1
|
Wang Y, Wang W, Yang X, Chen W, Yang X, Pan X, Xu P, Zhu W, Han Y, Chen X. ITGA8 positive cells in the conventional outflow tissue exhibit Schlemm's canal endothelial cell properties. Life Sci 2021; 278:119564. [PMID: 33961857 DOI: 10.1016/j.lfs.2021.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
AIMS Elevated intraocular pressure is primarily induced by the increased resistance of conventional outflow of aqueous humor. Dysfunction of the juxtacanalicular region of trabecular meshwork (TM) and Schlemm's canal (SC) endothelium, as the main conventional outflow tissue, have been implicated as the major reasons for the increased resistance. Integrins are widespread in these tissues, especially alpha8 integrin (ITGA8). We aim to investigate the properties of cells expressing ITGA8 in the conventional outflow tissue. MAIN METHODS Fluorescence in situ hybridization (FISH) and immunofluorescence (IF) were performed to detect the mRNA and protein levels of ITGA8 in human conventional outflow tissue. ITGA8-positive cells were isolated from the cultured human TM cells through a magnetic bead-based approach. Flow Cytometry was used to determine the purification efficiency. The expressions of TM and SC biomarkers and dexamethasone-induced myocilin secretion capacity of ITGA8-positive cells was assessed by Real-time PCR, IF and Western blot. A gel contraction assay was performed to evaluate contractility of ITGA8-positive cells after endothelin 1 treatment. KEY FINDINGS ITGA8 was found with robust expression near the inner wall of SC endothelium. After purification, the proportion of ITGA8-positive cells were increased by about 10%. ITGA8-positive cells were identified with the properties as SC endothelial cells, such as more robust expressions of SC biomarkers, less dexamethasone-inducible myocilin expression, and stronger contractility. SIGNIFICANCE This study demonstrated that cells expressing ITGA8 in SC region possess more properties as SC endothelial cells. Our data implicate a crucial role of ITGA8 in aqueous humor (AH) outflow resistance regulation.
Collapse
Affiliation(s)
- Yanan Wang
- School of Basic Medicine, Qingdao University, Qingdao 266021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenyan Wang
- School of Basic Medicine, Qingdao University, Qingdao 266021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Xuejiao Yang
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Wenshi Chen
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xian Yang
- Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Peilong Xu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang, University & Capital Medical University, Beijing 100730, China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Qingdao 266021, China.
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
2
|
D'Onofrio PM, Shabanzadeh AP, Choi BK, Bähr M, Koeberle PD. MMP Inhibition Preserves Integrin Ligation and FAK Activation to Induce Survival and Regeneration in RGCs Following Optic Nerve Damage. Invest Ophthalmol Vis Sci 2019; 60:634-649. [PMID: 30743263 DOI: 10.1167/iovs.18-25257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Integrin adherence to the extracellular matrix (ECM) is essential for retinal ganglion cell (RGC) survival: damage causes production and release of ECM degrading matrix metalloproteinases (MMPs) that disrupt integrin ligation, leading to RGC death. The interplay of MMPs, integrins, and focal adhesion kinase (FAK) was studied in RGCs after optic nerve injury. Methods Optic nerve transection and optic nerve crush were used to study RGC survival and regeneration, respectively. Treatments were administered intravitreally or into the cut end of the optic nerve. RGC survival was assessed by fluorescence or confocal microscopy; cell counting, peptide levels, and localization were assessed by Western blot and immunohistochemistry. Results MMP-9 was most strongly increased and localized to RGCs after injury. Pan-MMP, MMP-2/-9, and MMP-3 inhibition all significantly enhanced RGC survival and increased RGC axon regeneration. FAK activation was decreased at 4 days postaxotomy, when apoptosis begins. FAK inhibition reduced RGC survival and abrogated the neuroprotective effects of MMP inhibition, whereas FAK activation increased RGC survival despite MMP activation. Integrin ligation with CD29 antibody or glycine-arginine-glycine-aspatate-serine (GRGDS) peptide increased RGC survival after axotomy. Conclusions ECM-integrin ligation promotes RGC survival and axon regeneration via FAK activation.
Collapse
Affiliation(s)
- Philippe M D'Onofrio
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| | - Alireza P Shabanzadeh
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Brian K Choi
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Paulo D Koeberle
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Science Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Chawla R, Nath M, Moksha L, Nag TC, Velpandian T. An experimental study to evaluate safety/toxicity of intravitreal natalizumab. Indian J Ophthalmol 2018; 66:1441-1445. [PMID: 30249830 PMCID: PMC6173036 DOI: 10.4103/ijo.ijo_425_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose: The purpose of this prospective experimental study was to evaluate the safety/toxicity of α4β1 integrin blockade in rabbit retina using its monoclonal antibody (Natalizumab). Methods: Twelve New Zealand albino rabbits were divided into three groups (n = 4). Unilateral intravitreal injections of three different concentrations of natalizumab were performed in every rabbit of each group (Group A: 0.625 mg, Group B: 1.25 mg, and Group C: 2.5 mg). Baseline electroretinogram (ERG) and fundus photography were performed prior to injection. At days 1, 7, and 21 postinjection, ERG and fundus photography of each eye were performed. At last follow-up, Group C animals with highest drug concentration were sacrificed and the enucleated eyes were evaluated for retinal toxicity using transmission electron microscopy (TEM). Results: No difference in ERG responses was observed in eyes injected with low and intermediate concentration of natalizumab between day 0 and day 21. Furthermore, rabbits injected intravitreally with highest dose showed reduction in amplitude of “a” wave (P = 0.0017) and a reduction in amplitude of “b” wave of ERG at day 21 (P = 0.0117). TEM revealed changes in the outer plexiform layer and inner nuclear layer, suggestive of toxicity primarily to the photoreceptor synaptic terminals and bipolar cells. Conclusion: Low-dose (0.625 mg) and intermediate-dose (1.25 mg) intravitreal injection of natalizumab appears safe for rabbit retina. However, functional and anatomical changes were observed in rabbit retina following a high-dose (2.5 mg) intravitreal injection of a monoclonal antibody blocking α4β1 integrin.
Collapse
Affiliation(s)
- Rohan Chawla
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Madhu Nath
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Laxmi Moksha
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, New Delhi, India
| |
Collapse
|
4
|
Monavarfeshani A, Knill CN, Sabbagh U, Su J, Fox MA. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain. Front Integr Neurosci 2017; 11:20. [PMID: 28912695 PMCID: PMC5583603 DOI: 10.3389/fnint.2017.00020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 12/16/2022] Open
Abstract
Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain development and function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States
| | - Courtney N Knill
- Virginia Tech Carilion School of Medicine, Virginia TechRoanoke, VA, United States
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Translational Biology, Medicine, and Health Graduate Program, Virginia TechBlacksburg, VA, United States
| | - Jianmin Su
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States
| | - Michael A Fox
- Developmental and Translational Neurobiology Center, Virginia Tech Carilion Research InstituteRoanoke, VA, United States.,Department of Biological Sciences, Virginia TechBlacksburg, VA, United States.,Department of Pediatrics, Virginia Tech Carilion School of MedicineRoanoke, VA, United States
| |
Collapse
|
5
|
The role of integrins in glaucoma. Exp Eye Res 2016; 158:124-136. [PMID: 27185161 DOI: 10.1016/j.exer.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 01/04/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors that mediate adhesion to the extracellular matrix (ECM). In addition to their role as adhesion receptors, integrins can act as ''bidirectional signal transducers'' that coordinate a large number of cellular activities in response to the extracellular environment and intracellular signaling events. This bidirectional signaling helps maintain tissue homeostasis. Dysregulated bidirectional signaling, however, could trigger the propagation of feedback loops that can lead to the establishment of a disease state such as glaucoma. Here we discuss the role of integrins and bidirectional signaling as they relate to the glaucomatous phenotype with special emphasis on the αvβ3 integrin. We present evidence that this particular integrin may have a significant impact on the pathogenesis of glaucoma.
Collapse
|
6
|
Lv XH, Liu BQ, Li XM, Wang XC, Li XL, Ahmed N, Zhang YF. Integrin α4 Induces Lymphangiogenesis and Metastasis via Upregulation of VEGF-C in Human Colon Cancer. Anat Rec (Hoboken) 2016; 299:741-7. [PMID: 26917449 DOI: 10.1002/ar.23338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 01/04/2016] [Accepted: 01/29/2016] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor-C (VEGF-C) is a key regulator in lymphangiogenesis, and is overexpressed in various malignancies. Integrin α4β1, a new member of the VEGF-C/VEGF receptor pathway, was found to be overexpressed in melanoma tumors. However, little is known regarding the potential role of integrin α4β1 in lymphangiogenesis and other solid tumors. The aim of this study was to investigate the expression patterns of integrin α4 and VEGF-C in relation to lymphangiogenesis and clinicopathological parameters in human colon cancer. The expression of integrin α4, VEGF-C, and VEGFR-3 was assessed in 71 human colon cancer tissues and 30 paracancerous normal tissues by immunohistochemical staining. Lymphatic microvessel density (LMVD) was measured after D2-40-labeling, and the correlations among different factors were statistically analyzed. The expression of integrin α4, VEGF-C, VEGFR-3, and LMVD was higher in colon cancer tissues compared with the normal paracancerous colon tissues. There was a positive correlation between the expression of integrin α4 and VEGF-C. Integrin α4 and VEGF-C were significantly associated with the clinicopathological parameters (LMVD, Duke's stage, and lymph node metastasis). Kaplan-Meier analyses indicated that patients with high integrin α4 or VEGF-C expression had significantly shorter overall survival and tumor-free survival time. Multivariate analyses suggested that integrin α4 and VEGF-C may serve as independent prognostic factors for human colon cancer. Both integrin α4 and VEGF-C are involved in lymphangiogenesis and lymphatic metastasis. Our results demonstrated that integrin α4 is a novel prognostic indicator for human colon cancer. Anat Rec, 299:741-747, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Hong Lv
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Bao-Quan Liu
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xue-Mei Li
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xiang-Chen Wang
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Xin-Lei Li
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Naila Ahmed
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| | - Ya-Fang Zhang
- Department of Anatomy, Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
7
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
8
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
9
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
10
|
The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina. Cell Tissue Res 2014; 359:423-440. [PMID: 25501893 DOI: 10.1007/s00441-014-2050-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.
Collapse
|
11
|
Gramage E, Li J, Hitchcock P. The expression and function of midkine in the vertebrate retina. Br J Pharmacol 2014; 171:913-23. [PMID: 24460673 PMCID: PMC3925030 DOI: 10.1111/bph.12495] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022] Open
Abstract
The functional role of midkine during development, following injury and in disease has been studied in a variety of tissues. In this review, we summarize what is known about midkine in the vertebrate retina, focusing largely on recent studies utilizing the zebrafish (Danio rerio) as an animal model. Zebrafish are a valuable animal model for studying the retina, due to its very rapid development and amazing ability for functional neuronal regeneration following neuronal cell death. The zebrafish genome harbours two midkine paralogues, midkine-a (mdka) and midkine-b (mdkb), which, during development, are expressed in nested patterns among different cell types. mdka is expressed in the retinal progenitors and mdkb is expressed in newly post-mitotic cells. Interestingly, studies of loss-and gain-of-function in zebrafish larvae indicate that midkine-a regulates cell cycle kinetics. Moreover, both mdka and mdkb are expressed in different cell types in the normal adult zebrafish retina, but after light-induced death of photoreceptors, both are up-regulated and expressed in proliferating Müller glia and photoreceptor progenitors, suggesting an important and (perhaps) coincident role for these cytokines during stem cell-based neuronal regeneration. Based on its known role in other tissues and the expression and function of the midkine paralogues in the zebrafish retina, we propose that midkine has an important functional role both during development and regeneration in the retina. Further studies are needed to understand this role and the mechanisms that underlie it.
Collapse
Affiliation(s)
- E Gramage
- Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
12
|
Sakurai K, Matsuoka T, Suzuki C, Kinoshita J, Takayama G, Shimomura K. Investigation of the teratogenic potential of VLA-4 antagonist derivatives in rats. Reprod Toxicol 2014; 49:162-70. [PMID: 25194688 DOI: 10.1016/j.reprotox.2014.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022]
Abstract
Very late antigen-4 (VLA-4), which is concerned with cell-cell adhesion, plays important roles in development of the heart, and some VLA-4 antagonists cause cardiac anomalies. In this study, we evaluated the teratogenic potential of VLA-4 antagonist derivatives as screening, and investigated the conditions that induce cardiac anomalies. Seventeen compounds were orally administered to pregnant rats throughout the organogenesis period, and fetal examinations were performed. In addition, drug concentrations in the embryos were assayed. As a result, the incidence of ventricular septal defect (VSD) ranged from 0 to 100% depending on the compound. Plasma drug concentrations in the dams were related to increased incidence of VSD; however, these incidences were not increased when the concentration of the compound in the embryos at 24h after dosing was low. It is considered that continuous pharmacological activity in the embryo for more than 24h might disrupt closure of the ventricular septum.
Collapse
Affiliation(s)
- Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan.
| | - Toshiki Matsuoka
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Chiharu Suzuki
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Junzo Kinoshita
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Gensuke Takayama
- Oncology Research Laboratories, Daiichi Sankyo Co., Ltd., 2-58, Hiromachi 1-Chome, Shinagawa-Ku, Tokyo 140-0005, Japan
| | - Kazuhiro Shimomura
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 16-13, Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| |
Collapse
|
13
|
Schlesinger M, Bendas G. Vascular cell adhesion molecule-1 (VCAM-1)--an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer 2014; 136:2504-14. [PMID: 24771582 DOI: 10.1002/ijc.28927] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) first attracted attention more than two decades ago as endothelial adhesion receptor with key function for leukocyte recruitment in term of cellular immune response. The early finding of VCAM-1 binding to melanoma cells, and thus a suggested mechanistic contribution to metastatic spread, was the first and for a long time the only link of VCAM-1 to cancer sciences. In the last few years, hallmarked by a growing insight into the molecular understanding of tumorigenicity and metastasis, an impressive variety of VCAM-1 functionalities in cancer have been elucidated. The present review aims to provide a current overview of VCAM-1 relevance for tumor growth, metastasis, angiogenesis, and related processes. By illustrating the intriguing role of VCAM-1 in cancer disease, VCAM-1 is suggested as a new and up to now underestimated target in cancer treatment and in clinical diagnosis of malignancies.
Collapse
Affiliation(s)
- Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | | |
Collapse
|
14
|
Parapuram SK, Hodge W. The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. J Cell Commun Signal 2014; 8:113-24. [PMID: 24604397 DOI: 10.1007/s12079-014-0230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Ophthalmology, University of Western Ontario, London, Ontario, N6A 4V2, Canada,
| | | |
Collapse
|
15
|
Lund SA, Wilson CL, Raines EW, Tang J, Giachelli CM, Scatena M. Osteopontin mediates macrophage chemotaxis via α4 and α9 integrins and survival via the α4 integrin. J Cell Biochem 2013. [PMID: 23192608 DOI: 10.1002/jcb.24462] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is highly expressed by macrophages and plays a key role in the pathology of several chronic inflammatory diseases including atherosclerosis and the foreign body reaction. However, the molecular mechanism behind OPN regulation of macrophage functions is not well understood. OPN is a secreted molecule and interacts with several integrins via two domains: the RGD sequence binding to α(v) -containing integrins, and the SLAYGLR sequence binding to α(4) β(1), α(4) β(7), and α(9) β(1) integrins. Here we determined the role of OPN in macrophage survival, chemotaxis, and activation state. For survival studies, OPN treated-bone marrow derived macrophages (BMDMs) were challenged with growth factor withdrawal and neutralizing integrin antibodies. We found that survival in BMDMs is mediated primarily through the α(4) integrin. In chemotaxis studies, we observed that migration to OPN was blocked by neutralizing α(4) and α(9) integrin antibodies. Further, OPN did not affect macrophage activation as measured by IL-12 production. Finally, the relative contributions of the RGD and the SLAYGLR functional domains of OPN to leukocyte recruitment were evaluated in an in vivo model. We generated chimeric mice expressing mutated forms of OPN in myeloid-derived leukocytes, and found that the SLAYGLR functional domain of OPN, but not the RGD, mediates macrophage accumulation in response to thioglycollate-elicited peritonitis. Collectively, these data indicate that α(4) and α(9) integrins interacting with OPN via the SLAYGLR domain play a key role in macrophage biology by regulating migration, survival, and accumulation.
Collapse
Affiliation(s)
- Susan Amanda Lund
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
16
|
Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P. QSAR study of α1β4 integrin inhibitors by GA-MLR and GA-SVM methods. Struct Chem 2013. [DOI: 10.1007/s11224-013-0300-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Han HY, Zhang JP, Ji SQ, Liang QM, Kang HC, Tang RH, Zhu SQ, Xue Z. αν and β1 Integrins mediate Aβ-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway. PLoS One 2013; 8:e64839. [PMID: 23755149 PMCID: PMC3670848 DOI: 10.1371/journal.pone.0064839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
αν and β1 integrins mediate Aβ-induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Han
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jin-Ping Zhang
- Department of Neurology, Qianfoshan Hospital, Shan Dong University, Jinan, Shandong Province, China
| | - Su-Qiong Ji
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi-Ming Liang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong-Hua Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sui-Qiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
18
|
Baranov P, Regatieri C, Melo G, Clissold H, Young M. Synthetic peptide-acrylate surface for self-renewal of human retinal progenitor cells. Tissue Eng Part C Methods 2012; 19:265-70. [PMID: 22920918 DOI: 10.1089/ten.tec.2012.0217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human retinal progenitor cells (hRPCs), isolated from fetal retina, require extracellular matrix proteins such as fibronectin or laminin for successful attachment and self-renewal in vitro. Here we have shown that a novel synthetic vitronectin-mimicking surface supports self-renewal and multipotency of hRPCs in a chemically defined culture system. The morphology, adhesion, and proliferation of hRPC were equivalent on a novel vitronectin-mimicking surface (Synthemax) compared to a fibronectin-coated surface. When evaluated using real-time polymerase chain reaction, Western blotting, and flow cytometry, both surfaces maintained self-renewal of hRPCs, as shown by similar expression levels of Sox2, Nestin, cMyc, Klf4, and Pax6, with no change in integrin beta1 and integrin alpha5 expression. We suggest that the use of synthetic, xeno-free surfaces such as Synthemax will be useful for basic research studies, as well as development of translational strategies aimed at using stem cell transplantation to treat disease.
Collapse
Affiliation(s)
- Petr Baranov
- Schepens Eye Research Institute, Massachusetts Eye and Ear Foundation, an affiliate of Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
19
|
Constitutive expression of the alpha4 integrin correlates with tumorigenicity and lymph node metastasis of the B16 murine melanoma. Neoplasia 2010; 12:173-82. [PMID: 20126475 DOI: 10.1593/neo.91604] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/18/2009] [Accepted: 11/23/2009] [Indexed: 02/02/2023] Open
Abstract
The lymphatic system plays a critical role in melanoma metastasis, and yet, virtually no information exists regarding the cellular and molecular mechanisms that take place between melanoma cells and the lymphatic vasculature. Here, we generated B16-F1 melanoma cells that expressed high (B16alpha(4)+) and negligible (B16alpha(4)-) levels of alpha(4) integrin to determine how the expression of alpha(4) integrins affects tumor cell interactions with lymphatic endothelial cells in vitro and how it impacts lymphatic metastasis in vivo. We found a direct correlation between alpha(4) integrin expression on B16-F1 melanoma cells and their ability to form adhesive interactions with monolayers of lymphatic endothelial cells. Adhesion of B16-F1 melanoma cells to lymphatic endothelial cells was mediated by the melanoma cell alpha(4) integrin binding to its counterreceptor, vascular cell adhesion molecule 1 (VCAM-1), that was constitutively expressed on the lymphatic endothelial cells. VCAM-1 was also expressed on the tumor-associated lymphatic vessels of B16-F1 and B16alpha(4)+ tumors growing in the subcutaneous space of C57BL/6J mice. B16-F1 tumors metastasized to lymph nodes in 30% of mice, whereas B16alpha(4)+ tumors generated lymph node metastases in 80% of mice. B16-F1 melanoma cells that were deficient in alpha(4) integrins (B16alpha(4)-) were nontumorigenic. Collectively, these data show that the alpha(4) integrin expressed by melanoma cells contributes to tumorigenesis and may also facilitate metastasis to regional lymph nodes by promoting stable adhesion of melanoma cells to the lymphatic vasculature.
Collapse
|
20
|
Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Targeting of integrin beta1 and kinesin 2alpha by microRNA 183. J Biol Chem 2009; 285:5461-71. [PMID: 19940135 DOI: 10.1074/jbc.m109.037127] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroRNA 183 (miR-183) has been reported to inhibit tumor invasiveness and is believed to be involved in the development and function of ciliated neurosensory organs. We have recently found that expression of miR-183 increased after the induction of cellular senescence by exposure to H(2)O(2). To gain insight into the biological roles of miR-183 we investigated two potential novel targets: integrin beta1 (ITGB1) and kinesin 2alpha (KIF2A). miR-183 significantly decreased the expression of ITGB1 and KIF2A measured by Western blot. Targeting of the 3'-untranslated region (3'-UTR) of ITGB1 and KIF2A by miR-183 was confirmed by luciferase assay. Transfection with miR-183 led to a significant decrease in cell invasion and migration capacities of HeLa cells that could be rescued by expression of ITGB1 lacking the 3'-UTR. Although miR-183 had no effects on cell adhesion in HeLa cells, it significantly decreased adhesion to laminin, gelatin, and collagen type I in normal human diploid fibroblasts and human trabecular meshwork cells. These effects were also rescued by expression of ITGB1 lacking the 3'-UTR. Targeting of KIF2A by miR-183 resulted in some increase in the formation of cells with monopolar spindles in HeLa cells but not in human diploid fibroblast or human trabecular meshwork cells. The regulation of ITGB1 expression by miR-183 provides a new mechanism for the anti-metastatic role of miR-183 and suggests that this miRNA could influence the development and function in neurosensory organs, and contribute to functional alterations associated with cellular senescence in human diploid fibroblasts and human trabecular meshwork cells.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Comparative screening of glial cell types reveals extracellular matrix that inhibits retinal axon growth in a chondroitinase ABC-resistant fashion. Glia 2009; 57:1420-38. [DOI: 10.1002/glia.20860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
23
|
Li YJ, Hui YN, Yan F, Du ZJ. Up-regulation of integrin-linked kinase in the streptozotocin-induced diabetic rat retina. Graefes Arch Clin Exp Ophthalmol 2007; 245:1523-32. [PMID: 17653754 DOI: 10.1007/s00417-007-0616-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 04/26/2007] [Accepted: 05/18/2007] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES This study investigated whether integrin-linked kinase (ILK) is involved in the pathogenesis of diabetic retinopathy, by analyzing the expression and activity of ILK in the retina from a streptozotocin (STZ)-induced rat model of diabetes. METHODS ILK expression in the retina from both control and STZ-induced diabetic rats was measured by reverse transcription polymerase chain reaction, immunohistochemistry and Western blot analysis. The expressions of Akt and FOXO1A, the downstream molecules of ILK, were also examined. RESULTS The present study showed that the STZ-induced diabetes was associated with the increase in the vascular permeability in the retina. This elevated vascular permeability increased with the progression of diabetic retinopathy. Meanwhile, the results also showed that the expression of ILK increased in protein and mRNA levels in the retina of STZ-induced diabetic rats. Immunohistochemistry showed that immunostaining of ILK was localized in the outer plexiform layer (OPL), the inner nuclear layer (INL), the inner plexiform layer (IPL), the ganglion cell layer (GCL) and the retinal microvasculature of rats. However, the expression of Akt was reduced in the retinas at 8 and 12 weeks and increased in the retinas at 4 weeks after induction of diabetes. Meanwhile, the expression of the FOXO1A protein increased in the retinas at 8 and 12 weeks and decreased in the retinas at 4 weeks after induction of diabetes. The FOXO1A immunostaining was also observed in the retinal microvasculature and in the OPL, INL, IPL and GCL of rat retinas. CONCLUSION These results indicate that diabetes affects the expression of ILK in the retina. ILK may be involved in the diabetes-induced damage and/or alterations of neural and microvascular structures.
Collapse
Affiliation(s)
- Yang-Jun Li
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University and Eye Institute of PLA, Xian 710032, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Sonnet C, Lafuste P, Arnold L, Brigitte M, Poron F, Authier FJ, Chrétien F, Gherardi RK, Chazaud B. Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. J Cell Sci 2006; 119:2497-507. [PMID: 16720640 DOI: 10.1242/jcs.02988] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The mechanisms underlying stromal cell supportive functions are incompletely understood but probably implicate a mixture of cytokines, matrix components and cell adhesion molecules. Skeletal muscle uses recruited macrophages to support post-injury regeneration. We and others have previously shown that macrophages secrete mitogenic factors for myogenic cells. Here, we focused on macrophage-elicited survival signals. We demonstrated that: (1) macrophage influx is temporally correlated with the disappearance of TUNEL-positive apoptotic myogenic cells during post-injury muscle regeneration in mice; (2) direct cell-cell contacts between human macrophages and myogenic cells rescue myogenic cells from apoptosis, as assessed by decreased annexin V labelling and caspase-3 activity, and by increased DIOC-6 staining, Bcl-2 expression and phosphorylation of Akt and ERK1/2 survival pathways; (3) four pro-survival cell-cell adhesion molecular systems detected by DNA macroarray are expressed by macrophages and myogenic cells in vitro and in vivo - VCAM-1-VLA-4, ICAM-1-LFA-1, PECAM-1-PECAM-1 and CX3CL1-CX3CR1; (4) macrophages deliver anti-apoptotic signals through all four adhesion systems, as assessed by functional analyses with blocking antibodies; and (5) macrophages more strongly rescue differentiated myotubes, which must achieve adhesion-induced stabilisation of their structure to survive. Macrophages could secure these cells until they establish final association with the matrix.
Collapse
Affiliation(s)
- Corinne Sonnet
- INSERM E0011 Cellular interactions in the neuromuscular system, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale; Université Paris XII, 8 rue du Général Sarrail, 94000 Créteil, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lunardi A, Cremisi F, Dente L. Dystroglycan is required for proper retinal layering. Dev Biol 2006; 290:411-20. [PMID: 16406325 DOI: 10.1016/j.ydbio.2005.11.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 09/05/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Dystroglycan (DG) is a transmembrane receptor linking the extracellular matrix to the internal cytoskeleton. Its structural function has been mainly characterized in muscle fibers, but DG plays signaling and developmental roles also in different tissues and cell types. We have investigated the effects of dystroglycan depletion during eye development of Xenopus laevis. We have injected a specific morpholino (Mo) antisense oligonucleotide in the animal pole of one dorsal blastomere of embryos at four cells stage. Mo-mediated loss of DG function caused disruption of the basal lamina layers, increased apoptosis and reduction of the expression domains of specific retinal markers, at early stages. Later in development, morphants displayed unilateral ocular malformations, such as microphtalmia and retinal delayering with photoreceptors and ganglion cells scattered throughout the retina or aggregated in rosette-like structures. These results recall the phenotypes observed in specific human diseases and suggest that DG presence is crucial at early stages for the organization of retinal architecture.
Collapse
Affiliation(s)
- Andrea Lunardi
- Dipartimento di Fisiologia e Biochimica, Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, via G. Carducci 13, Ghezzano, Pisa 56010, Italy
| | | | | |
Collapse
|