding season, Fmo2 and Fmo2 (highly similar) were significantly upregulated in radiation-exposed Fukushima mice. qPCR analysis results were consistent with transcriptome sequencing, detecting Lsp1 and Ptprk regulation in the testes of Fukushima mice. While differences in gene expression were observed, these do not imply any causal association between the identified biomarkers and chronic LDR exposure, as other factors such as the environment and developmental age may contribute. This study provides valuable insights into the reproductive biology is affected by environmental radiation and highlights the value of assessing the effects of chronic LDR radiation exposure on testicular health in wild mice.
Collapse
Affiliation(s)
- Syun Tokita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Ryo Nakayama
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety InitiativeNational University of SingaporeSingapore
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Ippei Uemura
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Hikari Ikema
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Jin Shibata
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Yoh Kinoshita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | | | | | - Jun Goto
- Institute for Research AdministrationNiigata UniversityJapan
| | | | - Abdulla Mohamed Hatha
- Department of Marine Biology, Microbiology, BiochemistryCochin University of Science and TechnologyIndia
| | - Takashi Satoh
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Akifumi Nakata
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Manabu Fukumoto
- RIKEN Centre for Advanced Intelligence ProjectPathology Informatics TeamTokyoJapan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Hideaki Yamashiro
- Graduate School of Science and TechnologyNiigata UniversityJapan
- Field Centre for Sustainable Agriculture, Faculty of AgricultureNiigata UniversityJapan
| |
Collapse
|
2
|
Devaraj A, Singh M, Narayanavari SA, Yong G, Chen J, Wang J, Becker M, Walisko O, Schorn A, Cseresznyés Z, Raskó T, Radscheit K, Selbach M, Ivics Z, Izsvák Z. HMGXB4 Targets Sleeping Beauty Transposition to Germinal Stem Cells. Int J Mol Sci 2023; 24:ijms24087283. [PMID: 37108449 PMCID: PMC10138897 DOI: 10.3390/ijms24087283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Transposons are parasitic genetic elements that frequently hijack vital cellular processes of their host. HMGXB4 is a known Wnt signaling-regulating HMG-box protein, previously identified as a host-encoded factor of Sleeping Beauty (SB) transposition. Here, we show that HMGXB4 is predominantly maternally expressed, and marks both germinal progenitor and somatic stem cells. SB piggybacks HMGXB4 to activate transposase expression and target transposition to germinal stem cells, thereby potentiating heritable transposon insertions. The HMGXB4 promoter is located within an active chromatin domain, offering multiple looping possibilities with neighboring genomic regions. HMGXB4 is activated by ERK2/MAPK1, ELK1 transcription factors, coordinating pluripotency and self-renewal pathways, but suppressed by the KRAB-ZNF/TRIM28 epigenetic repression machinery, also known to regulate transposable elements. At the post-translational level, SUMOylation regulates HMGXB4, which modulates binding affinity to its protein interaction partners and controls its transcriptional activator function via nucleolar compartmentalization. When expressed, HMGXB4 can participate in nuclear-remodeling protein complexes and transactivate target gene expression in vertebrates. Our study highlights HMGXB4 as an evolutionarily conserved host-encoded factor that assists Tc1/Mariner transposons to target the germline, which was necessary for their fixation and may explain their abundance in vertebrate genomes.
Collapse
Affiliation(s)
- Anantharam Devaraj
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Suneel A Narayanavari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Guo Yong
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Mareike Becker
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Oliver Walisko
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Andrea Schorn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Cseresznyés
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Tamás Raskó
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kathrin Radscheit
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Zoltán Ivics
- Division of Hematology, Gene and Cell Therapy, Paul-Ehrlich-Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society (MDC), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
3
|
Chapman KM, Pudasaini A, Vanderbeck MN, Hamra FK. Rattus norvegicus Spermatogenesis Colony-Forming Assays. Methods Mol Biol 2023; 2677:233-257. [PMID: 37464246 DOI: 10.1007/978-1-0716-3259-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Knowledge gaps persist on signaling pathways and metabolic states in germ cells sufficient to support spermatogenesis independent of a somatic environment. Consequently, methods to culture mammalian stem cells through spermatogenesis in defined systems have not been established. Lack of success at culturing mammalian stem cells through spermatogenesis in defined systems reflects an inability to experimentally recapitulate biochemical events that develop in germ cells within the testis-specific seminiferous epithelium. Complex germ and somatic cell associations that develop each seminiferous epithelial cycle support such a hypothesis, conceivably explaining why highly pure mammalian spermatogonia do not effectively develop into and through meiosis without somatic cells. Here, we outline an in vitro spermatogenesis colony-forming assay to study how differentiating spermatogonial syncytia develop from rat spermatogonial stem cell lines. Robust spermatogonial differentiation under defined culture conditions, once established, is anticipated to facilitate molecular biology studies on pre-meiotic steps in gametogenesis by providing soma-free bioassays to systematically identify spermatogenic factors that promote meiotic progression in vitro.
Collapse
Affiliation(s)
- Karen M Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - F Kent Hamra
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Busulfan Suppresses Autophagy in Mouse Spermatogonial Progenitor Cells via mTOR of AKT and p53 Signaling Pathways. Stem Cell Rev Rep 2021; 16:1242-1255. [PMID: 32839922 DOI: 10.1007/s12015-020-10027-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In testis, a rare undifferentiated germ cell population with the capacity to regenerate robustly and support spermatogenesis, is defined as spermatogonial progenitor cells (SPCs) population. As a widely used drug for tumor therapy or bone marrow transplantation, busulfan has a severe side effect on SPCs population and causes a consequent infertility. Recently, accumulating evidence revealed the protective role of autophagy in stem cell maintenance under exogenous stress. To better understand the role of autophagy in SPCs fates, we investigated the potential function of autophagy in SPCs under busulfan stress, and found that treatment of busulfan induced the formation of autophagic vesicles and autophagosomes in mouse SPCs. Subsequently, a connection of autophagy and SPCs maintenance and survival was demonstrated in a dose-dependent manner. Moreover, mTOR was identified as an essential factor for autophagy in SPCs with a complicated mechanism: (1) mTOR is phosphorylated by AKT to activate its target genes, p70s6 kinase, resulting in the inhibition of autophagy during short-term busulfan treatment. (2) mTOR mediates autophagy with p53 together, to regulate the fate of SPCs. Collectively, observations from this study indicate that moderate autophagy effectively protects SPCs from the stress of chemotherapy, which may provide an important hint for fertility protection in clinic.
Collapse
|
6
|
Saha S, Roy P, Corbitt C, Kakar SS. Application of Stem Cell Therapy for Infertility. Cells 2021; 10:1613. [PMID: 34203240 PMCID: PMC8303590 DOI: 10.3390/cells10071613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infertility creates an immense impact on the psychosocial wellbeing of affected couples, leading to poor quality of life. Infertility is now considered to be a global health issue affecting approximately 15% of couples worldwide. It may arise from factors related to the male (30%), including varicocele, undescended testes, testicular cancer, and azoospermia; the female (30%), including premature ovarian failure and uterine disorders; or both partners (30%). With the recent advancement in assisted reproduction technology (ART), many affected couples (80%) could find a solution. However, a substantial number of couples cannot conceive even after ART. Stem cells are now increasingly being investigated as promising alternative therapeutics in translational research of regenerative medicine. Tremendous headway has been made to understand the biology and function of stem cells. Considering the minimum ethical concern and easily available abundant resources, extensive research is being conducted on induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSC) for their potential application in reproductive medicine, especially in cases of infertility resulting from azoospermia and premature ovarian insufficiency. However, most of these investigations have been carried out in animal models. Evolutionary divergence observed in pluripotency among animals and humans requires caution when extrapolating the data obtained from murine models to safely apply them to clinical applications in humans. Hence, more clinical trials based on larger populations need to be carried out to investigate the relevance of stem cell therapy, including its safety and efficacy, in translational infertility medicine.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India;
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, Louisville, KY 40292, USA;
| | - Sham S. Kakar
- Department of Physiology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
7
|
Prokai D, Pudasaini A, Kanchwala M, Moehlman AT, Waits AE, Chapman KM, Chaudhary J, Acevedo J, Keller P, Chao X, Carr BR, Hamra FK. Spermatogonial Gene Networks Selectively Couple to Glutathione and Pentose Phosphate Metabolism but Not Cysteine Biosynthesis. iScience 2021; 24:101880. [PMID: 33458605 PMCID: PMC7797946 DOI: 10.1016/j.isci.2020.101880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023] Open
Abstract
In adult males, spermatogonia maintain lifelong spermatozoa production for oocyte fertilization. To understand spermatogonial metabolism we compared gene profiles in rat spermatogonia to publicly available mouse, monkey, and human spermatogonial gene profiles. Interestingly, rat spermatogonia expressed metabolic control factors Foxa1, Foxa2, and Foxa3. Germline Foxa2 was enriched in Gfra1Hi and Gfra1Low undifferentiated A-single spermatogonia. Foxa2-bound loci in spermatogonial chromatin were overrepresented by conserved stemness genes (Dusp6, Gfra1, Etv5, Rest, Nanos2, Foxp1) that intersect bioinformatically with conserved glutathione/pentose phosphate metabolism genes (Tkt, Gss, Gc l c , Gc l m, Gpx1, Gpx4, Fth), marking elevated spermatogonial GSH:GSSG. Cystine-uptake and intracellular conversion to cysteine typically couple glutathione biosynthesis to pentose phosphate metabolism. Rat spermatogonia, curiously, displayed poor germline stem cell viability in cystine-containing media, and, like primate spermatogonia, exhibited reduced transsulfuration pathway markers. Exogenous cysteine, cysteine-like mercaptans, somatic testis cells, and ferroptosis inhibitors counteracted the cysteine-starvation-induced spermatogonial death and stimulated spermatogonial growth factor activity in vitro.
Collapse
Affiliation(s)
- David Prokai
- Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashutosh Pudasaini
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- GenomeDesigns Laboratory, LLC, 314 Stonebridge Drive, Richardson, TX 75080, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew T. Moehlman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandrea E. Waits
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karen M. Chapman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaideep Chaudhary
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesus Acevedo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Patrick Keller
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xing Chao
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce R. Carr
- Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - F. Kent Hamra
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Xie X, Nóbrega R, Pšenička M. Spermatogonial Stem Cells in Fish: Characterization, Isolation, Enrichment, and Recent Advances of In Vitro Culture Systems. Biomolecules 2020; 10:E644. [PMID: 32331205 PMCID: PMC7226347 DOI: 10.3390/biom10040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Spermatogenesis is a continuous and dynamic developmental process, in which a single diploid spermatogonial stem cell (SSC) proliferates and differentiates to form a mature spermatozoon. Herein, we summarize the accumulated knowledge of SSCs and their distribution in the testes of teleosts. We also reviewed the primary endocrine and paracrine influence on spermatogonium self-renewal vs. differentiation in fish. To provide insight into techniques and research related to SSCs, we review available protocols and advances in enriching undifferentiated spermatogonia based on their unique physiochemical and biochemical properties, such as size, density, and differential expression of specific surface markers. We summarize in vitro germ cell culture conditions developed to maintain proliferation and survival of spermatogonia in selected fish species. In traditional culture systems, sera and feeder cells were considered to be essential for SSC self-renewal, in contrast to recently developed systems with well-defined media and growth factors to induce either SSC self-renewal or differentiation in long-term cultures. The establishment of a germ cell culture contributes to efficient SSC propagation in rare, endangered, or commercially cultured fish species for use in biotechnological manipulation, such as cryopreservation and transplantation. Finally, we discuss organ culture and three-dimensional models for in vitro investigation of fish spermatogenesis.
Collapse
Affiliation(s)
- Xuan Xie
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| | - Rafael Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618-970, Brazil;
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic;
| |
Collapse
|
9
|
Lu C, Yang M, Rossi RM, Wang A, Feitosa WB, Diaz FJ, Liu WS. Deletion of the mouse X-linked Prame gene causes germ cell reduction in spermatogenesis. Mol Reprod Dev 2020; 87:666-679. [PMID: 32017313 DOI: 10.1002/mrd.23324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is cancer/testis antigen and a transcriptional repressor, inhibiting the signaling of retinoic acid through the retinoic acid receptor (RAR) for promoting cell proliferation and preventing cell apoptosis in cancer cells. The role of PRAME in testis and germline is unknown. We report here the generation and characterization of an X-linked Prame conditional knockout (cKO) mouse. Although fertile, the testis size (p < .01) and sperm count (p < .05) of the Prame cKO mice were significantly reduced by 12% at 4 months of age compared with the Prame floxed mice. Histological, immunofluorescence with germ cell-specific markers and terminal deoxynucleotidyl transferase dUTP nick end labeling analyses of testis cross-sections at postnatal day 7 (P7), P14, P21, P35, P120, and P365 indicated a significant increase in apoptotic germ cells at P7 and P14 and an increase in abnormal seminiferous tubules at P21 and P35. Germ cells were gradually lost resulting in two different phenotypes in the Prame cKO testes: Sertoli-cell-only for some of the affected tubules in young mice (at P35) and germ cell arrest at spermatogonia stage for other affected tubules in mature mice. Both phenotypes were a consequence of disruption in RAR signaling pathway by the depletion of Prame at a different time point during the first and subsequent rounds of spermatogenesis. The results suggest that Prame plays a minor, but important role in spermatogenesis and different paralogs in the Prame gene family may be functionally and partially redundant.
Collapse
Affiliation(s)
- Chen Lu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Mingyao Yang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Randall M Rossi
- Transgenic Mouse Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Aihua Wang
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Weber B Feitosa
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Francisco J Diaz
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Wan-Sheng Liu
- Department of Animal Science, Center for Reproductive Biology and Health (CRBH), College of Agricultural Sciences, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
10
|
YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via m 6A/mRNA pathway. Cell Death Dis 2020; 11:37. [PMID: 31959747 PMCID: PMC6971064 DOI: 10.1038/s41419-020-2235-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
As the foundation of male fertility, spermatogenesis is a complicated and highly controlled process. YTHDF2 plays regulatory roles in biological processes through accelerating the degradation of target mRNAs. However, the function of YTHDF2 in spermatogenesis remains elusive. Here, we knocked out Ythdf2 in mouse spermatogonia via CRISPR/Cas9, and found that depletion of Ythdf2 mainly downregulated the expression of matrix metallopeptidase (MMPs), thus affecting cell adhesion and proliferation. m6A-IP-PCR and RIP-PCR analysis showed that Mmp3, Mmp13, Adamts1 and Adamts9 were modified with m6A and simultaneously interacted with YTHDF2. Moreover, inhibition of Mmp13 partially rescued the phenotypes in Ythdf2-KO cells. Taken together, YTHDF2 regulates cell-matrix adhesion and proliferation through modulating the expression of Mmps by the m6A/mRNA degradation pathway.
Collapse
|
11
|
Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2019; 99:52-74. [PMID: 29617903 DOI: 10.1093/biolre/ioy077] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are the most primitive spermatogonia in the testis and have an essential role to maintain highly productive spermatogenesis by self-renewal and continuous generation of daughter spermatogonia that differentiate into spermatozoa, transmitting genetic information to the next generation. Since the 1950s, many experimental methods, including histology, immunostaining, whole-mount analyses, and pulse-chase labeling, had been used in attempts to identify SSCs, but without success. In 1994, a spermatogonial transplantation method was reported that established a quantitative functional assay to identify SSCs by evaluating their ability to both self-renew and differentiate to spermatozoa. The system was originally developed using mice and subsequently extended to nonrodents, including domestic animals and humans. Availability of the functional assay for SSCs has made it possible to develop culture systems for their ex vivo expansion, which dramatically advanced germ cell biology and allowed medical and agricultural applications. In coming years, SSCs will be increasingly used to understand their regulation, as well as in germline modification, including gene correction, enhancement of male fertility, and conversion of somatic cells to biologically competent male germline cells.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Laboratory of Cell and Molecular Biology, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Ralph L Brinster
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Xie X, Li P, Pšenička M, Ye H, Steinbach C, Li C, Wei Q. Optimization of In Vitro Culture Conditions of Sturgeon Germ Cells for Purpose of Surrogate Production. Animals (Basel) 2019; 9:ani9030106. [PMID: 30901855 PMCID: PMC6466142 DOI: 10.3390/ani9030106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 01/11/2023] Open
Abstract
Simple Summary The sturgeon is among the most ancient of actinopterygian fishes. Most species of sturgeon are listed as critically endangered due to habitat alteration caused by damming of rivers, pollution and overharvesting. Germ cell transplant is a useful tool to save these endangered species. To expand germ cell populations and sustain the supply for long periods for transplant, we established basal culture conditions for sturgeon germ cells. Germ cell mitotic activity has been enhanced by eliminating gonad somatic cells, supplementing with growth factor and using an alternative to fetal bovine serum. The optimal condition identified was purified germ cells cultured in serum-free medium supplemented with leukemia inhibitory factor (LIF) and glial cell line-derived neurotrophic factor (GDNF) at 21 °C. Cultured sterlet germ cells showed development after transplant into Russian sturgeon. The study provided useful information for sturgeon germ cell culture. Abstract To expand germ cell populations and provide a consistent supply for transplantation, we established basal culture conditions for sturgeon germ cells and subsequently increased their mitotic activity by eliminating gonad somatic cells, supplementing with growth factor, and replacing fetal bovine serum (FBS). The initial basal culture conditions were Leibovitz’s L-15 medium (pH 8.0) supplemented with 5% FBS (p < 0.001) at 21 °C. Proliferation of germ cells was significantly enhanced and maintained for longer periods by elimination of gonad somatic cells and culture under feeder-cell free conditions, with addition of leukemia inhibitory factor and glial-cell-derived neurotrophic factor (p < 0.001). A serum-free culture medium improved germ cell proliferation compared to the L-15 with FBS (p < 0.05). Morphology remained similar to that of fresh germ cells for at least 40 d culture. Germline-specific gene expression analysis revealed no significant changes to germ cells before and after culture. Sterlet Acipenser ruthenus germ cells cultured more than 40 days showed development after transplant into Russian sturgeon Acipenser gueldenstaedtii. Polymerase chain reaction showed 33.3% of recipient gonads to contain sterlet cells after four months. This study developed optimal culture condition for sturgeon germ cells. Germ cells after 40 d culture developed in recipient gonads. This study provided useful information for culture of sturgeon germ cells.
Collapse
Affiliation(s)
- Xuan Xie
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Ping Li
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
- Marine College, Shandong Universit, Weihai 264209, China.
| | - Martin Pšenička
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Christoph Steinbach
- Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 38925 Vodňany, Czech Republic.
| | - Chuangju Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
- Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
13
|
Ernst C, Eling N, Martinez-Jimenez CP, Marioni JC, Odom DT. Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nat Commun 2019; 10:1251. [PMID: 30890697 PMCID: PMC6424977 DOI: 10.1038/s41467-019-09182-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Male gametes are generated through a specialised differentiation pathway involving a series of developmental transitions that are poorly characterised at the molecular level. Here, we use droplet-based single-cell RNA-Sequencing to profile spermatogenesis in adult animals and at multiple stages during juvenile development. By exploiting the first wave of spermatogenesis, we both precisely stage germ cell development and enrich for rare somatic cell-types and spermatogonia. To capture the full complexity of spermatogenesis including cells that have low transcriptional activity, we apply a statistical tool that identifies previously uncharacterised populations of leptotene and zygotene spermatocytes. Focusing on post-meiotic events, we characterise the temporal dynamics of X chromosome re-activation and profile the associated chromatin state using CUT&RUN. This identifies a set of genes strongly repressed by H3K9me3 in spermatocytes, which then undergo extensive chromatin remodelling post-meiosis, thus acquiring an active chromatin state and spermatid-specific expression.
Collapse
Affiliation(s)
- Christina Ernst
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Nils Eling
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Celia P Martinez-Jimenez
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John C Marioni
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Welcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK.
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Huang T, Gao Q, Feng T, Zheng Y, Guo J, Zeng W. FTO Knockout Causes Chromosome Instability and G2/M Arrest in Mouse GC-1 Cells. Front Genet 2019; 9:732. [PMID: 30719031 PMCID: PMC6348250 DOI: 10.3389/fgene.2018.00732] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/22/2018] [Indexed: 12/23/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most abundant modification on eukaryotic mRNA. m6A plays important roles in the regulation of post-transcriptional RNA splicing, translation, and degradation. Increasing studies have uncovered the significance of m6A in various biological processes such as stem cell fate determination, carcinogenesis, adipogenesis, stress response, etc, which put forwards a novel conception called epitranscriptome. However, functions of the fat mass and obesity-associated protein (FTO), the first characterized m6A demethylase, in spermatogenesis remains obscure. Here we reported that depletion of FTO by CRISPR/Cas9 induces chromosome instability and G2/M arrest in mouse spermatogonia, which was partially rescued by expression of wild type FTO but not demethylase inactivated FTO. FTO depletion significantly decreased the expression of mitotic checkpoint complex and G2/M regulators. We further demonstrated that the m6A modification on Mad1, Mad2, Bub1b, Cdk1, and Ccnb2 were directly targeted by FTO. Therefore, FTO regulates cell cycle and mitosis checkpoint in spermatogonia because of its m6A demethylase activity. The findings give novel insights into the role of RNA methylation in spermatogenesis.
Collapse
Affiliation(s)
- Tao Huang
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Qiang Gao
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tongying Feng
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yi Zheng
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiayin Guo
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wenxian Zeng
- Laboratory of Reproductive Biology and Cell Engineering, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
15
|
Akemann C, Meyer DN, Gurdziel K, Baker TR. Developmental Dioxin Exposure Alters the Methylome of Adult Male Zebrafish Gonads. Front Genet 2019; 9:719. [PMID: 30687390 PMCID: PMC6336703 DOI: 10.3389/fgene.2018.00719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/21/2018] [Indexed: 01/20/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental toxicant and endocrine disrupting compound with reproductive and developmental effects in humans and model organisms, including zebrafish. Our previous microarray and histological studies found defects in spermatogenesis and fertility of zebrafish in response to acute developmental TCDD exposure. These effects are apparent following exposure during reproductive development, modeling fetal basis of adult-onset disease. Some outcomes of these previous studies (reduced fertility, changes in sex ratio, transcriptomic alterations) are also transgenerational – persisting to unexposed generations – through the male germline. We hypothesized that DNA methylation could be a possible mechanism for these reproductive effects and performed whole genome bisulfite sequencing (WGBS), which identifies whole genome DNA methylation status at the base pair level, on testes of adult zebrafish exposed to TCDD (two separate hour-long exposures to 50 pg/mL TCDD at 3 and 7 weeks post fertilization). In response to TCDD exposure, multiple genes were differentially methylated; many of which are involved in reproductive processes or epigenetic modifications, suggesting a role of DNA methylation in later-life health outcomes. Additionally, several differentially methylated genes corresponded with gene expression changes identified in TCDD-exposed zebrafish testes, indicating a potential link between DNA methylation and gene expression. Ingenuity pathway analysis of WGBS and microarray data revealed genes involved in reproductive processes and development, RNA regulation, the cell cycle, and cellular morphology and development. We conclude that site-specific changes in DNA methylation of adult zebrafish testes occur in response to acute developmental TCDD exposure.
Collapse
Affiliation(s)
- Camille Akemann
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Danielle N Meyer
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Tracie R Baker
- Department of Pharmacology, Wayne State University, Detroit, MI, United States.,Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
16
|
Dai K, Huang Y, Chen Z, Sun X, Yang L, Jiang Y. Kbtbd2 inhibits the cytotoxic activity of immortalized NK cells through down-regulating mTOR signaling in a mouse hepatocellular carcinoma model. Eur J Immunol 2018; 48:683-695. [PMID: 29331106 DOI: 10.1002/eji.201747281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
Natural killer cell (NK cell)-based immunotherapy is a promising therapeutic strategy for hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the regulation of NK cell function in the tumor sites are not completely elucidated. In this study, we identified the enhanced expression of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) in intratumoral NK cells in a mouse HCC implantation model as a negative regulator of NK cells. To investigate this interaction, we used a Tet-on inducible expression system to control Kbtbd2 expression in an immortalized mouse NK cell line KIL C.2. With this approach, we found that overexpression of Kbtbd2 reduced KIL C.2 cell proliferation, decreased expression certain of Ly49 receptor family members, and substantially impaired cytotoxic activity of KIL C.2 cells in vitro. Moreover, phosphorylation of mTOR and its target 4E-binding protein 1 was reduced in Kbtbd2-expressing KIL C.2 cells, along with down-regulated phosphorylation of Erk1/2. Adoptively transferred Kbtbd2-expressing KIL C.2 cells exhibited weaker tumoricidal effect on hepatocellular carcinoma cells in the HCC implantation model, in comparison with transferred control KIL C.2 cells. Taken together, our investigation indicates that Kbtbd2 is an inhibitory molecule for the tumoricidal activity of KIL C.2 cells and perhaps intratumoral NK cells.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zubing Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Sun
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Gassei K, Sheng Y, Fayomi A, Mital P, Sukhwani M, Lin CC, Peters KA, Althouse A, Valli H, Orwig KE. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis. Biol Reprod 2017; 96:707-719. [PMID: 28339678 PMCID: PMC5803776 DOI: 10.1095/biolreprod.116.142828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development.
Collapse
Affiliation(s)
- Kathrin Gassei
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | | | - Payal Mital
- Sawai Man Singh Medical College and Hospital, Jaipur, India
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chih-Cheng Lin
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Karen A Peters
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Althouse
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences and Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
18
|
DMRTC2, PAX7, BRACHYURY/T and TERT Are Implicated in Male Germ Cell Development Following Curative Hormone Treatment for Cryptorchidism-Induced Infertility. Genes (Basel) 2017; 8:genes8100267. [PMID: 29019938 PMCID: PMC5664117 DOI: 10.3390/genes8100267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/25/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022] Open
Abstract
Defective mini-puberty results in insufficient testosterone secretion that impairs the differentiation of gonocytes into dark-type (Ad) spermatogonia. The differentiation of gonocytes into Ad spermatogonia can be induced by administration of the gonadotropin-releasing hormone agonist, GnRHa (Buserelin, INN)). Nothing is known about the mechanism that underlies successful GnRHa treatment in the germ cells. Using RNA-sequencing of testicular biopsies, we recently examined RNA profiles of testes with and without GnRHa treatment. Here, we focused on the expression patterns of known gene markers for gonocytes and spermatogonia, and found that DMRTC2, PAX7, BRACHYURY/T, and TERT were associated with defective mini-puberty and were responsive to GnRHa. These results indicate novel testosterone-dependent genes and provide valuable insight into the transcriptional response to both defective mini-puberty and curative GnRHa treatment, which prevents infertility in man with one or both undescended (cryptorchid) testes.
Collapse
|
19
|
Enrichment and In Vitro Culture of Spermatogonial Stem Cells from Pre-Pubertal Monkey Testes. Tissue Eng Regen Med 2017; 14:557-566. [PMID: 30603509 DOI: 10.1007/s13770-017-0058-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are essential for spermatogenesis throughout the lifespan of the male. However, the rarity of SSCs has raised the need for an efficient selection method, but little is known about culture conditions that stimulate monkey SSC proliferation in vitro. In this study, we report the development of effective enrichment techniques and in vitro culturing of germ cells from pre-pubertal monkey testes. Testis cells were analyzed by fluorescence-activated cell sorting techniques and were transplanted into the testes of nude mice to characterize SSCs. Thy-1-positive cells showed a higher number of colonies than the unselected control after xenotransplantation. Extensive colonization of monkey cells in the mouse testes indicated the presence of highly enriched populations of SSCs in the Thy-1-positive sorted cells. Furthermore, monkey testis cells were enriched by differential plating using extracellular matrix, laminin, and gelatin, and then cultured under various conditions. Isolation of monkey testicular germ cells by differential plating increased germ cell purity by 2.7-fold, following the combinational isolation method using gelatin and laminin. These enriched germ cells actively proliferated under culture conditions involving StemPro medium supplemented with bFGF, GDNF, LIF, and EGF at 37 °C. These results suggest that the enrichment and in vitro culture method proposed in the present study for harvesting a large number of functionally active monkey SSCs can be applied as the basis for efficient in vitro expansion of human SSCs.
Collapse
|
20
|
Hamra FK, Richie CT, Harvey BK. Long Evans rat spermatogonial lines are effective germline vectors for transgenic rat production. Transgenic Res 2017; 26:477-489. [PMID: 28608322 DOI: 10.1007/s11248-017-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
Long Evans rat strains are applied as research models in a broad spectrum of biomedical fields (>15,800 citations, NCBI PubMed). Here, we report an approach to genetically modify the Long Evans rat germline in donor spermatogonial stem cells. Long Evans rat spermatogonial lines were derived from freshly isolated laminin-binding spermatogonia. Laminin-binding spermatogonia were cultured over multiple passages on fibroblast feeder layers in serum-free culture medium containing GDNF and FGF2. Long Evans rat spermatogonial lines were genetically modified by transposon transduction to express a germline, tdTomato reporter gene. Donor rat spermatogonial lines robustly regenerated spermatogenesis after transplantation into testes of busulfan-treated, allogenic, Long Evans rats. Donor-derived spermatogenesis largely restored testis size in the chemically sterilized, recipient Long Evans rats. Recipient Long Evans rats stably transmitted the tdTomato germline marker to subsequent generations. Overall, Long Evans rat spermatogonial lines provided effective donor germline vectors for genetically modifying Long Evans rats.
Collapse
Affiliation(s)
- F Kent Hamra
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. .,Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Christopher T Richie
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| |
Collapse
|
21
|
Jin B, Cai B, Sun D, Zhang X, Cui Y, Deng W, Gao C. Yangjing Capsule extract promotes proliferation of GC-1 spg cells via up-regulated POU3F1 pathway. Biosci Trends 2017; 11:95-104. [PMID: 28154340 DOI: 10.5582/bst.2016.01211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As is similar to glial cell line-derived neurotrophic factor (GDNF), the Yangjing Capsule (YC) extract could also lead to proliferation of spermatogonial stem cells (SSCs) by stimulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway; however, the regulatory effect of YC extract on the expression of POU3F1 still remains unknown. The objective of this study is to determine whether the transcription factor POU3F1 is up-regulated by YC extract through the PI3K/AKT signaling pathway to regulate SSCs survival and proliferation. Cultured GC-1 spermatogonial (spg) cells were treated with 0.01, 0.1, and 1 mg/mL YC extract for 48 h. Cell viability was analyzed using MTT assay, while POU3F1 expression was quantitatively detected using real time-polymerase chain reaction and Western blot analysis. POU3F1, GDNF family receptor alpha1 (GFRα1) short interfering ribonucleic acid (siRNA), and LY294002 (PI3K inhibitor) were applied as blockers to explore the underlying pathway. After 48 h treatment with YC extract, GC-1 spg cells proliferated and POU3F1 expression was significantly increased in a dose-dependent manner. POU3F1 siRNA partially blocked those effects of YC extract. Both GFRα1 siRNA and LY294002, as upstream blockers, reduced POU3F1 expression induced by YC extract. The conclusion is that YC extract promotes proliferation of GC-1 spg cells via up-regulation of POU3F1. The potential mechanism is that YC extract triggers the activation of the PI3K/AKT pathway and then up-regulates POU3F1 expression.
Collapse
Affiliation(s)
- Baofang Jin
- Andrology Department of Integrative Medicine, Zhongda Hospital, School of Medicine, Southeast University
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Knowledge gaps persist on signaling pathways and metabolic states in germ cells sufficient to support spermatogenesis independent of a somatic environment. Consequently, methods to culture mammalian stem cells through spermatogenesis in defined systems have not been established. Lack of success at culturing mammalian stem cells through spermatogenesis in defined systems reflects an inability to experimentally recapitulate biochemical events that develop in germ cells during a seminiferous epithelial cycle. Complex germ and somatic cell associations that develop each seminiferous epithelial cycle support such a hypothesis, conceivably explaining why highly pure mammalian spermatogonia have not developed into meiosis, much less through meiosis without somatic cells. Here, we outline an in vitro spermatogenesis colony-forming assay to study how differentiating spermatogonial syncytia develop from rat spermatogonial stem cell lines. Robust spermatogonial differentiation under defined culture conditions will facilitate molecular biology studies on pre-meiotic steps in gamete development, and provide a soma-free bioassay to identify spermatogenic factors that promote meiotic progression in vitro.
Collapse
Affiliation(s)
- F Kent Hamra
- Department of Pharmacology, Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
23
|
|
24
|
Chapman KM, Medrano GA, Chaudhary J, Hamra FK. NRG1 and KITL Signal Downstream of Retinoic Acid in the Germline to Support Soma-Free Syncytial Growth of Differentiating Spermatogonia. Cell Death Discov 2015; 1. [PMID: 26500786 PMCID: PMC4613782 DOI: 10.1038/cddiscovery.2015.18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Defined culture systems supporting spermatogonial differentiation will provide experimental platforms to study spermatogenesis. However, germline-intrinsic signaling mechanisms sufficient to support spermatogonial differentiation without somatic cells remain largely undefined. Here, we analyzed EGF superfamily receptor and ligand diversity in rat testis cells, and delineated germline-intrinsic signaling via an ERBB3 co-transducer, ERBB2, as essential for retinoic acid-induced syncytial growth by differentiating spermatogonia. Like the ERBB2/3 agonist NRG1, we found KIT Ligand (KITL) robustly supported spermatogonial differentiation without serum or somatic cells. ERBB2 inhibitors failed to disrupt KITL-dependent spermatogonial development, and, KITL prevented ERBB3-deficient spermatogonial degeneration upon differentiation. Thus, we report NRG1 and KITL activate alternative pathways downstream of retinoic acid signaling in the germline that are essential for stem cells to undergo pre-meiotic steps of spermatogenesis in culture. Robust serum/soma-free spermatogonial differentiation opens new doors to study mammalian germ cell biology in culture, which will facilitate the discovery of spermatogenic factors that can drive meiotic progression in vitro.
Collapse
Affiliation(s)
- Karen M Chapman
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Gerardo A Medrano
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - Jaideep Chaudhary
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| | - F Kent Hamra
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA ; Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Tiptanavattana N, Techakumphu M, Tharasanit T. Simplified isolation and enrichment of spermatogonial stem-like cells from pubertal domestic cats (Felis catus). J Vet Med Sci 2015; 77:1347-53. [PMID: 26074411 PMCID: PMC4667649 DOI: 10.1292/jvms.15-0207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The efficiency of spermatogonial stem cell (SSC) isolation and culture from pubertal
donors is currently poor primarily, because of contamination with other testicular cells.
This study aimed to purify SSC-like cells using different extracellular matrixes and a
discontinuous gradient density. In experiment 1, testes (n=6) were analyzed for histology
and SSC-related protein expressions (laminin, SSEA-4, DDX-4 and GFRα-1). After enzymatic
digestion, the cell suspension was plated onto either a laminin- or gelatin-coated dish.
The number of SSC-like cells was determined at 15, 30 and 60 min of culture (experiment
2). Experiment 3 was performed to test whether or not the additional step of Percoll
gradient density centrifugation could really improve purification of SSC-like cells.
Testicular histology revealed complete spermatogenesis with laminin expression essentially
at the basal lamina of the seminiferous tubules. SSEA-4 and GFRα-1 co-localized with DDX-4
in the spermatogonia. The relative percentage of SSC-like cells, as determined by cells
expressing SSEA-4 (59.42 ± 2.18%) and GFRα-1 (42.70 ± 1.28%), revealed that the highest
SSC-like cell purity was obtained with the 15-min laminin-coated dish compared with other
incubation times and gelatin treatment (P<0.05). Percoll treatment
prior to laminin selection (15 min) significantly improved SSC-like cell recovery (91.33 ±
0.14%, P<0.001) and purity (83.82 ± 2.05% for SSEA-4 and 64.39 ± 1.51%
for GFRα-1, P<0.05). These attached cells demonstrated a typical
SSC-like cell morphology and also expressed POU5F1, RET
and ZBTB16 mRNA. In conclusion, double enrichment with Percoll gradient
density centrifugation and laminin plating highly enriched the SSC-like cells
population.
Collapse
Affiliation(s)
- Narong Tiptanavattana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
26
|
Developments in techniques for the isolation, enrichment, main culture conditions and identification of spermatogonial stem cells. Cytotechnology 2015; 67:921-30. [PMID: 25749914 DOI: 10.1007/s10616-015-9850-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023] Open
Abstract
The in vitro culture system of spermatogonial stem cells (SSCs) provides a basis for studies on spermatogenesis, and also contributes to the development of new methods for the preservation of livestock and animal genetic modification. In vitro culture systems have mainly been established for mouse SSCs, but are lacking for farm animals. We reviewed and analyzed the current progress in SSC techniques such as isolation, purification, cultivation and identification. Based on the published studies, we concluded that two-step enzyme digestion and magnetic-activated cell sorting are fast becoming the main methods for isolation and enrichment of SSCs. With regard to the culture systems, serum and feeders were earlier thought to play an important role in the self-renewal and proliferation of SSCs, but serum- and feeder-free culture systems as a means of overcoming the limitations of SSC differentiation in long-term SSC culture are being explored. However, there is still a need to establish more efficient and ideal culture systems that can also be used for SSC culture in larger mammals. Although the lack of SSC-specific surface markers has seriously affected the efficiency of purification and identification, the transgenic study is helpful for our identification of SSCs. Therefore, future studies on SSC techniques should focus on improving serum- and feeder-free culture techniques, and discovering and identifying specific surface markers of SSCs, which will provide new ideas for the optimization of SSC culture systems for mice and promote related studies in farm animals.
Collapse
|
27
|
Song ZH, Yu HY, Wang P, Mao GK, Liu WX, Li MN, Wang HN, Shang YL, Liu C, Xu ZL, Sun QY, Li W. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis 2015; 6:e1589. [PMID: 25590799 PMCID: PMC4669757 DOI: 10.1038/cddis.2014.559] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/03/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Primary ovarian insufficiency (POI) is a common cause of infertility in around 1–2% of women aged <40 years. However, the mechanisms that cause POI are still poorly understood. Here we showed that germ cell-specific knockout of an essential autophagy induction gene Atg7 led to subfertility in female mice. The subfertility of Atg7 deletion females was caused by severe ovarian follicle loss, which is very similar to human POI patients. Further investigation revealed that germ cell-specific Atg7 knockout resulted in germ cell over-loss at the neonatal transition period. In addition, our in vitro studies also demonstrated that autophagy could protect oocytes from over-loss by apoptosis in neonatal ovaries under the starvation condition. Taken together, our results uncover a new role for autophagy in the regulation of ovarian primordial follicle reservation and hint that autophagy-related genes might be potential pathogenic genes to POI of women.
Collapse
Affiliation(s)
- Z-H Song
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - H-Y Yu
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - P Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - G-K Mao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - W-X Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - M-N Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - H-N Wang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - Y-L Shang
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - C Liu
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - Z-L Xu
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China [2] University of Chinese Academy of Sciences, Beijing, PR China
| | - Q-Y Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | - W Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
28
|
Bahadorani M, Hosseini SM, Abedi P, Abbasi H, Nasr-Esfahani MH. Glial cell line-derived neurotrophic factor in combination with insulin-like growth factor 1 and basic fibroblast growth factor promote in vitro culture of goat spermatogonial stem cells. Growth Factors 2015; 33:181-91. [PMID: 26154310 DOI: 10.3109/08977194.2015.1062758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Growth factors are increasingly considered as important regulators of spermatogonial stem cells (SSCs). This study investigated the effects of various growth factors (GDNF, IGF1, bFGF, EGF and GFRalpha-1) on purification and colonization of undifferentiated goat SSCs under in vitro and in vivo conditions. Irrespective of the culture condition used, the first signs of developing colonies were observed from day 4 of culture onwards. The number of colonies developed in GDNF + IGF1 + bFGF culture condition was significantly higher than the other groups (p < 0.05). In contrast, the size of colonies developed in GDNF + EGF + LIF culture condition was significantly higher than the other groups (p < 0.05). Immunocytochemical stationing for specific biomarkers of somatic cells (vimentin, alpha-inhibin and α-SMA) and spermatogonial cells (PLZF, THY 1, VASA, alpha-1 integrin, bet-1 integrin and DBA) revealed that both cell types existed in developing colonies, irrespective of the culture condition used. Even though, the relative abundance of VASA, FGFR3, OCT4, PLZF, BCL6B and THY1 transcription factors in GDNF + IGF1 + bFGF treatment group was significantly higher than the other groups (p < 0.05). Additionally, goat SSCs developed in the latter culture condition could colonize within the seminiferous tubules of the germ-cell depleted recipient mice following xenotransplantation. Obtained results demonstrated that combination of GDNF with IGF1 and bFGF promote in vitro culture of goat SSCs while precludes uncontrolled proliferation of somatic cells.
Collapse
Affiliation(s)
- M Bahadorani
- a Department of Biology , Falavarjan Branch, Islamic Azad University , Isfahan , Iran and
| | - S M Hosseini
- b Department of Reproductive Biotechnology at Reproductive Biomedicine Research Center , Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - P Abedi
- b Department of Reproductive Biotechnology at Reproductive Biomedicine Research Center , Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - H Abbasi
- b Department of Reproductive Biotechnology at Reproductive Biomedicine Research Center , Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| | - M H Nasr-Esfahani
- b Department of Reproductive Biotechnology at Reproductive Biomedicine Research Center , Royan Institute for Biotechnology , ACECR , Isfahan , Iran
| |
Collapse
|
29
|
Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, Chu T, Marshall GR, Orwig KE. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102:566-580.e7. [PMID: 24890267 DOI: 10.1016/j.fertnstert.2014.04.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.
Collapse
Affiliation(s)
- Hanna Valli
- Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Meena Sukhwani
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Serena L Dovey
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Karen A Peters
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Julia Donohue
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Carlos A Castro
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Gary R Marshall
- Department of Natural Sciences, Chatham University, Pittsburgh, Pennsylvania
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Magee-Womens Research Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
30
|
Stem cells as new agents for the treatment of infertility: current and future perspectives and challenges. BIOMED RESEARCH INTERNATIONAL 2014; 2014:507234. [PMID: 24826378 PMCID: PMC4009115 DOI: 10.1155/2014/507234] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
Stem cells are undifferentiated cells that are present in the embryonic, fetal, and adult stages of life and give rise to differentiated cells that make up the building blocks of tissue and organs. Due to their unlimited source and high differentiation potential, stem cells are considered as potentially new therapeutic agents for the treatment of infertility. Stem cells could be stimulated in vitro to develop various numbers of specialized cells including male and female gametes suggesting their potential use in reproductive medicine. During past few years a considerable progress in the derivation of male germ cells from pluripotent stem cells has been made. In addition, stem cell-based strategies for ovarian regeneration and oocyte production have been proposed as future clinical therapies for treating infertility in women. In this review, we summarized current knowledge and present future perspectives and challenges regarding the use of stem cells in reproductive medicine.
Collapse
|
31
|
Three-step method for proliferation and differentiation of human embryonic stem cell (hESC)-derived male germ cells. PLoS One 2014; 9:e90454. [PMID: 24690677 PMCID: PMC3972183 DOI: 10.1371/journal.pone.0090454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/03/2014] [Indexed: 12/26/2022] Open
Abstract
The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells.
Collapse
|
32
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
33
|
Abid SN, Richardson TE, Powell HM, Jaichander P, Chaudhary J, Chapman KM, Hamra FK. A-single spermatogonia heterogeneity and cell cycles synchronize with rat seminiferous epithelium stages VIII-IX. Biol Reprod 2014; 90:32. [PMID: 24389876 DOI: 10.1095/biolreprod.113.113555] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In mammalian testes, "A-single" spermatogonia function as stem cells that sustain sperm production for fertilizing eggs. Yet, it is not understood how cellular niches regulate the developmental fate of A-single spermatogonia. Here, immunolabeling studies in rat testes define a novel population of ERBB3(+) germ cells as approximately 5% of total SNAP91(+) A-single spermatogonia along a spermatogenic wave. As a function of time, ERBB3(+) A-single spermatogonia are detected during a 1- to 2-day period each 12.9-day sperm cycle, representing 35%-40% of SNAP91(+) A-single spermatogonia in stages VIII-IX of the seminiferous epithelium. Local concentrations of ERBB3(+) A-single spermatogonia are maintained under the mean density measured for neighboring SNAP91(+) A-single spermatogonia, potentially indicative of niche saturation. ERBB3(+) spermatogonia also synchronize their cell cycles with epithelium stages VIII-IX, where they form physical associations with preleptotene spermatocytes transiting the blood-testis barrier and Sertoli cells undergoing sperm release. Thus, A-single spermatogonia heterogeneity within this short-lived and reoccurring microenvironment invokes novel theories on how cellular niches integrate with testicular physiology to orchestrate sperm development in mammals.
Collapse
Affiliation(s)
- Shadaan N Abid
- Department of Pharmacology, Cecil H. & Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | | | | |
Collapse
|
34
|
Zheng Y, Zhang Y, Qu R, He Y, Tian X, Zeng W. Spermatogonial stem cells from domestic animals: progress and prospects. Reproduction 2014; 147:R65-74. [PMID: 24357661 DOI: 10.1530/rep-13-0466] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis, an elaborate and male-specific process in adult testes by which a number of spermatozoa are produced constantly for male fertility, relies on spermatogonial stem cells (SSCs). As a sub-population of undifferentiated spermatogonia, SSCs are capable of both self-renewal (to maintain sufficient quantities) and differentiation into mature spermatozoa. SSCs are able to convert to pluripotent stem cells during in vitro culture, thus they could function as substitutes for human embryonic stem cells without ethical issues. In addition, this process does not require exogenous transcription factors necessary to produce induced-pluripotent stem cells from somatic cells. Moreover, combining genetic engineering with germ cell transplantation would greatly facilitate the generation of transgenic animals. Since germ cell transplantation into infertile recipient testes was first established in 1994, in vivo and in vitro study and manipulation of SSCs in rodent testes have been progressing at a staggering rate. By contrast, their counterparts in domestic animals, despite the failure to reach a comparable level, still burgeoned and showed striking advances. This review outlines the recent progressions of characterization, isolation, in vitro propagation, and transplantation of spermatogonia/SSCs from domestic animals, thereby shedding light on future exploration of these cells with high value, as well as contributing to the development of reproductive technology for large animals.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
35
|
Genomic and post-genomic leads toward regulation of spermatogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:409-22. [DOI: 10.1016/j.pbiomolbio.2013.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023]
|
36
|
Kim KJ, Cho CM, Kim BG, Lee YA, Kim BJ, Kim YH, Kim CG, Schmidt JA, Ryu BY. Lentiviral modification of enriched populations of bovine male gonocytes. J Anim Sci 2013; 92:106-18. [PMID: 24166994 DOI: 10.2527/jas.2013-6885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Undifferentiated germ cells have the capacity to develop into sperm capable of fertilizing oocytes and contributing genetic material to subsequent generations. The most primitive prepubertal undifferentiated germ cells include gonocytes and undifferentiated spermatogonia, including spermatogonial stem cells (SSC). Gonocytes, present in the testis at birth, differentiate into SSC, which maintain spermatogenesis for the remainder of the male's life. Because of their capacity to contribute to lifelong spermatogenesis, undifferentiated germ cells are attractive targets for genetic modification to produce transgenic animals, including cattle. To maximize the efficiency of genetic modification of bovine gonocytes and SSC, effective enrichment techniques need to be developed. Selection of bovine gonocytes using differential plating was improved 8-fold (P < 0.001) when using a combination of extracellular matrix proteins, including laminin, fibronectin, collagen type IV, and gelatin, compared to using laminin and gelatin alone. Selected cells labeled with PKH26 formed colonies of donor-derived germ cells after transplantation into recipient mouse testes, indicating putative stem cell function. Significantly more colonies (P < 0.001) per 1 × 10(5) viable transplanted cells were formed from isolated nonadherent cells (203 ± 23.2) compared to adherent (20 ± 2.7) or Percoll (45.5 ± 4.5) selected cells. After selection, some gonocytes were transduced using a lentiviral vector containing the transgene for the enhanced green fluorescent protein. Transduction efficiency was 17%. Collectively, these data demonstrate effective methods for the selection and genetic modification of bovine undifferentiated germ cells.
Collapse
Affiliation(s)
- K-J Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-do 456-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee WY, Park HJ, Lee R, Lee KH, Kim YH, Ryu BY, Kim NH, Kim JH, Kim JH, Moon SH, Park JK, Chung HJ, Kim DH, Song H. Establishment and in vitro culture of porcine spermatogonial germ cells in low temperature culture conditions. Stem Cell Res 2013; 11:1234-49. [PMID: 24041805 DOI: 10.1016/j.scr.2013.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/05/2013] [Accepted: 08/17/2013] [Indexed: 01/06/2023] Open
Abstract
The objective of this study was to establish a porcine spermatogonial germ cell (pSGC) line and develop an in vitro culture system. Isolated total testicular cells (TTCs) from 5-day-old porcine testes were primary cultured at 31, 34, and 37°C. Although the time of colony appearance was delayed at 31°C, strong alkaline phosphatase staining, expressions of pluripotency marker genes such as OCT4, NANOG, and THY1, and the gene expressions of the undifferentiated germ cell markers PLZF and protein gene product 9.5 (PGP9.5) were identified compared to 34 and 37°C. Cell cycle analysis for both pSGC and feeder cells at the three temperatures revealed that more pSGCs were in the G2/M phase at 31°C than 37°C at the subculture stage. In vitro, pSGCs could stably maintain undifferentiated germ cell and stem cell characteristics for over 60days during culture at 31°C. Xenotransplantation of pSGCs to immune deficient mice demonstrated a successful colonization and localization on the seminiferous tubule basement membrane in the recipient testes. In conclusion, pSGCs from neonatal porcine were successfully established and cultured for long periods under a low temperature culture environment in vitro.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Animal & Food Bioscience, Research Institute for Biomedical & Health Science, College of Biomedical & Health Science, Konkuk University, Chung-ju 380-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chuykin I, Stauske M, Guan K. Spermatogonial Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
|
40
|
Nagano MC, Yeh JR. The Identity and Fate Decision Control of Spermatogonial Stem Cells. Curr Top Dev Biol 2013; 102:61-95. [DOI: 10.1016/b978-0-12-416024-8.00003-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Yang L, Wu W, Qi H. Gene expression profiling revealed specific spermatogonial stem cell genes in mouse. Genesis 2012; 51:83-96. [PMID: 23175476 DOI: 10.1002/dvg.22358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/05/2022]
Abstract
Mammalian spermatogenesis originates from spermatogonial stem cells (SSCs), which undergo mitosis, meiosis and spermiogenesis in order to generate mature spermatozoa. SSCs are adult stem cells that can both self-renew and differentiate. To maintain pluripotency, SSCs are regulated by both extrinsic factors secreted from surrounding somatic cells and intrinsic factors including specific gene expression programs. Using fluorescent labeled germ line stem cells, mouse gonocytes and SSCs were purified up to 97% by improved FACS method. Through microarray analyses, global gene expression profiles of gonocytes, SSCs, and differentiated cells were compared. A large number of distinctive genes were found to be enriched in respective cell populations, indicating different functional requirements of each cell type. Functional clustering analyses revealed that while gonocytes and SSCs preferentially express genes implicated in gene expression regulation and epigenetic modifications, differentiated cells including somatic cells are enriched with genes encoding proteins involved in various cellular activities. Further in situ hybridization and RT-PCR experiments confirmed SSC specific expression of several genes of which functions have not been characterized in SSCs. The comparative gene expression profiling provides a useful resource for gene discovery in relation to SSC regulation and opens new avenues for the study of molecular mechanisms underlying SSC self-renewal and differentiation.
Collapse
Affiliation(s)
- Lele Yang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute of Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | | |
Collapse
|
42
|
Ghasemzadeh-Hasankolaei M, Eslaminejad M, Batavani R, Sedighi-Gilani M. Comparison of the efficacy of three concentrations of retinoic acid for transdifferentiation induction in sheep marrow-derived mesenchymal stem cells into male germ cells. Andrologia 2012; 46:24-35. [DOI: 10.1111/and.12037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - M.B. Eslaminejad
- Department of Stem Cells and Developmental Biology; Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| | - R. Batavani
- Department of Clinical Sciences; Faculty of Veterinary Medicine; Urmia University; Urmia Iran
| | - M. Sedighi-Gilani
- Department of Andrology; Reproductive Biomedicine Research Center; Royan Institute for Stem Cell Biology and Technology; ACECR; Tehran Iran
| |
Collapse
|
43
|
Nasiri Z, Hosseini S, Hajian M, Abedi P, Bahadorani M, Baharvand H, Nasr-Esfahani M. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells In-vitro. Theriogenology 2012; 77:1519-28. [DOI: 10.1016/j.theriogenology.2011.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 11/20/2011] [Accepted: 11/20/2011] [Indexed: 01/06/2023]
|
44
|
Krause M, Ganser C, Kobayashi E, Papazoglou A, Nikkhah G. The Lewis GFP transgenic rat strain is a useful cell donor for neural transplantation. Cell Transplant 2012; 21:1837-51. [PMID: 22405077 DOI: 10.3727/096368911x627426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation is a promising therapeutic approach in neurodegenerative diseases. Studying graft survival and development has important implications for the further development of experimental and clinical transplantation protocols. Cellular elements in neural transplants are sometimes difficult to identify. The existing labeling methods cannot reliably provide stably labeled cells that can be detected in long-term experiments. Transgenic (tg) Lewis rats ubiquitously expressing green fluorescent protein (GFP) provide an ideal donor source. The aim of this project was to investigate the potential of GFP-tg Lewis rats to serve as donor tissue for neural stem cell transplantation. Ventral mesencephalon (VM) GFP-tg E14.5-derived cells were compared to wild-type (wt) in vitro and in vivo. Firstly, cells from GFP and non-GFP VM tissue were compared with regard to their proliferation and response towards 6-OHDA-toxicity in culture. Secondly, 6-OHDA-lesioned hemiparkinsonian Sprague-Dawley/Crl:CD(SD) rats received intrastriatal grafts derived from VM of E14.5 GFP-tg rats. Due to the fact that donor and recipient belong to two different rat strains, we focused on graft survival in correlation with immunosuppression and graft GFP and tyrosine hydroxylase (TH) expression. In summary, in vitro tg cells exhibited 98% GFP expression and did not differ from wt cells in any of the measured parameters. In vivo, all experimental groups showed a significant compensation in rotation behavior after transplantation. Furthermore, there was no difference on rotation behavior or graft morphology and survival pattern as well as GFP expression between immunosuppressed and nonimmunosuppressed animals. The GFP-positive population of the graft was composed of 13.3% GFAP-positive, 56.1% NeuN-positive, and 1.9% TH-positive cells. Analysis of graft subpopulations manifested that 70.6% of GFAP-positive, 86.9% of NeuN-positive, and 80.1% of TH-positive cells coexpressed GFP. In conclusion, our data show that the Lewis GFP-tg rats serve as an excellent cell source for studying primary neural precursor cells in the transplantation paradigm.
Collapse
Affiliation(s)
- Martin Krause
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocentre, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
45
|
Abstract
We describe an experimental approach for generating mutant alleles in rat spermatogonial stem cells (SSCs) using Sleeping Beauty (SB) transposon-mediated insertional mutagenesis. The protocol is based on mobilization of mutagenic gene-trap transposons from transfected plasmid vectors into the genomes of cultured stem cells. Cells with transposon insertions in expressed genes are selected on the basis of activation of an antibiotic-resistance gene encoded by the transposon. These gene-trap clones are transplanted into the testes of recipient males (either as monoclonal or polyclonal libraries); crossing of these founders with wild-type females allows the insertions to be passed to F(1) progeny. This simple, economic and user-friendly methodological pipeline enables screens for functional gene annotation in the rat, with applicability in other vertebrate models where germ line-competent stem cells have been established. The complete protocol from transfection of SSCs to the genotyping of heterozygous F(1) offspring that harbor genomic SB gene-trap insertions takes 5-6 months.
Collapse
|
46
|
Hogarth CA, Mitchell D, Small C, Griswold M. EGR4 displays both a cell- and intracellular-specific localization pattern in the developing murine testis. Dev Dyn 2011; 239:3106-14. [PMID: 20925118 DOI: 10.1002/dvdy.22442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenesis is an intricately regulated process of cellular differentiation transforming spermatogonial stem cells to spermatozoa. Elimination of the transcription factor EGR4 generates subfertile male mice yet the expression and function of EGR4 in the mammalian testis has yet to be fully investigated. We performed in situ hybridization and immunofluorescence to identify Egr4 transcript and protein localization in the developing murine testis. EGR4 was detected in both germ and somatic cells in the neonatal testis but was specific to germ cells inside the seminiferous epithelium from juvenile development onward. EGR4 also displayed distinct intracellular localization patterns within specific cell populations of the testis. In addition, Egr4-deficient testis tubules regress from relatively normal to Sertoli cell and undifferentiated spermatogonia only over time. Taken together, these data suggest that Egr4 may regulate spermatogenesis at multiple steps, with roles in the dividing Sertoli cells, peritubular myoid cells, and the meiotic and elongating haploid germ cell populations.
Collapse
Affiliation(s)
- Cathryn A Hogarth
- School of Molecular Biosciences and Centre for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
47
|
Ryser S, Glauser D, Vigier M, Zhang YQ, Tachini P, Schlegel W, Durand P, Irminger-Finger I. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma. BMC Genomics 2011; 12:29. [PMID: 21232125 PMCID: PMC3033334 DOI: 10.1186/1471-2164-12-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.
Collapse
Affiliation(s)
- Stephan Ryser
- Molecular Gynecology and Obstetrics Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Generation of Germline-Derived Stem Cells from the Adult Human Testis. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
49
|
Yang Y, Honaramooz A. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod Fertil Dev 2011; 23:496-505. [DOI: 10.1071/rd10042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 11/01/2010] [Indexed: 12/24/2022] Open
Abstract
Gonocytes are the only type of germ cells present in the postnatal testis and give rise to spermatogonial stem cells. Purification of gonocytes has important implications for the study and manipulation of these cells and may provide insights for the ongoing investigation of the male germline stem cells. To obtain a pure population of gonocytes from piglet testis cells, a wide range of Nycodenz concentrations were investigated for density gradient centrifugation. We also examined differential plating of testis cells for various culture durations with different extracellular matrix (ECM) components (fibronectin, poly-d-lysine, poly-l-lysine, laminin and collagen Types I and IV). Gonocytes were highly enriched in pellets of testis cells after using 17% Nycodenz centrifugation to a purity of 81 ± 9%. After culturing testis cells on plates precoated with different ECM components for 120 min, the proportion of gonocytes increased among non-adherent cells (suspended in the medium), with fibronectin or poly-d-lysine resulting in the greatest (up to 85%) and laminin in the lowest (54%) gonocyte proportion. Combining the most promising ECM coatings (fibronectin and poly-d-lysine) and further extension of their culture duration to 240 min did not improve final gonocyte purity. However, centrifugation with 17% Nycodenz followed by differential plating with fibronectin and poly-d-lysine coating further purified gonocytes among the collected cells to >90%. These results provide a simple, quick and efficient approach for obtaining highly enriched populations of piglet gonocytes for use in the study and manipulation of these germline stem cells.
Collapse
|
50
|
Chapman KM, Saidley-Alsaadi D, Syvyk AE, Shirley JR, Thompson LM, Hamra FK. Rat Spermatogonial Stem Cell-Mediated Gene Transfer. SPRINGER PROTOCOLS HANDBOOKS 2011. [DOI: 10.1007/978-3-662-45763-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|