1
|
Ma H, Peng G, Hu Y, Lu B, Zheng Y, Wu Y, Feng W, Shi Y, Pan X, Song L, Stützer I, Liu Y, Fei J. Revealing the biological features of the axolotl pancreas as a new research model. Front Cell Dev Biol 2025; 13:1531903. [PMID: 39958891 PMCID: PMC11825805 DOI: 10.3389/fcell.2025.1531903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction The pancreas plays a crucial role in digestion and blood glucose regulation. Current animal models, primarily mice and zebrafish, have limited the exploration of pancreatic biology from an evolutionary-developmental perspective. Tetrapod vertebrate axolotl (Ambystoma mexicanum) serves as a valuable model in developmental, regenerative, and evolutionary biology. However, the fundamental biology of the axolotl pancreas remains underexplored. This study aims to characterize the unique developmental, functional, and evolutionary features of the axolotl pancreas to expand the understanding of pancreatic biology. Methods We conducted morphological, histological, and transcriptomic analyses to investigate the axolotl pancreas. Pancreatic development was observed using in situ hybridization and immunostaining for key pancreatic markers. RNA sequencing was performed to profile global gene expression during larva and adult stages. And differential gene expression analysis was used to characterize the conserved and unique gene patterns in the axolotl pancreas. Functional assays, including glucose tolerance tests and insulin tolerance tests, were optimized for individual axolotls. To assess pancreatic gene function, Pdx1 mutants were generated using CRISPR/Cas9-mediated gene editing, and their effects on pancreatic morphology, endocrine cell populations, and glucose homeostasis were analyzed. Results The axolotl pancreas contains all known pancreatic cell types and develops from dorsal and ventral buds. Both of buds contribute to exocrine and endocrine glands. The dorsal bud produces the major endocrine cell types, while the ventral bud generates α and δ cells, but not β cells. Differential gene expression analysis indicated a transition in global gene expression from pancreatic cell fate commitment and the cell cycle to glucose response, hormone synthesis, and secretion, following the development progression. Notably, the adult axolotl pancreas exhibits slower metabolic activity compared to mammals, as evidenced by the results of GTT and ITT. The mutation of Pdx1 resulted in hyperglycemia and a significant reduction in pancreatic cell mass, including a complete loss of endocrine cells, although it did not lead to a lethal phenotype. Discussion This study examines the axolotl pancreas, highlighting the conservation of pancreatic development. Our study highlights the unique features of the axolotl pancreas and broadens the scope of animal models available for pancreatic evolution and disease research.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- BGI Research, Qingdao, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangcong Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yan Hu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Binbin Lu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yiying Zheng
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yingxian Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Weimin Feng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xiangyu Pan
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Li Song
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ina Stützer
- Deutsche Forschungsgemeinschaft (DFG)-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Hu Y, Luo Z, Wang M, Wu Z, Liu Y, Cheng Z, Sun Y, Xiong JW, Tong X, Zhu Z, Zhang B. Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish. J Genet Genomics 2025; 52:66-77. [PMID: 39343095 DOI: 10.1016/j.jgg.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Luo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meiwen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunxing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhan Sun
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Yagihashi S. Contribution of animal models to diabetes research: Its history, significance, and translation to humans. J Diabetes Investig 2023; 14:1015-1037. [PMID: 37401013 PMCID: PMC10445217 DOI: 10.1111/jdi.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
Diabetes mellitus is still expanding globally and is epidemic in developing countries. The combat of this plague has caused enormous economic and social burdens related to a lowered quality of life in people with diabetes. Despite recent significant improvements of life expectancy in patients with diabetes, there is still a need for efforts to elucidate the complexities and mechanisms of the disease processes to overcome this difficult disorder. To this end, the use of appropriate animal models in diabetes studies is invaluable for translation to humans and for the development of effective treatment. In this review, a variety of animal models of diabetes with spontaneous onset in particular will be introduced and discussed for their implication in diabetes research.
Collapse
Affiliation(s)
- Soroku Yagihashi
- Department of Exploratory Medicine for Nature, Life and HumansToho University School of MedicineChibaJapan
- Department of PathologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
4
|
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development. FEBS J 2022; 289:5121-5136. [PMID: 34125483 PMCID: PMC9545688 DOI: 10.1111/febs.16075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022]
Abstract
Vertebrate pancreas organogenesis is a stepwise process regulated by a complex network of signaling and transcriptional events, progressively steering the early endoderm toward pancreatic fate. Many crucial players of this process have been identified, including signaling pathways, cis-regulatory elements, and transcription factors (TFs). Pancreas-associated transcription factor 1a (PTF1A) is one such TF, crucial for pancreas development. PTF1A mutations result in dramatic pancreatic phenotypes associated with severe complications, such as neonatal diabetes and impaired food digestion due to exocrine pancreatic insufficiency. Here, we present a brief overview of vertebrate pancreas development, centered on Ptf1a function and transcriptional regulation, covering similarities and divergences in three broadly studied organisms: human, mouse and zebrafish.
Collapse
Affiliation(s)
- Marta Duque
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - João Pedro Amorim
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
- Doctoral program in Molecular and Cell Biology (MCbiology)Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortugal
| | - José Bessa
- Instituto de Biologia Molecular e Celular (IBMC)Universidade do PortoPortugal
- Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortugal
| |
Collapse
|
5
|
Engerer P, Petridou E, Williams PR, Suzuki SC, Yoshimatsu T, Portugues R, Misgeld T, Godinho L. Notch-mediated re-specification of neuronal identity during central nervous system development. Curr Biol 2021; 31:4870-4878.e5. [PMID: 34534440 DOI: 10.1016/j.cub.2021.08.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Neuronal identity has long been thought of as immutable, so that once a cell acquires a specific fate, it is maintained for life.1 Studies using the overexpression of potent transcription factors to experimentally reprogram neuronal fate in the mouse neocortex2,3 and retina4,5 have challenged this notion by revealing that post-mitotic neurons can switch their identity. Whether fate reprogramming is part of normal development in the central nervous system (CNS) is unclear. While there are some reports of physiological cell fate reprogramming in invertebrates,6,7 and in the vertebrate peripheral nervous system,8 endogenous fate reprogramming in the vertebrate CNS has not been documented. Here, we demonstrate spontaneous fate re-specification in an interneuron lineage in the zebrafish retina. We show that the visual system homeobox 1 (vsx1)-expressing lineage, which has been associated exclusively with excitatory bipolar cell (BC) interneurons,9-12 also generates inhibitory amacrine cells (ACs). We identify a role for Notch signaling in conferring plasticity to nascent vsx1 BCs, allowing suitable transcription factor programs to re-specify them to an AC fate. Overstimulating Notch signaling enhances this physiological phenotype so that both daughters of a vsx1 progenitor differentiate into ACs and partially differentiated vsx1 BCs can be converted into ACs. Furthermore, this physiological re-specification can be mimicked to allow experimental induction of an entirely distinct fate, that of retinal projection neurons, from the vsx1 lineage. Our observations reveal unanticipated plasticity of cell fate during retinal development.
Collapse
Affiliation(s)
- Peter Engerer
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Eleni Petridou
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilian University of Munich, Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Ruben Portugues
- Institute of Neuroscience, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Strasse 29, 80802 Munich, Germany.
| |
Collapse
|
6
|
Venezia O, Islam S, Cho C, Timme-Laragy AR, Sant KE. Modulation of PPAR signaling disrupts pancreas development in the zebrafish, Danio rerio. Toxicol Appl Pharmacol 2021; 426:115653. [PMID: 34302850 DOI: 10.1016/j.taap.2021.115653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Peroxisome Proliferator Activated Receptors (PPARs) are transcription factors that regulate processes such as lipid and glucose metabolism. Synthetic PPAR ligands, designed as therapeutics for metabolic disease, provide a tool to assess the relationship between PPAR activity and pancreas development in vivo, an area that remains poorly characterized. Here, we aim to assess the effects of PPAR agonists and antagonists on gene expression, embryonic morphology and pancreas development in transgenic zebrafish embryos. To evaluate developmental perturbations, we assessed gross body and pancreas morphology at 4 days post fertilization (dpf) in response to developmental exposures with PPARα, PPARγ, and PPARβ/δ agonists and antagonists at 0, 0.01, 0.1, 1, and 10 μM concentrations. All ligand exposures, with the exception of the PPARα agonist, resulted in significantly altered fish length and yolk sac area. PPARγ agonist and antagonist had higher incidence of darkened yolk sac and craniofacial deformities, whereas PPARα antagonist had higher incidence of pericardial edema and death. Significantly reduced endocrine pancreas area was observed in both PPARγ ligands and PPARα agonist exposed embryos, some of which also exhibited aberrant endocrine pancreas morphology. Both PPARβ/δ ligands caused reduced exocrine pancreas length and novel aberrant phenotype, and disrupted gene expression of pancreatic targets pdx1, gcga, and try. Lipid staining was performed at 8 dpf and revealed altered lipid accumulation consistent with isoform function. These data indicate chronic exposure to synthetic ligands may induce morphological and pancreatic defects in zebrafish embryos.
Collapse
Affiliation(s)
- Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, Amherst, MA, United States of America
| | - Sadia Islam
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, Amherst, MA, United States of America
| | - Christine Cho
- School of Public Health, San Diego State University, San Diego, CA, United States of America
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, Amherst, MA, United States of America
| | - Karilyn E Sant
- Department of Environmental Health Sciences, University of Massachusetts-Amherst, Amherst, MA, United States of America; School of Public Health, San Diego State University, San Diego, CA, United States of America.
| |
Collapse
|
7
|
Mawed SA, Zhang J, Ren F, He Y, Mei J. atg7 and beclin1 are essential for energy metabolism and survival during the larval-to-juvenile transition stage of zebrafish. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Oh S, Park JT. Zebrafish model of KRAS-initiated pancreatic endocrine tumor. Anim Cells Syst (Seoul) 2019; 23:209-218. [PMID: 31231585 PMCID: PMC6566937 DOI: 10.1080/19768354.2019.1610058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
Pancreatic cancer constitutes a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in 95% of cases. Activation of the KRAS proto-oncogene represents an initiating event in pancreatic tumorigenesis. Here, we established a zebrafish pancreatic neoplasia model that recapitulates human pancreatic tumors. Toward this end, we generated a stable CRE/Lox-based zebrafish model system to express oncogenic KRASG12D in the elastase3I domain of the zebrafish pancreas. Lineage tracing experiments showed that early KRASG12D-responsive pancreatic progenitors contribute to endocrine in addition to exocrine cells. In this system, 10% and 40% of zebrafish developed pancreatic tumors by 6 and 12 months, respectively. The histological profiles of these experimental tumors bore a striking resemblance to those of pancreatic endocrine tumors. Immunohistochemical analysis including the endocrine cell-specific marker confirmed the pancreatic tumor region as a characteristic endocrine tumor. Taken together, our zebrafish model data revealed that pancreatic endocrine tumors originate from early KRASG12D-responsive pancreatic progenitor cells. These findings demonstrated that this zebrafish model may be suitable as an experimental and preclinical system to evaluate different strategies for targeting pancreatic endocrine tumors and ultimately improve the outcome for patients with pancreatic endocrine tumors.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea.,Institute for Biomedical Research, Catholic Kwandong University International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Joon Tae Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Perillo M, Paganos P, Mattiello T, Cocurullo M, Oliveri P, Arnone MI. New Neuronal Subtypes With a "Pre-Pancreatic" Signature in the Sea Urchin Stongylocentrotus purpuratus. Front Endocrinol (Lausanne) 2018; 9:650. [PMID: 30450080 PMCID: PMC6224346 DOI: 10.3389/fendo.2018.00650] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
Neurons and pancreatic endocrine cells have a common physiology and express a similar toolkit of transcription factors during development. To explain these common features, it has been hypothesized that pancreatic cells most likely co-opted a pre-existing gene regulatory program from ancestral neurons. To test this idea, we looked for neurons with a "pre-pancreatic" program in an early-branched deuterostome, the sea urchin. Only vertebrates have a proper pancreas, however, our lab previously found that cells with a pancreatic-like signature are localized within the sea urchin embryonic gut. We also found that the pancreatic transcription factors Xlox/Pdx1 and Brn1/2/4 co-localize in a sub-population of ectodermal cells. Here, we find that the ectodermal SpLox+ SpBrn1/2/4 cells are specified as SpSoxC and SpPtf1a neuronal precursors that become the lateral ganglion and the apical organ neurons. Two of the SpLox+ SpBrn1/2/4 cells also express another pancreatic transcription factor, the LIM-homeodomain gene islet-1. Moreover, we find that SpLox neurons produce the neuropeptide SpANP2, and that SpLox regulates SpANP2 expression. Taken together, our data reveal that there is a subset of sea urchin larval neurons with a gene program that predated pancreatic cells. These findings suggest that pancreatic endocrine cells co-opted a regulatory signature from an ancestral neuron that was already present in an early-branched deuterostome.
Collapse
Affiliation(s)
| | | | - Teresa Mattiello
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | | - Paola Oliveri
- Centre For Life's Origins and Evolution, University College London, London, United Kingdom
| | | |
Collapse
|
10
|
Park JT, Leach SD. Zebrafish model of KRAS-initiated pancreatic cancer. Anim Cells Syst (Seoul) 2018; 22:353-359. [PMID: 30533257 PMCID: PMC6282427 DOI: 10.1080/19768354.2018.1530301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer constitutes a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in a majority of tumors. KRAS mutations represent an early event during pancreatic tumorigenesis that crucial for cancer initiation and progression. Here, we established a zebrafish pancreatic cancer model that highly recapitulates human pancreatic intraepithelial neoplasia (PanIN) development. We established a novel system combining CRE/Lox technology with the GAL4/UAS system to express oncogenic KRAS in the ptf1a domain temporarily. In this system, zebrafish developed PanIN at an 11.1% rate by 24 and 36 weeks after KRASG12V induction. The histological and immunohistochemical profiles of these experimental tumors bore striking resemblance to human PanIN. Within the whole abnormal area, the entire spectrum of differentiation ranging from PanIN-1 to PanIN-3 was noted. Immunohistochemical analysis including Alcian blue, CK-18, cadhedrin-1, and DCLK1 staining confirmed the PanIN region as a characteristic pancreatic cancer precursor lesion. Taken together, these findings demonstrate that this zebrafish model may offer the possibility of an experimental and preclinical system to evaluate different strategies for targeting pancreatic tumors and finally improve the outcome for the patients with pancreatic tumors.
Collapse
Affiliation(s)
- Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, Korea
| | - Steven D Leach
- Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
11
|
Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ 2018; 60:393-399. [DOI: 10.1111/dgd.12565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Sendai Japan
- Department of Biomedical Sciences; College of Life Sciences; Ritsumeikan University; Kusatsu Japan
| |
Collapse
|
12
|
Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018; 14:140-162. [PMID: 29348476 DOI: 10.1038/nrendo.2017.161] [Citation(s) in RCA: 569] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1, D-80336 Munich, Germany
| | - Mary C Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, 2170 East Galbraith Road, Cincinnati, Ohio 45237, USA
| | - Peter Huypens
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Martin Hrabe de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Technische Universität München, Chair of Experimental Genetics, D-85354 Freising, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Mostafa Bakhti
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, Technische Universität München, TUM School of Life Sciences Weihenstephan, Gregor-Mendel-Str. 2, D-85354 Freising, Germany
- Else Kröner-Fresenius Center for Nutritional Medicine, Technische Universität München, D-85354 Freising, Germany
- Institute for Food & Health, Technische Universität München, D-85354 Freising, Germany
| | - Mark Heiman
- MicroBiome Therapeutics, 1316 Jefferson Ave, New Orleans, Louisiana 70115, USA
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, CH-8603 Zurich-Schwerzenbach, Switzerland
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilan University München, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, 3135 Meyer Hall, University of California, Davis, California 95616-5270, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, D-80333 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
13
|
Kang HT, Park JT, Choi K, Kim Y, Choi HJC, Jung CW, Lee YS, Park SC. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol 2017; 13:616-623. [DOI: 10.1038/nchembio.2342] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/21/2016] [Indexed: 12/19/2022]
|
14
|
Uribe RA, Gu T, Bronner ME. A novel subset of enteric neurons revealed by ptf1a:GFP in the developing zebrafish enteric nervous system. Genesis 2016; 54:123-8. [PMID: 26865080 DOI: 10.1002/dvg.22927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
Abstract
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development.
Collapse
Affiliation(s)
- Rosa A Uribe
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Tiffany Gu
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Marianne E Bronner
- California Institute of Technology, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
15
|
Lodh S, Hostelley TL, Leitch CC, O'Hare EA, Zaghloul NA. Differential effects on β-cell mass by disruption of Bardet-Biedl syndrome or Alstrom syndrome genes. Hum Mol Genet 2015; 25:57-68. [PMID: 26494903 DOI: 10.1093/hmg/ddv447] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Rare genetic syndromes characterized by early-onset type 2 diabetes have revealed the importance of pancreatic β-cells in genetic susceptibility to diabetes. However, the role of genetic regulation of β-cells in disorders that are also characterized by highly penetrant obesity, a major additional risk factor, is unclear. In this study, we investigated the contribution of genes associated with two obesity ciliopathies, Bardet-Biedl Syndrome and Alstrom Syndrome, to the production and maintenance of pancreatic β-cells. Using zebrafish models of these syndromes, we identified opposing effects on production of β-cells. Loss of the Alstrom gene, alms1, resulted in a significant decrease in β-cell production whereas loss of BBS genes, bbs1 or bbs4, resulted in a significant increase. Examination of the regulatory program underlying β-cell production suggested that these effects were specific to β-cells. In addition to the initial production of β-cells, we observed significant differences in their continued maintenance. Under prolonged exposure to high glucose conditions, alms1-deficient β-cells were unable to continually expand as a result of decreased proliferation and increased cell death. Although bbs1-deficient β-cells were similarly susceptible to apoptosis, the overall maintenance of β-cell number in those animals was sustained likely due to increased proliferation. Taken together, these findings implicate discrepant production and maintenance of β-cells in the differential susceptibility to diabetes found between these two genetic syndromes.
Collapse
Affiliation(s)
- Sukanya Lodh
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy L Hostelley
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carmen C Leitch
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elizabeth A O'Hare
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Norann A Zaghloul
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
16
|
Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 2015; 47:528-34. [PMID: 25848753 PMCID: PMC4414867 DOI: 10.1038/ng.3256] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain-containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.
Collapse
|
17
|
Puri S, Folias AE, Hebrok M. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 2014; 16:18-31. [PMID: 25465113 DOI: 10.1016/j.stem.2014.11.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandra E Folias
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech 2014; 7:883-94. [PMID: 24878567 PMCID: PMC4073277 DOI: 10.1242/dmm.014969] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRASG12D during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRASG12D expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRASG12D line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRASG12D showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGFβ and Notch pathways. Increase in TGFβ, following KRASG12D activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for describing in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs.
Collapse
Affiliation(s)
- Marco Schiavone
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Elena Rampazzo
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Luca Persano
- Department of Woman and Child Health, University of Padua, 35131 Padua, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Shu Liu
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steve D Leach
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | |
Collapse
|
19
|
Aldh1-expressing endocrine progenitor cells regulate secondary islet formation in larval zebrafish pancreas. PLoS One 2013; 8:e74350. [PMID: 24147152 PMCID: PMC3798260 DOI: 10.1371/journal.pone.0074350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/31/2013] [Indexed: 12/03/2022] Open
Abstract
Aldh1 expression is known to mark candidate progenitor populations in adult and embryonic mouse pancreas, and Aldh1 enzymatic activity has been identified as a potent regulator of pancreatic endocrine differentiation in zebrafish. However, the location and identity of Aldh1-expressing cells in zebrafish pancreas remain unknown. In this study we demonstrate that Aldh1-expressing cells are located immediately adjacent to 2F11-positive pancreatic ductal epithelial cells, and that their abundance dramatically increases during zebrafish secondary islet formation. These cells also express neurod, a marker of endocrine progenitor cells, but do not express markers of more mature endocrine cells such as pax6b or insulin. Using formal cre/lox-based lineage tracing, we further show that Aldh1-expressing pancreatic epithelial cells are the direct progeny of pancreatic notch-responsive progenitor cells, identifying them as a critical intermediate between multi-lineage progenitors and mature endocrine cells. Pharmacologic manipulation of Aldh1 enzymatic activity accelerates cell entry into the Aldh1-expressing endocrine progenitor pool, and also leads to the premature maturation of these cells, as evidenced by accelerated pax6b expression. Together, these findings suggest that Aldh1-expressing cells act as both participants and regulators of endocrine differentiation during zebrafish secondary islet formation.
Collapse
|
20
|
Yee NS, Kazi AA, Yee RK. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics. Zebrafish 2013; 10:132-146. [PMID: 23682805 PMCID: PMC3673615 DOI: 10.1089/zeb.2012.0817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Program of Experimental Therapeutics, Department of Medicine, Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Penn State Hershey Cancer Institute, Pennsylvania State University , Hershey, PA 17033-0850, USA.
| | | | | |
Collapse
|
21
|
Koltowska K, Apitz H, Stamataki D, Hirst EMA, Verkade H, Salecker I, Ober EA. Ssrp1a controls organogenesis by promoting cell cycle progression and RNA synthesis. Development 2013; 140:1912-8. [PMID: 23515471 DOI: 10.1242/dev.093583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tightly controlled DNA replication and RNA transcription are essential for differentiation and tissue growth in multicellular organisms. Histone chaperones, including the FACT (facilitates chromatin transcription) complex, are central for these processes and act by mediating DNA access through nucleosome reorganisation. However, their roles in vertebrate organogenesis are poorly understood. Here, we report the identification of zebrafish mutants for the gene encoding Structure specific recognition protein 1a (Ssrp1a), which, together with Spt16, forms the FACT heterodimer. Focussing on the liver and eye, we show that zygotic Ssrp1a is essential for proliferation and differentiation during organogenesis. Specifically, gene expression indicative of progressive organ differentiation is disrupted and RNA transcription is globally reduced. Ssrp1a-deficient embryos exhibit DNA synthesis defects and prolonged S phase, uncovering a role distinct from that of Spt16, which promotes G1 phase progression. Gene deletion/replacement experiments in Drosophila show that Ssrp1b, Ssrp1a and N-terminal Ssrp1a, equivalent to the yeast homologue Pob3, can substitute Drosophila Ssrp function. These data suggest that (1) Ssrp1b does not compensate for Ssrp1a loss in the zebrafish embryo, probably owing to insufficient expression levels, and (2) despite fundamental structural differences, the mechanisms mediating DNA accessibility by FACT are conserved between yeast and metazoans. We propose that the essential functions of Ssrp1a in DNA replication and gene transcription, together with its dynamic spatiotemporal expression, ensure organ-specific differentiation and proportional growth, which are crucial for the forming embryo.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Developmental Biology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Jung IH, Leem GL, Jung DE, Kim MH, Kim EY, Kim SH, Park HC, Park SW. Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish. Neuro Oncol 2013; 15:290-304. [PMID: 23325864 DOI: 10.1093/neuonc/nos387] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ongoing characterization of glioma has revealed that Akt signaling plays a crucial role in gliomagenesis. In mouse models, however, Akt alone was not sufficient to induce glioma. METHODS We established transgenic zebrafish that overexpressed dominant-active (DA) human Akt1 or Rac1(G12V) (DARac1) at ptf1a domain and investigated transgenic phenotypes and mechanisms leading to gliomagenesis. RESULTS Transgene expressions were spatiotemporally restricted without any developmental abnormality of embryos and persisted at cerebellum and medulla in adult zebrafish. DAAkt1 alone induced glioma (with visible bumps at the head), with incidences of 36.6% and 49% at 6 and 9 months, respectively. Histologically, gliomas showed various histologic grades, increased proliferation, and frequent invasion into the fourth ventricle. Preferential location of small tumors at periventricular area and coexpression of Her4 suggested that tumors originated from Ptf1a- and Her4-positive progenitor cells at ventricular zone. Gliomagenesis was principally mediated by activation of survival pathway through upregulation of survivin genes. Although DARac1 alone was incapable of gliomagenesis, when coexpressed with DAAkt1, gliomagenesis was accelerated, showing higher tumor incidences (62.0% and 73.3% at 6 and 9 months, respectively), advanced histologic grade, invasiveness, and shortened survival. DARac1 upregulated survivin2, cyclin D1, β-catenin, and snail1a but downregulated E-cadherin, indicating that DARac1 promotes gliomagenesis by enhancing proliferation, survival, and epithelial-to-mesenchymal transition. On pharmacologic tests, only Akt1/2 inhibitor effectively suppressed gliomagenesis, inhibited cellular proliferation, and induced apoptosis in established gliomas. CONCLUSIONS The zebrafish model reinforces the pivotal role of Akt signaling in gliomagenesis and suggests Rac1 as an important protein involved in progression.
Collapse
Affiliation(s)
- In Hye Jung
- Postgraduate School of National Core Research Center for Nanomedical Technology, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Provost E, Wehner KA, Zhong X, Ashar F, Nguyen E, Green R, Parsons MJ, Leach SD. Ribosomal biogenesis genes play an essential and p53-independent role in zebrafish pancreas development. Development 2012; 139:3232-41. [PMID: 22872088 PMCID: PMC3413166 DOI: 10.1242/dev.077107] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2012] [Indexed: 11/20/2022]
Abstract
Mutations in the human Shwachman-Bodian-Diamond syndrome (SBDS) gene cause defective ribosome assembly and are associated with exocrine pancreatic insufficiency, chronic neutropenia and skeletal defects. However, the mechanism underlying these phenotypes remains unclear. Here we show that knockdown of the zebrafish sbds ortholog fully recapitulates the spectrum of developmental abnormalities observed in the human syndrome, and further implicate impaired proliferation of ptf1a-expressing pancreatic progenitor cells as the basis for the observed pancreatic phenotype. It is thought that diseases of ribosome assembly share a p53-dependent mechanism. However, loss of p53 did not rescue the developmental defects associated with loss of zebrafish sbds. To clarify the molecular mechanisms underlying the observed organogenesis defects, we performed transcriptional profiling to identify candidate downstream mediators of the sbds phenotype. Among transcripts displaying differential expression, functional group analysis revealed marked enrichment of genes related to ribosome biogenesis, rRNA processing and translational initiation. Among these, ribosomal protein L3 (rpl3) and pescadillo (pes) were selected for additional analysis. Similar to knockdown of sbds, knockdown or mutation of either rpl3 or pes resulted in impaired expansion of pancreatic progenitor cells. The pancreatic phenotypes observed in rpl3- and pes-deficient embryos were also independent of p53. Together, these data suggest novel p53-independent roles for ribosomal biogenesis genes in zebrafish pancreas development.
Collapse
Affiliation(s)
- Elayne Provost
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Karen A. Wehner
- The Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiangang Zhong
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Foram Ashar
- Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Rachel Green
- The Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Michael J. Parsons
- Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steven D. Leach
- Department of Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Bilogan CK, Horb ME. Microarray analysis of Xenopus endoderm expressing Ptf1a. Genesis 2012; 50:853-70. [PMID: 22815262 DOI: 10.1002/dvg.22048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 01/29/2023]
Abstract
Pancreas-specific transcription factor 1a (Ptf1a), a bHLH transcription factor, has two temporally distinct functions during pancreas development; initially it is required for early specification of the entire pancreas, while later it is required for proper differentiation and maintenance of only acinar cells. The importance of Ptf1a function was revealed by the fact that loss of Ptf1a leads to pancreas agenesis in humans. While Ptf1a is one of the most important pancreatic transcription factors, little is known about the differences between the regulatory networks it controls during initial specification of the pancreas as opposed to acinar cell development, and to date no comprehensive analysis of its downstream targets has been published. In this article, we use Xenopus embryos to identify putative downstream targets of Ptf1a. We isolated anterior endoderm tissue overexpressing Ptf1a at two early stages, NF32 and NF36, and compared their gene expression profiles using microarrays. Our results revealed that Ptf1a regulates genes with a wide variety of functions, providing insight into the complexity of the regulatory network required for pancreas specification.
Collapse
Affiliation(s)
- Cassandra K Bilogan
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | | |
Collapse
|
25
|
Yamazoe S, Shestopalov IA, Provost E, Leach SD, Chen JK. Cyclic Caged Morpholinos: Conformationally Gated Probes of Embryonic Gene Function. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Yamazoe S, Shestopalov IA, Provost E, Leach SD, Chen JK. Cyclic caged morpholinos: conformationally gated probes of embryonic gene function. Angew Chem Int Ed Engl 2012; 51:6908-11. [PMID: 22689470 DOI: 10.1002/anie.201201690] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/24/2012] [Indexed: 12/21/2022]
Abstract
Feeling a bit cagey: morpholino-based antisense reagents have been caged through oligonucleotide cyclization, enabling photocontrol of gene expression in zebrafish embryos and larvae. Using these reagents, the timing of exocrine cell fate commitment in the developing pancreas has been examined.
Collapse
Affiliation(s)
- Sayumi Yamazoe
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | |
Collapse
|
27
|
Transdifferentiation: a cell and molecular reprogramming process. Cell Tissue Res 2012; 348:379-96. [PMID: 22526624 DOI: 10.1007/s00441-012-1403-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/01/2012] [Indexed: 12/13/2022]
Abstract
Evidence has emerged recently indicating that differentiation is not entirely a one-way process, and that it is possible to convert one cell type to another, both in vitro and in vivo. This phenomenon is called transdifferentiation, and is generally defined as the stable switch of one cell type to another. Transdifferentiation plays critical roles during development and in regeneration pathways in nature. Although this phenomenon occurs rarely in nature, recent studies have been focused on transdifferentiation and the reprogramming ability of cells to produce specific cells with new phenotypes for use in cell therapy and regenerative medicine. Thus, understanding the principles and the mechanism of this process is important for producing desired cell types. Here some well-documented examples of transdifferentiation, and their significance in development and regeneration are reviewed. In addition, transdifferentiation pathways are considered and their potential molecular mechanisms, especially the role of master switch genes, are considered. Finally, the significance of transdifferentiation in regenerative medicine is discussed.
Collapse
|
28
|
Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 2011. [PMID: 22133881 DOI: 10.1172/jci57131.4572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pancreas is a complex organ comprised of three critical cell lineages: islet (endocrine), acinar, and ductal. This review will focus upon recent insights and advances in the biology of pancreatic ductal cells. In particular, emphasis will be placed upon the regulation of ductal cells by specific transcriptional factors during development as well as the underpinnings of acinar-ductal metaplasia as an important adaptive response during injury and regeneration. We also address the potential contributions of ductal cells to neoplastic transformation, specifically in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
29
|
Reichert M, Rustgi AK. Pancreatic ductal cells in development, regeneration, and neoplasia. J Clin Invest 2011; 121:4572-8. [PMID: 22133881 DOI: 10.1172/jci57131] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pancreas is a complex organ comprised of three critical cell lineages: islet (endocrine), acinar, and ductal. This review will focus upon recent insights and advances in the biology of pancreatic ductal cells. In particular, emphasis will be placed upon the regulation of ductal cells by specific transcriptional factors during development as well as the underpinnings of acinar-ductal metaplasia as an important adaptive response during injury and regeneration. We also address the potential contributions of ductal cells to neoplastic transformation, specifically in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Maximilian Reichert
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
30
|
Schroeder IS, Sulzbacher S, Nolden T, Fuchs J, Czarnota J, Meisterfeld R, Himmelbauer H, Wobus AM. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells. Cells Tissues Organs 2011; 195:507-23. [DOI: 10.1159/000329864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/16/2023] Open
|
31
|
Kimmel RA, Onder L, Wilfinger A, Ellertsdottir E, Meyer D. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish. BMC Biol 2011; 9:75. [PMID: 22034951 PMCID: PMC3215967 DOI: 10.1186/1741-7007-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/31/2011] [Indexed: 12/17/2022] Open
Abstract
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development.
Collapse
Affiliation(s)
- Robin A Kimmel
- Institute of Molecular Biology/CMBI; Leopold-Francis University, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
32
|
Poulain M, Ober EA. Interplay between Wnt2 and Wnt2bb controls multiple steps of early foregut-derived organ development. Development 2011; 138:3557-68. [PMID: 21771809 DOI: 10.1242/dev.055921] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebrate liver, pancreas and lung arise in close proximity from the multipotent foregut endoderm. Tissue-explant experiments uncovered instructive signals emanating from the neighbouring lateral plate mesoderm, directing the endoderm towards specific organ fates. This suggested that an intricate network of signals is required to control the specification and differentiation of each organ. Here, we show that sequential functions of Wnt2bb and Wnt2 control liver specification and proliferation in zebrafish. Their combined specific activities are essential for liver specification, as their loss of function causes liver agenesis. Conversely, excess wnt2bb or wnt2 induces ectopic liver tissue at the expense of pancreatic and anterior intestinal tissues, revealing the competence of intestinal endoderm to respond to hepatogenic signals. Epistasis experiments revealed that the receptor frizzled homolog 5 (fzd5) mediates part of the broader hepatic competence of the alimentary canal. fzd5 is required for early liver formation and interacts genetically with wnt2 as well as wnt2bb. In addition, lack of both ligands causes agenesis of the swim bladder, the structural homolog of the mammalian lung. Thus, tightly regulated spatiotemporal expression of wnt2bb, wnt2 and fzd5 is central to coordinating early liver, pancreas and swim bladder development from a multipotent foregut endoderm.
Collapse
Affiliation(s)
- Morgane Poulain
- MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | |
Collapse
|
33
|
McCollum CW, Ducharme NA, Bondesson M, Gustafsson JA. Developmental toxicity screening in zebrafish. ACTA ACUST UNITED AC 2011; 93:67-114. [DOI: 10.1002/bdrc.20210] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Akitake CM, Macurak M, Halpern ME, Goll MG. Transgenerational analysis of transcriptional silencing in zebrafish. Dev Biol 2011; 352:191-201. [PMID: 21223961 PMCID: PMC3065955 DOI: 10.1016/j.ydbio.2011.01.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 12/11/2022]
Abstract
The yeast Gal4/UAS transcriptional activation system is a powerful tool for regulating gene expression in Drosophila and has been increasing in popularity for developmental studies in zebrafish. It is also useful for studying the basis of de novo transcriptional silencing. Fluorescent reporter genes under the control of multiple tandem copies of the upstream activator sequence (UAS) often show evidence of variegated expression and DNA methylation in transgenic zebrafish embryos. To characterize this systematically, we monitored the progression of transcriptional silencing of UAS-regulated transgenes that differ in their integration sites and in the repetitive nature of the UAS. Transgenic larvae were examined in three generations for tissue-specific expression of a green fluorescent protein (GFP) reporter and DNA methylation at the UAS. Single insertions containing four distinct upstream activator sequences were far less susceptible to methylation than insertions containing fourteen copies of the same UAS. In addition, transgenes that integrated in or adjacent to transposon sequence exhibited silencing regardless of the number of UAS sites included in the transgene. Placement of promoter-driven Gal4 upstream of UAS-regulated responder genes in a single bicistronic construct also appeared to accelerate silencing and methylation. The results demonstrate the utility of the zebrafish for efficient tracking of gene silencing mechanisms across several generations, as well as provide useful guidelines for optimal Gal4-regulated gene expression in organisms subject to DNA methylation.
Collapse
Affiliation(s)
- Courtney M. Akitake
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Michelle Macurak
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Marnie E. Halpern
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Mary G. Goll
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| |
Collapse
|
35
|
Shin D, Lee Y, Poss KD, Stainier DYR. Restriction of hepatic competence by Fgf signaling. Development 2011; 138:1339-48. [PMID: 21385764 PMCID: PMC3050664 DOI: 10.1242/dev.054395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/27/2022]
Abstract
Hepatic competence, or the ability to respond to hepatic-inducing signals, is regulated by a number of transcription factors broadly expressed in the endoderm. However, extrinsic signals might also regulate hepatic competence, as suggested by tissue explant studies. Here, we present genetic evidence that Fgf signaling regulates hepatic competence in zebrafish. We first show that the endoderm posterior to the liver-forming region retains hepatic competence: using transgenic lines that overexpress hepatic inducing signals following heat-shock, we found that at late somitogenesis stages Wnt8a, but not Bmp2b, overexpression could induce liver gene expression in pancreatic and intestinal bulb cells. These manipulations resulted in the appearance of ectopic hepatocytes in the intestinal bulb. Second, by overexpressing Wnt8a at various stages, we found that as embryos develop, the extent of the endodermal region retaining hepatic competence is gradually reduced. Most significantly, we found, using gain- and loss-of-function approaches, that Fgf10a signaling regulates this gradual reduction of the hepatic-competent domain. These data provide in vivo evidence that endodermal cells outside the liver-forming region retain hepatic competence and show that an extrinsic signal, Fgf10a, negatively regulates hepatic competence.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| | - Yoonsung Lee
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
36
|
Zhou W, Liang IC, Yee NS. Histone deacetylase 1 is required for exocrine pancreatic epithelial proliferation in development and cancer. Cancer Biol Ther 2011; 11:659-670. [PMID: 21301206 PMCID: PMC3084970 DOI: 10.4161/cbt.11.7.14720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 02/08/2023] Open
Abstract
Histone deacetylases (HDACs) play important roles in the epigenetic control of development, and aberrant expression of HDACs has been implicated in human diseases including cancer. Among the mammalian HDACs, HDAC1 has been extensively studied, but its role in exocrine pancreatic morphogenesis and cancer is still poorly understood. The goal of this study is to determine the functional role of HDAC1 in normal development of exocrine pancreas using zebrafish as the model organism as well as in human pancreatic adenocarcinoma. The zebrafish germline loss-of-function mutation hdac1(hi1618) caused impaired cell cycle progression in pancreatic epithelia, resulting in growth arrest and dysmorphogenesis of exocrine pancreas. In human pancreatic adenocarcinoma tissues and cell lines, HDAC1 was expressed at variably elevated levels. RNA interference-induced silencing of HDAC1 diminished proliferation of the cancer cells and cell cycle progression. The proliferative arrest in the developing exocrine pancreas and pancreatic cancer cells was associated with up-regulated expression of the cyclin-dependent kinase inhibitors and the sonic hedgehog signaling components. This study indicates that HDAC1 is required for pancreatic epithelial proliferation in development and cancer. We hypothesize that aberrant expression of HDAC1 modulates the developmental and signaling pathways in exocrine pancreatic epithelia and consequently the genes required for cellular proliferation during development and progression of pancreatic neoplasia.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Division of Hematology, Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, Program of Cancer Signaling and Experimental Therapeutics, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, USA
| | | | | |
Collapse
|
37
|
Yee NS, Zhou W, Liang IC. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer. Dis Model Mech 2011; 4:240-254. [PMID: 21183474 PMCID: PMC3046099 DOI: 10.1242/dmm.004564] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 09/16/2010] [Indexed: 11/20/2022] Open
Abstract
Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd) mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7) gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg(2+) partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a) gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg(2+) rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg(2+)-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology, Oncology, and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
38
|
Jusuf PR, Almeida AD, Randlett O, Joubin K, Poggi L, Harris WA. Origin and determination of inhibitory cell lineages in the vertebrate retina. J Neurosci 2011; 31:2549-62. [PMID: 21325522 PMCID: PMC3083844 DOI: 10.1523/jneurosci.4713-10.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/18/2010] [Accepted: 12/14/2010] [Indexed: 11/21/2022] Open
Abstract
Multipotent progenitors in the vertebrate retina often generate clonally related mixtures of excitatory and inhibitory neurons. The postmitotically expressed transcription factor, Ptf1a, is essential for all inhibitory fates in the zebrafish retina, including three types of horizontal and 28 types of amacrine cell. Here, we show that specific types of inhibitory neurons arise from the cell-autonomous influence of Ptf1a in the daughters of fate-restricted progenitors, such as Ath5 or Vsx1/2-expressing progenitors, and that in the absence of Ptf1a, cells that would have become these specific inhibitory subtypes revert to the histogenetically appropriate excitatory subtypes of the same lineage. Altered proportions of amacrine subtypes respecified by the misexpression of Ptf1a in the Ath5 lineage suggest that Ath5-expressing progenitors are biased, favoring the generation of some subtypes more than others. Yet the full array of inhibitory cell subtypes in Ath5 mutants implies the existence of Ath5-independent factors involved in inhibitory cell specification. We also show that an extrinsic negative feedback on the expression of Ptf1a provides a control mechanism by which the number of any and all types of inhibitory cells in the retina can be regulated in this lineage-dependent way.
Collapse
Affiliation(s)
- Patricia R. Jusuf
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom, and
| | - Alexandra D. Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom, and
| | - Owen Randlett
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom, and
| | - Kathy Joubin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom, and
| | - Lucia Poggi
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - William A. Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom, and
| |
Collapse
|
39
|
Anderson JL, Carten JD, Farber SA. Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol. Methods Cell Biol 2011; 101:111-41. [PMID: 21550441 PMCID: PMC3593232 DOI: 10.1016/b978-0-12-387036-0.00005-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review studies that employ zebrafish to better understand lipid signaling and metabolism.
Collapse
Affiliation(s)
- Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland, USA
| | | | | |
Collapse
|
40
|
Abstract
Pancreatic cancer is a genetic disease in which somatic mutations in the KRAS proto-oncogene are detected in a majority of tumors. KRAS mutations represent an early event during pancreatic tumorigenesis, crucial for cancer initiation and progression. Recent studies, including comprehensive sequencing of the pancreatic cancer exome, have implicated the involvement of a number of additional core signaling pathways during pancreatic tumorigenesis. Improving our understanding of genetic interactions between KRAS and these additional pathways represents a critical challenge, as these interactions may provide novel opportunities for diagnosis and treatment. However, studying these interactions requires the expression of multiple transgenes in relevant cell types, an effort that has proven very difficult to achieve using gene targeted mice and is also technically challenging in zebrafish. Based on the ability of the Gal4 transcriptional activator to drive the expression of multiple transgenes under regulation of UAS (upstream activator sequence) regulatory elements, the Gal4/UAS system represents an attractive strategy for the study of genetic interactions. In this chapter, we review our experience using the Gal4/UAS system to model KRAS-initiated pancreatic cancer in zebrafish, as well as our early efforts using this system to study the influence of other cooperating oncogenes. We also describe techniques used to identify and characterize pancreatic tumors in adult transgenic fish.
Collapse
Affiliation(s)
- Shu Liu
- Department of Surgery and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
41
|
Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima SI, Hibi M. Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 2010; 343:1-17. [PMID: 20388506 DOI: 10.1016/j.ydbio.2010.03.024] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/30/2023]
Abstract
In mammals, cerebellar neurons are categorized as glutamatergic or GABAergic, and are derived from progenitors that express the proneural genes atoh1 or ptf1a, respectively. In zebrafish, three atoh1 genes, atoh1a, atoh1b, and atoh1c, are expressed in overlapping but distinct expression domains in the upper rhombic lip (URL): ptf1a is expressed exclusively in the ventricular zone (VZ). Using transgenic lines expressing fluorescent proteins under the control of the regulatory elements of atoh1a and ptf1a, we traced the lineages of the cerebellar neurons. The atoh1(+) progenitors gave rise not only to granule cells but also to neurons of the anteroventral rhombencephalon. The ptf1a(+) progenitors generated Purkinje cells. The olig2(+) eurydendroid cells, which are glutamatergic, were derived mostly from ptf1a(+) progenitors in the VZ but some originated from the atoh1(+) progenitors in the URL. In the adult cerebellum, atoh1a, atoh1b, and atoh1c are expressed in the molecular layer of the valvula cerebelli and of the medial corpus cerebelli, and ptf1a was detected in the VZ. The proneural gene expression patterns coincided with the sites of proliferating neuronal progenitors in the adult cerebellum. Our data indicate that proneural gene-linked neurogenesis is evolutionarily conserved in the cerebellum among vertebrates, and that the continuously generated neurons help remodel neural circuits in the adult zebrafish cerebellum.
Collapse
Affiliation(s)
- Shuichi Kani
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
AN Y, YANG YK, GAO F, ZHU KY, MU TW, TENG CB. Identification of MicroRNAs Regulating Ptf1a Expression in Mouse Pancreas Development*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Dev 2009; 4:34. [PMID: 19732413 PMCID: PMC2746205 DOI: 10.1186/1749-8104-4-34] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/04/2009] [Indexed: 11/10/2022] Open
Abstract
Background The vertebrate retina is composed of five major types of neurons: three excitatory (photoreceptors, bipolar cells and ganglion cells) and two inhibitory (horizontal and amacrine cells). The transcription factor Ptf1a (pancreas transcription factor 1a) is important for the normal development of the inhibitory retinal neurons. Results Using a transgenic Ptf1a:GFP reporter and in situ hybridization in the zebrafish retina, we show that ptf1a message is transiently expressed in all amacrine and horizontal cells within hours after the terminal division of multipotent progenitors at the apical surface of the retinal neuroepithelium, and remains on as these cells migrate to their final laminar location. The message then shuts off, but we can follow the stable Ptf1a:GFP protein for up to 120 hours post-fertilization. A variety of anatomically and neurochemically distinct subtypes of amacrine cells can already be distinguished at this embryonic time point. Conclusion The timing of Ptf1a expression suggests that it is involved in the very early stages or steps in the differentiation of amacrine cells, which, due to the perdurance of the Ptf1a:GFP, can be seen to rapidly diversify into a large number of subtypes. This work sets the stage for future studies looking at genetic specification of amacrine subtypes.
Collapse
|
44
|
Carten JD, Farber SA. A new model system swims into focus: using the zebrafish to visualize intestinal metabolism in vivo. CLINICAL LIPIDOLOGY 2009; 4:501-515. [PMID: 20174460 PMCID: PMC2822395 DOI: 10.2217/clp.09.40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many fundamental questions remain regarding the cellular and molecular mechanisms of digestive lipid metabolism. One major impediment to answering important questions in the field has been the lack of a tractable and sufficiently complex model system. Until recently, most studies of lipid metabolism have been performed in vitro or in mice, yet each approach possesses certain limitations. The zebrafish (Danio rerio) offers an excellent model system in which to study lipid metabolism in vivo, owing to its small size, genetic tractability and optical clarity. Fluorescent lipid dyes and optical reporters of lipid-modifying enzymes are now being used in live zebrafish to generate visible readouts of digestive physiology. Here we review recent advances in visualizing intestinal lipid metabolism in live larval zebrafish.
Collapse
Affiliation(s)
| | - Steven A Farber
- Author for correspondence: Carnegie Institution, Department of Embryology, 3520 San Martin Drive, Baltimore, MD 21218, USA, Tel.: +1 410 246 3072, Fax: +1 410 243 6311,
| |
Collapse
|
45
|
Cyp26 enzymes function in endoderm to regulate pancreatic field size. Proc Natl Acad Sci U S A 2009; 106:7864-9. [PMID: 19416885 DOI: 10.1073/pnas.0813108106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The control of organ size and position relies, at least in part, upon appropriate regulation of the signals that specify organ progenitor fields. Pancreatic cell fates are specified by retinoic acid (RA), and proper size and localization of the pancreatic field are dependent on tight control of RA signaling. Here we show that the RA-degrading Cyp26 enzymes play a critical role in defining the normal anterior limit of the pancreatic field. Disruption of Cyp26 function causes a dramatic expansion of pancreatic cell types toward the anterior of the embryo. The cyp26a1 gene is expressed in the anterior trunk endoderm at developmental stages when RA is signaling to specify pancreas, and analysis of cyp26a1/giraffe (gir) mutant zebrafish embryos confirms that cyp26a1 plays the primary role in setting the anterior limit of the pancreas. Analysis of the gir mutants further reveals that cyp26b1 and cyp26c1 function redundantly to partially compensate for loss of Cyp26a1 function. We used cell transplantation to determine that Cyp26a1 functions directly in endoderm to modulate RA signaling and limit the pancreatic field. Taken together with our finding that endodermal expression of cyp26 genes is subject to positive regulation by RA, our data reveal a feedback loop within the endoderm. Such feedback can maintain consistent levels of RA signaling, despite environmental fluctuations in RA concentration, thus ensuring a consistent size and location of the pancreatic field.
Collapse
|
46
|
Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima SI, Hibi M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 2009; 330:406-26. [PMID: 19371731 DOI: 10.1016/j.ydbio.2009.04.013] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1(+) granule cells and vglut2(high) cells, which receive Purkinje cell inputs; some vglut2(high) cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2(+) neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.
Collapse
Affiliation(s)
- Young-Ki Bae
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Exdpf is a key regulator of exocrine pancreas development controlled by retinoic acid and ptf1a in zebrafish. PLoS Biol 2009; 6:e293. [PMID: 19067490 PMCID: PMC2586380 DOI: 10.1371/journal.pbio.0060293] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/14/2008] [Indexed: 01/19/2023] Open
Abstract
Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell specification. We report here the identification and characterization of a novel exocrine cell determinant gene, exocrine differentiation and proliferation factor (exdpf), which is highly expressed in the exocrine cell progenitors and differentiated cells of the developing pancreas in zebrafish. Knockdown of exdpf by antisense morpholino caused loss or significant reduction of exocrine cells due to lineage-specific cell cycle arrest but not apoptosis, whereas the endocrine cell mass appeared normal. Real-time PCR results demonstrated that the cell cycle arrest is mediated by up-regulation of cell cycle inhibitor genes p21(Cip), p27(Kip), and cyclin G1 in the exdpf morphants. Conversely, overexpression of exdpf resulted in an overgrowth of the exocrine pancreas and a severe reduction of the endocrine cell mass, suggesting an inhibitory role for exdpf in endocrine cell progenitors. We show that exdpf is a direct target gene of pancreas-specific transcription factor 1a (Ptf1a), a transcription factor critical for exocrine formation. Three consensus Ptf1a binding sites have been identified in the exdpf promoter region. Luciferase assay demonstrated that Ptf1a promotes transcription of the exdpf promoter. Furthermore, exdpf expression in the exocrine pancreas was lost in ptf1a morphants, and overexpression of exdpf successfully rescued exocrine formation in ptf1a-deficient embryos. Genetic evidence places expdf downstream of retinoic acid (RA), an instructive signal for pancreas development. Knocking down exdpf by morpholino abolished ectopic carboxypeptidase A (cpa) expression induced by RA. On the other hand, exdpf mRNA injection rescued endogenous cpa expression in embryos treated with diethylaminobenzaldehyde, an inhibitor of RA signaling. Moreover, exogenous RA treatment induced anterior ectopic expression of exdpf and trypsin in a similar pattern. Our study provides a new understanding of the molecular mechanisms controlling exocrine cell specification and proliferation by a novel gene, exdpf. Highly conserved in mammals, the expression level of exdpf appears elevated in several human tumors, suggesting a possible role in tumor pathogenesis.
Collapse
|
48
|
Hama K, Provost E, Baranowski TC, Rubinstein AL, Anderson JL, Leach SD, Farber SA. In vivo imaging of zebrafish digestive organ function using multiple quenched fluorescent reporters. Am J Physiol Gastrointest Liver Physiol 2009; 296:G445-53. [PMID: 19056761 PMCID: PMC2643917 DOI: 10.1152/ajpgi.90513.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/26/2008] [Indexed: 02/08/2023]
Abstract
Optical clarity of larvae makes the zebrafish ideal for real-time analyses of vertebrate organ function through the use of fluorescent reporters of enzymatic activities. A key function of digestive organs is to couple the generation of enzymes with mechanical processes that enable nutrient availability and absorption. However, it has been extremely difficult, and in many cases not possible, to directly observe digestive processes in a live vertebrate. Here we describe a new method to visualize intestinal protein and lipid processing simultaneously in live zebrafish larvae using a quenched fluorescent protein (EnzChek) and phospholipid (PED6). By employing these reagents, we found that wild-type larvae exhibit significant variation in intestinal phospholipase and protease activities within a group but display a strong correlation between the activities within individuals. Furthermore, we found that pancreas function is essential for larval digestive protease activity but not for larval intestinal phospholipase activity. Although fat-free (ffr) mutant larvae were previously described to exhibit impaired lipid processes, we found they also had significantly reduced protease activity. Finally, we selected and evaluated compounds that were previously suggested to have altered phospholipase activity and are known or suspected to have inflammatory effects in the intestinal tract including nonsteroidal anti-inflammatory drugs, and identified a compound that significantly increases intestinal phospholipid processing. Thus the multiple fluorescent reporter-based methodology facilitates the rapid analysis of digestive organ function in live zebrafish larvae.
Collapse
Affiliation(s)
- Kotaro Hama
- Department of Embriology, Carnegie Institution, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Development of the vertebrate pancreas is a complex stepwise process comprising regionalization, cell differentiation, and morphogenesis. Studies in zebrafish are contributing to an emerging picture of pancreas development in which extrinsic signaling molecules influence intrinsic transcriptional programs to allow ultimate differentiation of specific pancreatic cell types. Zebrafish experiments have revealed roles for several signaling molecules in aspects of this process; for example our own work has shown that retinoic acid signals specify the pre-pancreatic endoderm. Time-lapse imaging of live zebrafish embryos has started to provide detailed information about early pancreas morphogenesis. In addition to modeling embryonic development, the zebrafish has recently been used as a model for pancreas regeneration studies. Here, we review the significant progress in these areas and consider the future potential of zebrafish as a diabetes research model.
Collapse
Affiliation(s)
- Mary D Kinkel
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
50
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|