1
|
Kim GJ. PACRG is Expressed on the Left Side of the Brain Vesicle in the Ascidian Halocynthia Larva. Dev Reprod 2024; 28:121-128. [PMID: 39845515 PMCID: PMC11750163 DOI: 10.12717/dr.2024.28.4.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 11/12/2024] [Indexed: 01/24/2025]
Abstract
The ascidian larvae, which display a chordate ground body plan, are left-right asymmetric in several structures, including the brain vesicle. In ascidian larvae, the ocellus and otolith pigment cells, which are thought to detect light and gravity respectively, are located on the right side of the brain vesicle, while the coronet cells, which are presumed to be dopaminergic, are located on the left side. To study how left-right asymmetry of the brain vesicle in the ascidian Halocynthia roretzi larva is determined, I attempted to isolate a gene that is expressed in the brain vesicle. As a result, an ascidian Parkin co-regulated gene (PACRG) orthologue was cloned. Expression of PACRG begins weakly in the head region of the late tailbud embryos, and it thereafter is observed on the left side of the brain vesicle of the larvae just before hatching. The location of PACRG expression is estimated to overlap with the area stained by the coronet cell-specific antibody. Thus, it is suggested that PACRG might be involved in the formation of the left-side structures of the brain vesicle, including coronet cells, during ascidian embryogenesis.
Collapse
Affiliation(s)
- Gil Jung Kim
- Department of Marine Bioscience,
Gangneung-Wonju National University, Gangneung
25457, Korea
| |
Collapse
|
2
|
Athira A, Dondorp D, Rudolf J, Peytral O, Chatzigeorgiou M. Comprehensive analysis of locomotion dynamics in the protochordate Ciona intestinalis reveals how neuromodulators flexibly shape its behavioral repertoire. PLoS Biol 2022; 20:e3001744. [PMID: 35925898 PMCID: PMC9352054 DOI: 10.1371/journal.pbio.3001744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona’s postural variance can be captured by 6 basic shapes, which we term “eigencionas.” Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including “startle-like” and “beat-and-glide.” Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli. Vertebrate nervous systems can generate a remarkable diversity of behaviors, but how did these evolve in the chordate lineage? A study of the protochordate Ciona intestinalis reveals novel insights into how a simple chordate brain uses neuromodulators to control its behavioral repertoire.
Collapse
Affiliation(s)
- Athira Athira
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Daniel Dondorp
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Jerneja Rudolf
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Olivia Peytral
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Marios Chatzigeorgiou
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
3
|
Gattoni G, Andrews TGR, Benito-Gutiérrez È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front Neurosci 2022; 16:812223. [PMID: 35401089 PMCID: PMC8987370 DOI: 10.3389/fnins.2022.812223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that, despite apparent morphological simplicity, the amphioxus neural tube is highly regionalised at the molecular level. However, little is known about the morphogenetic mechanisms regulating the spatiotemporal emergence of cell types at distinct sites of the neural axis and how their arrangements contribute to the overall neural architecture. In vertebrates, proliferation is key to provide appropriate cell numbers of specific types to particular areas of the nervous system as development proceeds, but in amphioxus proliferation has never been studied at this level of detail, nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos, and identify specific regions of the nervous system that depend on proliferation of neuronal precursors at precise time-points for their maturation. By labelling proliferating cells in vivo at specific time points in development, and inhibiting cell division during neurulation, we demonstrate that localised proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongation of the caudal floor plate. Between these proliferative domains, we find that trunk nervous system differentiation is independent from cell division, in which proliferation decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight the importance of proliferation as a tightly controlled mechanism for shaping and regionalising the amphioxus neural axis during development, by addition of new cells fated to particular types, or by influencing tissue geometry.
Collapse
|
4
|
Lacalli T. An evolutionary perspective on chordate brain organization and function: insights from amphioxus, and the problem of sentience. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200520. [PMID: 34957845 PMCID: PMC8710876 DOI: 10.1098/rstb.2020.0520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The similarities between amphioxus and vertebrate brains, in their regional subdivision, cell types and circuitry, make the former a useful benchmark for understanding the evolutionary innovations that shaped the latter. Locomotory control systems were already well developed in basal chordates, with the ventral neuropile of the dien-mesencephalon serving to set levels of activity and initiate locomotory actions. A chief deficit in amphioxus is the absence of complex vertebrate-type sense organs. Hence, much of vertebrate story is one of progressive improvement both to these and to sensory experience more broadly. This has two aspects: (i) anatomical and neurocircuitry innovations in the organs of special sense and the brain centres that process and store their output, and (ii) the emergence of primary consciousness, i.e. sentience. With respect to the latter, a bottom up, evolutionary perspective has a different focus from a top down human-centric one. At issue: the obstacles to the emergence of sentience in the first instance, the sequence of addition of new contents to evolving consciousness, and the homology relationship between them. A further question, and a subject for future investigation, is how subjective experience is optimized for each sensory modality. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada V8 W-3N5
| |
Collapse
|
5
|
Borba C, Kourakis MJ, Schwennicke S, Brasnic L, Smith WC. Fold Change Detection in Visual Processing. Front Neural Circuits 2021; 15:705161. [PMID: 34497492 PMCID: PMC8419522 DOI: 10.3389/fncir.2021.705161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Visual processing transforms the complexities of the visual world into useful information. Ciona, an invertebrate chordate and close relative of the vertebrates, has one of the simplest nervous systems known, yet has a range of visuomotor behaviors. This simplicity has facilitated studies linking behavior and neural circuitry. Ciona larvae have two distinct visuomotor behaviors - a looming shadow response and negative phototaxis. These are mediated by separate neural circuits that initiate from different clusters of photoreceptors, with both projecting to a CNS structure called the posterior brain vesicle (pBV). We report here that inputs from both circuits are processed to generate fold change detection (FCD) outputs. In FCD, the behavioral response scales with the relative fold change in input, but is invariant to the overall magnitude of the stimulus. Moreover, the two visuomotor behaviors have fundamentally different stimulus/response relationships - indicative of differing circuit strategies, with the looming shadow response showing a power relationship to fold change, while the navigation behavior responds linearly. Pharmacological modulation of the FCD response points to the FCD circuits lying outside of the visual organ (the ocellus), with the pBV being the most likely location. Consistent with these observations, the connectivity and properties of pBV interneurons conform to known FCD circuit motifs, but with different circuit architectures for the two circuits. The negative phototaxis circuit forms a putative incoherent feedforward loop that involves interconnecting cholinergic and GABAergic interneurons. The looming shadow circuit uses the same cholinergic and GABAergic interneurons, but with different synaptic inputs to create a putative non-linear integral feedback loop. These differing circuit architectures are consistent with the behavioral outputs of the two circuits. Finally, while some reports have highlighted parallels between the pBV and the vertebrate midbrain, suggesting a common origin for the two, others reports have disputed this, suggesting that invertebrate chordates lack a midbrain homolog. The convergence of visual inputs at the pBV, and its putative role in visual processing reported here and in previous publications, lends further support to the proposed common origin of the pBV and the vertebrate midbrain.
Collapse
Affiliation(s)
- Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Shea Schwennicke
- College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lorena Brasnic
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - William C Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,College of Creative Studies, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Kourakis MJ, Bostwick M, Zabriskie A, Smith WC. Disruption of left-right axis specification in Ciona induces molecular, cellular, and functional defects in asymmetric brain structures. BMC Biol 2021; 19:141. [PMID: 34256748 PMCID: PMC8276506 DOI: 10.1186/s12915-021-01075-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Left-right asymmetries are a common feature of metazoans and can be found in a number of organs including the nervous system. These asymmetries are particularly pronounced in the simple central nervous system (CNS) of the swimming tadpole larva of the tunicate Ciona, which displays a chordate ground plan. While common pathway elements for specifying the left/right axis are found among chordates, particularly a requirement for Nodal signaling, Ciona differs temporally from its vertebrate cousins by specifying its axis at the neurula stage, rather than at gastrula. Additionally, Ciona and other ascidians require an intact chorionic membrane for proper left-right specification. Whether such differences underlie distinct specification mechanisms between tunicates and vertebrates will require broad understanding of their influence on CNS formation. Here, we explore the consequences of disrupting left-right axis specification on Ciona larval CNS cellular anatomy, gene expression, synaptic connectivity, and behavior. Results We show that left-right asymmetry disruptions caused by removal of the chorion (dechorionation) are highly variable and present throughout the Ciona larval nervous system. While previous studies have documented disruptions to the conspicuously asymmetric sensory systems in the anterior brain vesicle, we document asymmetries in seemingly symmetric structures such as the posterior brain vesicle and motor ganglion. Moreover, defects caused by dechorionation include misplaced or absent neuron classes, loss of asymmetric gene expression, aberrant synaptic projections, and abnormal behaviors. In the motor ganglion, a brain structure that has been equated with the vertebrate hindbrain, we find that despite the apparent left-right symmetric distribution of interneurons and motor neurons, AMPA receptors are expressed exclusively on the left side, which equates with asymmetric swimming behaviors. We also find that within a population of dechorionated larvae, there is a small percentage with apparently normal left-right specification and approximately equal population with inverted (mirror-image) asymmetry. We present a method based on a behavioral assay for isolating these larvae. When these two classes of larvae (normal and inverted) are assessed in a light dimming assay, they display mirror-image behaviors, with normal larvae responding with counterclockwise swims, while inverted larvae respond with clockwise swims. Conclusions Our findings highlight the importance of left-right specification pathways not only for proper CNS anatomy, but also for correct synaptic connectivity and behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01075-4.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Michaela Bostwick
- College of Creative Studies, University of California, Santa Barbara, CA, 93106, USA
| | - Amanda Zabriskie
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA. .,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
7
|
Oonuma K, Kusakabe TG. The complete cell lineage and MAPK- and Otx-dependent specification of the dopaminergic cells in the Ciona brain. Development 2021; 148:269114. [PMID: 34121117 DOI: 10.1242/dev.198754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
The Ciona larva has served as a unique model for understanding the development of dopaminergic cells at single-cell resolution owing to the exceptionally small number of neurons in its brain and its fixed cell lineage during embryogenesis. A recent study suggested that the transcription factors Fer2 and Meis directly regulate the dopamine synthesis genes in Ciona, but the dopaminergic cell lineage and the gene regulatory networks that control the development of dopaminergic cells have not been fully elucidated. Here, we reveal that the dopaminergic cells in Ciona are derived from a bilateral pair of cells called a9.37 cells at the center of the neural plate. The a9.37 cells divide along the anterior-posterior axis, and all of the descendants of the posterior daughter cells differentiate into the dopaminergic cells. We show that the MAPK pathway and the transcription factor Otx are required for the expression of Fer2 in the dopaminergic cell lineage. Our findings establish the cellular and molecular framework for fully understanding the commitment to dopaminergic cells in the simple chordate brain.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| |
Collapse
|
8
|
Transcription Factors of the bHLH Family Delineate Vertebrate Landmarks in the Nervous System of a Simple Chordate. Genes (Basel) 2020; 11:genes11111262. [PMID: 33114624 PMCID: PMC7693978 DOI: 10.3390/genes11111262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Tunicates are marine invertebrates whose tadpole-like larvae feature a highly simplified version of the chordate body plan. Similar to their distant vertebrate relatives, tunicate larvae develop a regionalized central nervous system and form distinct neural structures, which include a rostral sensory vesicle, a motor ganglion, and a caudal nerve cord. The sensory vesicle contains a photoreceptive complex and a statocyst, and based on the comparable expression patterns of evolutionarily conserved marker genes, it is believed to include proto-hypothalamic and proto-retinal territories. The evolutionarily conserved molecular fingerprints of these landmarks of the vertebrate brain consist of genes encoding for different transcription factors, and of the gene batteries that they control, and include several members of the bHLH family. Here we review the complement of bHLH genes present in the streamlined genome of the tunicate Ciona robusta and their current classification, and summarize recent studies on proneural bHLH transcription factors and their expression territories. We discuss the possible roles of bHLH genes in establishing the molecular compartmentalization of the enticing nervous system of this unassuming chordate.
Collapse
|
9
|
Coppola U, Kamal AK, Stolfi A, Ristoratore F. The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Front Cell Dev Biol 2020; 8:569601. [PMID: 33043001 PMCID: PMC7517041 DOI: 10.3389/fcell.2020.569601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
The tunicate Ciona robusta is an emerging model system to study the evolution of the nervous system. Due to their small embryos and compact genomes, tunicates, like Ciona robusta, have great potential to comprehend genetic circuitry underlying cell specific gene repertoire, among different neuronal cells. Their simple larvae possess a sensory vesicle comprising two pigmented sensory organs, the ocellus and the otolith. We focused here on Klhl21/30, a gene belonging to Kelch family, that, in Ciona robusta, starts to be expressed in pigmented cell precursors, becoming specifically maintained in the otolith precursor during embryogenesis. Evolutionary analyses demonstrated the conservation of Klhl21/30 in all the chordates. Cis-regulatory analyses and CRISPR/Cas9 mutagenesis of potential upstream factors, revealed that Klhl21/30 expression is controlled by the combined action of three transcription factors, Mitf, Dmrt, and Msx, which are downstream of FGF signaling. The central role of Mitf is consistent with its function as a fundamental regulator of vertebrate pigment cell development. Moreover, our results unraveled a new function for Dmrt and Msx as transcriptional co-activators in the context of the Ciona otolith.
Collapse
Affiliation(s)
- Ugo Coppola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ashwani Kumar Kamal
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Filomena Ristoratore
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
10
|
Reddy PC, Gungi A, Ubhe S, Pradhan SJ, Kolte A, Galande S. Molecular signature of an ancient organizer regulated by Wnt/β-catenin signalling during primary body axis patterning in Hydra. Commun Biol 2019; 2:434. [PMID: 31799436 PMCID: PMC6879750 DOI: 10.1038/s42003-019-0680-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/06/2019] [Indexed: 11/20/2022] Open
Abstract
Wnt/β-catenin signalling has been shown to play a critical role during head organizer formation in Hydra. Here, we characterized the Wnt signalling regulatory network involved in formation of the head organizer. We found that Wnt signalling regulates genes that are important in tissue morphogenesis. We identified that majority of transcription factors (TFs) regulated by Wnt/β-catenin signalling belong to the homeodomain and forkhead families. Silencing of Margin, one of the Wnt regulated homeodomain TFs, results in loss of the ectopic tentacle phenotype typically seen upon activation of Wnt signalling. Furthermore, we show that the Margin promoter is directly bound and regulated by β-catenin. Ectopic expression of Margin in zebrafish embryos results in body axis abnormalities suggesting that Margin plays a role in axis patterning. Our findings suggest that homeobox TFs came under the regulatory umbrella of Wnt/β-catenin signalling presumably resulting in the evolution of primary body axis in animal phyla.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Saurabh J. Pradhan
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Amol Kolte
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, 411008 India
| |
Collapse
|
11
|
Foxg specifies sensory neurons in the anterior neural plate border of the ascidian embryo. Nat Commun 2019; 10:4911. [PMID: 31664020 PMCID: PMC6820760 DOI: 10.1038/s41467-019-12839-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022] Open
Abstract
Foxg constitutes a regulatory loop with Fgf8 and plays an important role in the development of anterior placodes and the telencephalon in vertebrate embryos. Ascidians, which belong to Tunicata, the sister group of vertebrates, develop a primitive placode-like structure at the anterior boundary of the neural plate, but lack a clear counterpart of the telencephalon. In this animal, Foxg is expressed in larval palps, which are adhesive organs with sensory neurons. Here, we show that Foxg begins to be expressed in two separate rows of cells within the neural plate boundary region under the control of the MAPK pathway to pattern this region. However, Foxg is not expressed in the brain, and we find no evidence that knockdown of Foxg affects brain formation. Our data suggest that recruitment of Fgf to the downstream of Foxg might have been a critical evolutionary event for the telencephalon in the vertebrate lineage. Vertebrate telencephalon formation requires Foxg-Fgf8 cross-regulation, but while ascidians express Foxg in the neural plate, they lack a telencephalon. Here the authors show that Foxg loss does not affect ascidian brain formation, indicating that telencephalon evolution required recruitment of Fgf downstream of Foxg.
Collapse
|
12
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
13
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. De novo neurogenesis in a budding chordate: Co-option of larval anteroposterior patterning genes in a transitory neurogenic organ. Dev Biol 2018; 448:342-352. [PMID: 30563648 DOI: 10.1016/j.ydbio.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/29/2018] [Accepted: 10/16/2018] [Indexed: 01/29/2023]
Abstract
During metamorphosis of solitary ascidians, part of the larval tubular nervous system is recruited to form the adult central nervous system (CNS) through neural stem-like cells called ependymal cells. The anteroposterior (AP) gene expression patterning of the larval CNS regionalize the distribution of the ependymal cells, which contains the positional information of the neurons of the adult nervous system. In colonial ascidians, the CNS of asexually developed zooids has the same morphology of the one of the post-metamorphic zooids. However, its development follows a completely different organogenesis that lacks embryogenesis, a larval phase and metamorphosis. In order to describe neurogenesis during asexual development (blastogenesis), we followed the expression of six CNS AP patterning genes conserved in chordates and five neural-related genes to determine neural cell identity in Botryllus schlosseri. We observed that a neurogenesis occurs de novo on each blastogenic cycle starting from a neurogenic transitory structure, the dorsal tube. The dorsal tube partially co-opts the AP patterning of the larval CNS markers, and potentially combine the neurogenesis role and provider of positional clues for neuron patterning. This study shows how a larval developmental module is reused in a direct asexual development in order to generate the same structures.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France
| | - Lorenzo Ricci
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France; Harvard University, Department of Organismic&Evolutionary Biology, 52 Oxford Street, Cambridge, MA 02138, United States
| | - Federico D Brown
- Departamento de Zoologia - Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090, Brazil; Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109, Brazil
| | - Stefano Tiozzo
- Sorbonne Universités, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Paris, France.
| |
Collapse
|
14
|
Horie T, Horie R, Chen K, Cao C, Nakagawa M, Kusakabe TG, Satoh N, Sasakura Y, Levine M. Regulatory cocktail for dopaminergic neurons in a protovertebrate identified by whole-embryo single-cell transcriptomics. Genes Dev 2018; 32:1297-1302. [PMID: 30228204 PMCID: PMC6169837 DOI: 10.1101/gad.317669.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
The CNS of the protovertebrate Ciona intestinalis contains a single cluster of dopaminergic (DA) neurons, the coronet cells, which have been likened to the hypothalamus of vertebrates. Whole-embryo single-cell RNA sequencing (RNA-seq) assays identified Ptf1a as the most strongly expressed cell-specific transcription factor (TF) in DA/coronet cells. Knockdown of Ptf1a activity results in their loss, while misexpression results in the appearance of supernumerary DA/coronet cells. Photoreceptor cells and ependymal cells are the most susceptible to transformation, and both cell types express high levels of Meis Coexpression of both Ptf1a and Meis caused the wholesale transformation of the entire CNS into DA/coronet cells. We therefore suggest that the reiterative use of functional manipulations and single-cell RNA-seq assays is an effective means for the identification of regulatory cocktails underlying the specification of specific cell identities.
Collapse
Affiliation(s)
- Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology (PREST), Kawaguchi, Saitama 332-0012, Japan
| | - Ryoko Horie
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kai Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Masashi Nakagawa
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Takehiro G Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Hyogo 658-8501, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Hyogo 658-8501, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Nishino A. Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542090 DOI: 10.1007/978-981-10-7545-2_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurobiology in ascidians has made many advances. Ascidians have offered natural advantages to researchers, including fecundity, structural simplicity, invariant morphology, and fast and stereotyped developmental processes. The researchers have also accumulated on this animal a great deal of knowledge, genomic resources, and modern genetic techniques. A recent connectomic analysis has shown an ultimately resolved image of the larval nervous system, whereas recent applications of live imaging and optogenetics have clarified the functional organization of the juvenile nervous system. Progress in resources and techniques have provided convincing ways to deepen what we have wanted to know about the nervous systems of ascidians. Here, the research history and the current views regarding ascidian nervous systems are summarized.
Collapse
Affiliation(s)
- Atsuo Nishino
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan.
| |
Collapse
|
16
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
The central nervous system of ascidian larvae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:538-61. [DOI: 10.1002/wdev.239] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/09/2016] [Indexed: 11/07/2022]
|
18
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
19
|
Esposito R, Racioppi C, Pezzotti MR, Branno M, Locascio A, Ristoratore F, Spagnuolo A. The ascidian pigmented sensory organs: structures and developmental programs. Genesis 2014; 53:15-33. [PMID: 25382437 DOI: 10.1002/dvg.22836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/25/2023]
Abstract
The recent advances on ascidian pigment sensory organ development and function represent a fascinating platform to get insight on the basic programs of chordate eye formation. This review aims to summarize current knowledge, at the structural and molecular levels, on the two main building blocks of ascidian light sensory organ, i.e. pigment cells and photoreceptor cells. The unique features of these structures (e.g., simplicity and well characterized cell lineage) are indeed making it possible to dissect the developmental programs at single cell resolution and will soon provide a panel of molecular tools to be exploited for a deep developmental and comparative-evolutionary analysis.
Collapse
Affiliation(s)
- R Esposito
- Cellular and Developmental Biology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, NAPOLI, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Ikeda T, Matsuoka T, Satou Y. A time delay gene circuit is required for palp formation in the ascidian embryo. Development 2014; 140:4703-8. [PMID: 24255097 DOI: 10.1242/dev.100339] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ascidian larval brain and palps (a putative rudimentary placode) are specified by two transcription factor genes, ZicL and FoxC, respectively. FGF9/16/20 induces ZicL expression soon after the bi-potential ancestral cells divide into the brain and palp precursors at the early gastrula stage. FGF9/16/20 begins to be expressed at the 16-cell stage, and induces several target genes, including Otx, before the gastrula stage. Here, we show that ZicL expression in the brain lineage is transcriptionally repressed by Hes-a and two Blimp-1-like zinc finger proteins, BZ1 and BZ2, in the bi-potential ancestral cells. ZicL is precociously expressed in the bi-potential cells in embryos in which these repressors are knocked down. This precocious ZicL expression produces extra brain cells at the expense of palp cells. The expression of BZ1 and BZ2 is turned off by a negative auto-feedback loop. This auto-repression acts as a delay circuit that prevents ZicL from being expressed precociously before the brain and palp fates split, thereby making room within the neural plate for the palps to be specified. Addition of the BZ1/2 delay timer circuit to the gene regulatory network responsible for brain formation might represent a key event in the acquisition of the primitive palps/placodes in an ancestral animal.
Collapse
Affiliation(s)
- Tatsuro Ikeda
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
21
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
22
|
Tosches MA, Arendt D. The bilaterian forebrain: an evolutionary chimaera. Curr Opin Neurobiol 2013; 23:1080-9. [PMID: 24080363 DOI: 10.1016/j.conb.2013.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/14/2022]
Abstract
The insect, annelid and vertebrate forebrains harbour two major centres of output control, a sensory-neurosecretory centre releasing hormones and a primordial locomotor centre that controls the initiation of muscular body movements. In vertebrates, both reside in the hypothalamus. Here, we review recent comparative neurodevelopmental evidence indicating that these centres evolved from separate condensations of neurons on opposite body sides ('apical nervous system' versus 'blastoporal nervous system') and that their developmental specification involved distinct regulatory networks (apical six3 and rx versus mediolateral nk and pax gene-dependent patterning). In bilaterian ancestors, both systems approached each other and became closely intermingled, physically, functionally and developmentally. Our 'chimeric brain hypothesis' sheds new light on the vast success and rapid diversification of bilaterian animals in the Cambrian and revises our understanding of brain architecture.
Collapse
Affiliation(s)
- Maria Antonietta Tosches
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
23
|
Fernandes AM, Beddows E, Filippi A, Driever W. Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 2013; 8:e75002. [PMID: 24073233 PMCID: PMC3779234 DOI: 10.1371/journal.pone.0075002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/08/2013] [Indexed: 11/29/2022] Open
Abstract
The homeodomain transcription factor Orthopedia (Otp) is an important regulator for specification of defined subsets of neuroendocrine cells and dopaminergic neurons in vertebrates. In zebrafish, two paralogous otp genes, otpa and otpb, are present in the genome. Neither complete loss of Otp activity nor differential contributions of Otpa and Otpb to specification of defined neuronal populations have been analyzed in detail. We characterized zebrafish embryos and early larvae mutant for null alleles of otpa, otpb, or both genes to determine their individual contributions to the specification of th expressing dopaminergic neuronal populations as well as of crh, oxt, avp, trh or sst1.1 expressing neuroendocrine cells. otpa mutant larvae show an almost complete reduction of ventral diencephalic dopaminergic neurons, as reported previously. A small reduction in the number of trh cells in the preoptic region is detectable in otpa mutants, but no significant loss of crh, oxt and avp preoptic neuroendocrine cells. otpb single mutant larvae do not display a reduction in dopaminergic neurons or neuroendocrine cells in the otp expressing regions. In contrast, in otpa and otpb double mutant larvae specific groups of dopaminergic neurons as well as of crh, oxt, avp, trh and sst1.1-expressing neuroendocrine cells are completely lost. These observations suggest that the requirement for otpa and otpb function during development of the larval diencephalon is partially redundant. During evolutionary diversification of the paralogous otp genes, otpa maintained the prominent role in ventral diencephalic dopaminergic and neuroendocrine cell specification and is capable of partially compensating otpb loss of function. In addition, we identified a role of Otp in the development of a domain of somatostatin1-expressing cells in the rostral hindbrain, a region with strong otp expression but so far uncharacterized Otp function. Otp may thus be crucial for defined neuronal cell types also in the hindbrain.
Collapse
Affiliation(s)
- António M. Fernandes
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Erin Beddows
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alida Filippi
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology Unit, Faculty of Biology, and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
24
|
Razy-Krajka F, Brown ER, Horie T, Callebert J, Sasakura Y, Joly JS, Kusakabe TG, Vernier P. Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory. BMC Biol 2012; 10:45. [PMID: 22642675 PMCID: PMC3414799 DOI: 10.1186/1741-7007-10-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/29/2012] [Indexed: 12/12/2022] Open
Abstract
Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- Neurobiology and Development, UPR, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wagner E, Levine M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 2012; 139:2351-9. [PMID: 22627287 DOI: 10.1242/dev.078485] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Ciona tadpole is constructed from simple, well-defined cell lineages governed by provisional gene networks that have been defined via extensive gene disruption assays. Here, we examine the patterning of the anterior neural plate, which produces placodal derivatives such as the adhesive palps and stomodeum, as well as the sensory vesicle (simple brain) of the Ciona tadpole. Evidence is presented that the doublesex-related gene DMRT is expressed throughout the anterior neural plate of neurulating embryos. It leads to the activation of FoxC and ZicL in the palp placode and anterior neural tube, respectively. This differential expression depends on FGF signaling, which inhibits FoxC expression in the anterior neural tube. Inhibition of FGF signaling leads to expanded expression of FoxC, the loss of ZicL, and truncation of the anterior neural tube.
Collapse
Affiliation(s)
- Eileen Wagner
- Center for Integrative Genomics, Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
26
|
José-Edwards DS, Kerner P, Kugler JE, Deng W, Jiang D, Di Gregorio A. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network. Dev Dyn 2011; 240:1793-805. [PMID: 21594950 PMCID: PMC3685856 DOI: 10.1002/dvdy.22656] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2011] [Indexed: 11/07/2022] Open
Abstract
The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like, and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Pierre Kerner
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Wei Deng
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| |
Collapse
|
27
|
Yamamoto K, Vernier P. The evolution of dopamine systems in chordates. Front Neuroanat 2011; 5:21. [PMID: 21483723 PMCID: PMC3070214 DOI: 10.3389/fnana.2011.00021] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/15/2011] [Indexed: 12/24/2022] Open
Abstract
Dopamine (DA) neurotransmission in the central nervous system (CNS) is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters, and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory–motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2) revealed new populations of DA-synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina, and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g., teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain–hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.
Collapse
Affiliation(s)
- Kei Yamamoto
- Neurobiology and Development (UPR3294), Institute of Neurobiology Alfred Fessard, CNRS Gif-sur-Yvette, France
| | | |
Collapse
|
28
|
Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev Biol 2011; 352:202-14. [PMID: 21237141 DOI: 10.1016/j.ydbio.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469:525-8. [PMID: 21196932 DOI: 10.1038/nature09631] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.
Collapse
|
30
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
31
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
32
|
Shimozono N, Ohta N, Satoh N, Hamada M. Differential regional expression of genes in the developing brain of Ciona intestinalis embryos. Zoolog Sci 2010; 27:103-9. [PMID: 20141415 DOI: 10.2108/zsj.27.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous transcriptome analysis identified 565 genes that are preferentially expressed in the developing brain of Ciona intestinalis larvae. Here, we show by in-situ hybridization that the spatial expression patterns of these brain-specific genes fall into different categories depending on the regions where the gene is expressed. For example, Ci-opsin3 and Ci-Dkk3 are expressed in the entire brain, Ci-tyrosinase and Ci-TYRP1 in the dorsal region, and Ci-synaptotagmin3, Ci-ZF399, and Ci-PTFb in the ventral region. Other genes are specific to the posterior, anterior, central, posterior and ventral, or anterior-ventral region of the brain. This regional expression of genes in the Ciona brain is not always associated with cell lineage, suggesting that complex mechanisms control the regionalized expression of brain-specific genes.
Collapse
Affiliation(s)
- Naoki Shimozono
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
33
|
Takamura K, Minamida N, Okabe S. Neural Map of the Larval Central Nervous System in the AscidianCiona intestinalis. Zoolog Sci 2010; 27:191-203. [DOI: 10.2108/zsj.27.191] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Distribution and structural diversity of cilia in tadpole larvae of the ascidian Ciona intestinalis. Dev Biol 2010; 337:42-62. [DOI: 10.1016/j.ydbio.2009.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 09/22/2009] [Accepted: 10/03/2009] [Indexed: 12/27/2022]
|
35
|
Horie T, Nakagawa M, Sasakura Y, Kusakabe TG. Cell type and function of neurons in the ascidian nervous system. Dev Growth Differ 2009; 51:207-20. [PMID: 19379276 DOI: 10.1111/j.1440-169x.2009.01105.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ascidians, or sea squirts, are primitive chordates, and their tadpole larvae share a basic body plan with vertebrates, including a notochord and a dorsal tubular central nervous system (CNS). The CNS of the ascidian larva is formed through a process similar to vertebrate neurulation, while the ascidian CNS is remarkably simple, consisting of about 100 neurons. Recent identification of genes that are specifically expressed in a particular subtype of neurons has enabled us to reveal neuronal networks at single-cell resolution. Based on the information on neuron subtype-specific genes, different populations of neurons have been visualized by whole-mount in situ hybridization, immunohistochemical staining using specific antibodies, and fluorescence labeling of cell bodies and neurites by a fluorescence protein reporter driven by neuron-specific promoters. Neuronal populations that have been successfully visualized include glutamatergic, cholinergic, gamma-aminobutyric acid/glycinergic, and dopaminergic neurons, which have allowed us to propose functional regionalization of the CNS and a neural circuit for locomotion. Thus, the simple nervous system of the ascidian larva can serve as an attractive model system for studying the development, function, and evolution of the chordate nervous system.
Collapse
Affiliation(s)
- Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | |
Collapse
|
36
|
Zega G, De Bernardi F, Groppelli S, Pennati R. Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:255-261. [PMID: 19124165 DOI: 10.1016/j.aquatox.2008.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Imazalil (IMA) is a fungicide that is used extensively in fruit plantations and post-harvest treatments, but has teratogenic effects on vertebrate development, possibly due to the perturbation of retinoic acid (RA) levels in the embryo. Ascidians are sessile marine invertebrate chordates that develop through a tadpole larva, with a body plan that shares basic homologies with vertebrates. In this work, we tested the effects of IMA on the development of the solitary ascidian Ciona intestinalis by treating two-cell stage embryos with a range of concentrations (0.1, 0.5, 1, 2.5, 5, 10, 20 and 50microThe fungicide significantly altered ascidian development even at low concentrations and its effects were dose-dependent. Probit analysis revealed that the median lethal concentration, LC(50), was 4.87microM and the median teratogenic concentration, TC(50), was 0.73microM. Larvae developing from embryos exposed to IMA showed malformations of the anterior structures, which became more severe as IMA concentration increased. In particular, the anterior nervous system and the sensory vesicle were reduced, and the pigmented organs (the ocellus and the otolith) progressively lost their pigmentation. The larval phenotype induced by 5microM IMA exposure was further characterized by means of molecular analysis, through whole mount in situ hybridization with probes for genes related to the nervous system: Ci-Otp, Ci-GAD, Ci-POU IV, which are markers of the anterior neuro-ectoderm, the central nervous system and the peripheral nervous system respectively, and Ci-Hox-1, a gene specifically activated by RA, and Ci-Aldh2, a gene for aldehyde dehydrogenase, which is involved in RA synthesis. The altered expression of Ci-Otp, Ci-GAD, Ci-POU IV in 5microM IMA-exposed larvae compared to control larvae showed that this fungicide could affect the differentiation of the anterior nervous system, particularly of the sensory vesicle neurons. Recent studies suggest a similarity between IMA- and RA-induced phenotypes in tunicates, indicating that triazoles may also alter RA metabolism in ascidians. The observed Ci-Hox-1 and Ci-Aldh2 expression in control and treated larvae did not allow a direct link between IMA teratogenic potential and RA-dependent morphogenesis to be identified. It is likely that the fungicidal teratogenic mechanism involved RA signalling but that its effects on ascidian development depend on a more complex mechanism.
Collapse
Affiliation(s)
- Giuliana Zega
- Dipartimento di Biologia, Università di Milano, Via Celoria, 26, I-20133 Milano, Italy
| | | | | | | |
Collapse
|
37
|
Imai KS, Stolfi A, Levine M, Satou Y. Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 2008; 136:285-93. [PMID: 19088089 DOI: 10.1242/dev.026419] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tripartite organization of the central nervous system (CNS) may be an ancient character of the bilaterians. However, the elaboration of the more complex vertebrate brain depends on the midbrain-hindbrain boundary (MHB) organizer, which is absent in invertebrates such as Drosophila. The Fgf8 signaling molecule expressed in the MHB organizer plays a key role in delineating separate mesencephalon and metencephalon compartments in the vertebrate CNS. Here, we present evidence that an Fgf8 ortholog establishes sequential patterns of regulatory gene expression in the developing posterior sensory vesicle, and the interleaved ;neck' region located between the sensory vesicle and visceral ganglion of the simple chordate Ciona intestinalis. The detailed characterization of gene networks in the developing CNS led to new insights into the mechanisms by which Fgf8/17/18 patterns the chordate brain. The precise positioning of this Fgf signaling activity depends on an unusual AND/OR network motif that regulates Snail, which encodes a threshold repressor of Fgf8 expression. Nodal is sufficient to activate low levels of the Snail repressor within the neural plate, while the combination of Nodal and Neurogenin produces high levels of Snail in neighboring domains of the CNS. The loss of Fgf8 patterning activity results in the transformation of hindbrain structures into an expanded mesencephalon in both ascidians and vertebrates, suggesting that the primitive MHB-like activity predates the vertebrate CNS.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
38
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
|
39
|
Caputi L, Borra M, Andreakis N, Biffali E, Sordino P. SNPs and Hox gene mapping in Ciona intestinalis. BMC Genomics 2008; 9:39. [PMID: 18221512 PMCID: PMC2262895 DOI: 10.1186/1471-2164-9-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 01/25/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The tunicate Ciona intestinalis (Enterogona, Ascidiacea), a major model system for evolutionary and developmental genetics of chordates, harbours two cryptic species. To assess the degree of intra- and inter-specific genetic variability, we report the identification and analysis of C. intestinalis SNP (Single Nucleotide Polymorphism) markers. A SNP subset was used to determine the genetic distance between Hox-5 and -10 genes. RESULTS DNA fragments were amplified from 12 regions of C. intestinalis sp. A. In total, 128 SNPs and 32 one bp indels have been identified within 8 Kb DNA. SNPs in coding regions cause 4 synonymous and 12 non-synonymous substitutions. The highest SNP frequency was detected in the Hox5 and Hox10 intragenic regions. In C. intestinalis, these two genes have lost their archetypal topology within the cluster, such that Hox10 is located between Hox4 and Hox5. A subset of the above primers was used to perform successful amplification in C. intestinalis sp. B. In this cryptic species, 62 SNPs were identified within 3614 bp: 41 in non-coding and 21 in coding regions. The genetic distance of the Hox-5 and -10 loci, computed combining a classical backcross approach with the application of SNP markers, was found to be 8.4 cM (Haldane's function). Based on the physical distance, 1 cM corresponds to 39.5 Kb. Linkage disequilibrium between the aforementioned loci was calculated in the backcross generation. CONCLUSION SNPs here described allow analysis and comparisons within and between C. intestinalis cryptic species. We provide the first reliable computation of genetic distance in this important model chordate. This latter result represents an important platform for future studies on Hox genes showing deviations from the archetypal topology.
Collapse
Affiliation(s)
- Luigi Caputi
- Department of Biochemistry and Molecular Biology, Stazione Zoologica A. Dohrn, Napoli, Villa Comunale, Italy.
| | | | | | | | | |
Collapse
|
40
|
Horie T, Sakurai D, Ohtsuki H, Terakita A, Shichida Y, Usukura J, Kusakabe T, Tsuda M. Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva. J Comp Neurol 2008; 509:88-102. [DOI: 10.1002/cne.21733] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Hudson C, Lotito S, Yasuo H. Sequential and combinatorial inputs from Nodal, Delta2/Notch and FGF/MEK/ERK signalling pathways establish a grid-like organisation of distinct cell identities in the ascidian neural plate. Development 2007; 134:3527-37. [PMID: 17728350 DOI: 10.1242/dev.002352] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ascidian neural plate has a grid-like organisation, with six rows and eight columns of aligned cells, generated by a series of stereotypical cell divisions. We have defined unique molecular signatures for each of the eight cells in the posterior-most two rows of the neural plate - rows I and II. Using a combination of morpholino gene knockdown, dominant-negative forms and pharmacological inhibitors, we tested the role of three signalling pathways in defining these distinct cell identities. Nodal signalling at the 64-cell stage was found to be required to define two different neural plate domains - medial and lateral - with Nodal inducing lateral and repressing medial identities. Delta2, an early Nodal target, was found to then subdivide each of the lateral and medial domains to generate four columns. Finally, a separate signalling system along the anteroposterior axis, involving restricted ERK1/2 activation, was found to promote row I fates and repress row II fates. Our results reveal how the sequential integration of three signalling pathways - Nodal, Delta2/Notch and FGF/MEK/ERK - defines eight different sub-domains that characterise the ascidian caudal neural plate. Most remarkably, the distinct fates of the eight neural precursors are each determined by a unique combination of inputs from these three signalling pathways.
Collapse
Affiliation(s)
- Clare Hudson
- Developmental Biology Unit, Université Pierre et Marie Curie (Paris 6 Villefranche-sur-Mer, France.
| | | | | |
Collapse
|
42
|
Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S. Windows of the brain: Towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 2007; 18:512-24. [PMID: 17631396 DOI: 10.1016/j.semcdb.2007.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
Abstract
We review the anatomical and functional features of circumventricular organs in vertebrates and their homologous neurohemal organs in invertebrates. Focusing on cyclostomes (lamprey) and urochordates (ascidians), we discuss the evolutionary origin of these organs as a function of their cell type specification and morphogenesis.
Collapse
Affiliation(s)
- Jean-Stéphane Joly
- U1126/INRA Morphogenèse du système nerveux des chordés group, DEPSN, UPR2197, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF SUR YVETTE, France.
| | | | | | | | | | | |
Collapse
|
43
|
Sueiro C, Carrera I, Ferreiro S, Molist P, Adrio F, Anadón R, Rodríguez-Moldes I. New insights on Saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:187-204. [PMID: 17595538 DOI: 10.1159/000104309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/12/2007] [Indexed: 11/19/2022]
Abstract
The saccus vasculosus (SV) is a circumventricular organ of the hypothalamus of many jawed fishes whose functions have not yet been clarified. It is a vascularized neuroepithelium that consists of coronet cells, cerebrospinal fluid-contacting (CSF-c) neurons and supporting cells. To assess the organization, development and evolution of the SV, the expression of glial fibrillary acidic protein (GFAP) and the neuronal markers gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD; the GABA synthesizing enzyme), neuropeptide Y (NPY), neurophysin II (NPH), tyrosine hydroxylase (TH; the rate-limiting catecholamine-synthesizing enzyme) and serotonin (5-HT), were investigated by immunohistochemistry in developing and adult sharks. Coronet cells showed GFAP immunoreactivity from embryos at stage 31 to adults, indicating a glial nature. GABAergic CSF-c neurons were evidenced just when the primordium of the SV becomes detectable (at stage 29). Double immunolabeling revealed colocalization of NPY and GAD in these cells. Some CSF-c cells showed TH immunoreactivity in postembryonic stages. Saccofugal GABAergic fibers formed a defined SV tract from the stage 30 and scattered neurosecretory (NPH-immunoreactive) and monoaminergic (5-HT- and TH-immunoreactive) saccopetal fibers were first detected at stages 31 and 32, respectively. The early differentiation of GABAergic neurons and the presence of a conspicuous GABAergic saccofugal system are shared by elasmobranch and teleosts (trout), suggesting that GABA plays a key function in the SV circuitry. Monoaminergic structures have not been reported in the SV of bony fishes, and were probably acquired secondarily in sharks. The existence of saccopetal monoaminergic and neurosecretory fibers reveals reciprocal connections between the SV and hypothalamic structures which have not been previously detected in teleosts.
Collapse
Affiliation(s)
- Catalina Sueiro
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Christiaen L, Jaszczyszyn Y, Kerfant M, Kano S, Thermes V, Joly JS. Evolutionary modification of mouth position in deuterostomes. Semin Cell Dev Biol 2007; 18:502-11. [PMID: 17656139 DOI: 10.1016/j.semcdb.2007.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
In chordates, the oral ectoderm is positioned at the anterior neural boundary and is characterized by pituitary homeobox (Pitx) and overlapping Dlx and Six3 expressions. Recent studies have shown that the ectoderm molecular map is also conserved in hemichordates and echinoderms. However, the mouth develops in a more posterior position in these animals, in a domain characterized by Nkx2.1 and Goosecoid expression, in a manner similar to that observed in protostomes. Furthermore, BMP signaling antagonizes mouth development in echinoderms and hemichordates, but seems to promote oral ectoderm specification in chordates. Conversely, Nodal signaling appears to be required for oral ectoderm specification in sea urchins but not in chordates. The Nodal/BMP antagonism at work during ectoderm patterning thus seems to constitute a conserved feature in deuterostomes, and mouth relocation may have been accompanied by a change in the influence of BMP/Nodal signals on oral ectoderm specification. We suggest that the mouth primordium was located at the anterior neural boundary, in early chordate evolution. In extant chordate embryos, subsequent mouth positioning differ between urochordates and vertebrates, presumably as a consequence of surrounding tissues remodelling. We illustrate these morphogenetic movements by means of morphological data obtained by the confocal imaging of ascidian tailbud embryos, and provide a table for determining the tailbud stages of this model organism.
Collapse
Affiliation(s)
- Lionel Christiaen
- Center for Integrative Genomics, Molecular & Cell Biology Department, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Tessmar-Raible K. The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Semin Cell Dev Biol 2007; 18:492-501. [PMID: 17576082 DOI: 10.1016/j.semcdb.2007.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 04/30/2007] [Indexed: 02/08/2023]
Abstract
Forebrain neurosecretory systems are widespread in the animal kingdom. This review focuses on recent molecular data from protostomes, discusses the original complexity of the bilaterian forebrain neurosecretory system, provides an evolutionary scenario for the emergence of the vertebrate preoptic area/hypothalamus/neurohypophysis and suggests a possible function for an ancient set of sensory-neurosecretory cells present in the medial neurosecretory bilaterian forebrain.
Collapse
Affiliation(s)
- Kristin Tessmar-Raible
- European Molecular Biology Laboratory, Dev. Biol. Unit, Meyerhofstr. 1, D-69012 Heidelberg, Germany.
| |
Collapse
|
46
|
D'Aniello S, D'Aniello E, Locascio A, Memoli A, Corrado M, Russo MT, Aniello F, Fucci L, Brown ER, Branno M. The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. Differentiation 2006; 74:222-34. [PMID: 16759288 DOI: 10.1111/j.1432-0436.2006.00071.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tadpole larvae prosencephalon of the ascidian Ciona intestinalis contains a single large ventricle, along the inner walls of which lie two sensory organs: the otolith (a gravity-sensing organ) and the ocellus (a photo-sensing organ composed of a single cup-shaped pigment cell, about 20 photoreceptor cells, and three lens cells). Comparison has been drawn between the morphology and physiology of photoreceptor cells in the ascidian ocellus and the vertebrate eye. The development of vertebrate and invertebrate eyes requires the activity of several conserved genes and it is regulated by precise expression patterns and cell fate decisions common to several species. We have isolated a Ciona homeobox gene (Ci-Rx) that belongs to the paired-like class of homeobox genes. Rx genes have been identified from a variety of organisms and have been demonstrated to have a role in vertebrate eye formation. Ci-Rx is expressed in the anterior neural plate in the middle tailbud stage and subsequently in the larval stage in the sensory vesicle around the ocellus. Loss of Ci-Rx function leads to an ocellus-less phenotype that shows a loss of photosensitive swimming behavior, suggesting the important role played by Ci-Rx in basal chordate photoreceptor cell differentiation and ocellus formation. Furthermore, studies on Ci-Rx regulatory elements electroporated into Ciona embryos using LacZ or GFP as reporter genes indicate the presence of Ci-Rx in pigment cells, photoreceptors, and neurons surrounding the sensory vesicle. In Ci-Rx knocked-down larvae, neither basal swimming activity nor shadow responses develop. Thus, Rx has a role not only in pigment cells and photoreceptor formation but also in the correct development of the neuronal circuit that controls larval photosensitivity and swimming behavior. The results suggest that a Ci-Rx "retinal" territory exists, which consists of pigment cells, photoreceptors, and neurons involved in transducing the photoreceptor signals.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Neurobiology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Osorio J, Mazan S, Rétaux S. Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol 2005; 288:100-12. [PMID: 16289025 DOI: 10.1016/j.ydbio.2005.08.042] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/28/2005] [Accepted: 08/30/2005] [Indexed: 11/15/2022]
Abstract
To investigate the embryonic development of the central nervous system of the lamprey Lampetra fluviatilis, we have isolated and analysed the expression patterns of members of the LIM-homeodomain, Pax, Hedgehog and Nkx2.1 families. Using degenerate RT-PCR, single representatives of Lhx1/Lhx5, Lhx2/Lhx9, Pax3/Pax7 and Hedgehog families could be isolated in L. fluviatilis. Expression analysis revealed that the lamprey forebrain presents a clear neuromeric pattern. We describe the existence of 4 embryonic diencephalic prosomeres whose boundaries can be identified by the combined and relative expressions of LfPax37, LfLhx15 and LfLhx29. This suggests that the embryonic lamprey and gnathostome forebrain are patterned in a highly similar manner. Moreover, analysis of the LfHh gene, which is expressed in the hypothalamus, zona limitans intrathalamica and floor plate, reveals the possible molecular origin of this neuromeric brain pattern. By contrast, LfHh and LfNkx2.1 expressions suggest major differences in patterning mechanisms of the ventral telencephalon when compared to gnathostomes. In summary, our findings highlight a neuromeric organisation of the embryonic agnathan forebrain and point to the possible origin of this organisation, which is thus a truly vertebrate character. They also suggest that Hh/Shh midline signalling might act as a driving force for forebrain evolution.
Collapse
Affiliation(s)
- Joana Osorio
- UPR2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred FESSARD, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | |
Collapse
|
48
|
Manni L, Agnoletto A, Zaniolo G, Burighel P. Stomodeal and neurohypophysial placodes in Ciona intestinalis: insights into the origin of the pituitary gland. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:324-39. [PMID: 15887241 DOI: 10.1002/jez.b.21039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ascidian larva has a central nervous system which shares basic characteristics with craniates, such as tripartite organisation and many developmental genes. One difference, at metamorphosis, is that this chordate-like nervous system regresses and the adult's neural complex, composed of the cerebral ganglion and associated neural gland, forms. It is known that neural complex differentiation involves two ectodermal structures, the neurohypophysial duct, derived from the embryonic neural tube, and the stomodeum, i.e. the rudiment of the oral siphon; nevertheless, their precise role remains to be clarified. We have shown that in Ciona intestinalis, the neural complex primordium is the neurohypophysial duct, which in the early larva is a short tube, blind anteriorly, with its lumen in continuity with that of the central nervous system, i.e. the sensory vesicle. The tube grows forwards and fuses with the posterior wall of the stomodeum, a dorsal ectodermal invagination of the larva. The duct then loses posterior communication with the sensory vesicle and begins to grow on the roof of the vesicle itself. The neurohypophysial duct differentiates into the neural gland rudiment; its dorsal wall begins to proliferate neuroblasts, which migrate and converge to build up the cerebral ganglion. The most anterior part of the neural gland organizes into the ciliated duct and funnel, whereas the most posterior part elongates and gives rise to the dorsal strand. The hypothesis that the neurohypophysial duct/stomodeum complex possesses cell populations homologous to the craniate olfactory and adenohypophysial placodes and hypothalamus is discussed.
Collapse
Affiliation(s)
- Lucia Manni
- Dipartimento di Biologia, Università di Padova, Italy.
| | | | | | | |
Collapse
|
49
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
50
|
Moret F, Christiaen L, Deyts C, Blin M, Joly JS, Vernier P. The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Eur J Neurosci 2005; 21:3043-55. [PMID: 15978015 DOI: 10.1111/j.1460-9568.2005.04147.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine is a major neuromodulator synthesized by numerous cell populations in the vertebrate forebrain and midbrain. Owing to the simple organization of its larval nervous system, ascidian tunicates provide a useful model to investigate the anatomy, neurogenesis and differentiation of the dopaminergic neural network underlying the stereotypical swimming behaviour of its chordate-type larva. This study provides a high-resolution cellular analysis of tyrosine hydroxylase (TH)-positive and dopamine-positive cells in Ciona intestinalis embryos and larvae. Dopamine cells are present only in the sensory vesicle of the Ciona larval brain, which may be an ancestral chordate feature. The dopamine-positive cells of the ascidian sensory vesicle are located in the expression domain of homologues of vertebrate hypothalamic markers. We show here that the larval coronet cells also arise from this domain. As a similar association between coronet cells and the hypothalamus was reported in bony and cartilaginous fishes, we propose that part of the ascidian ventral sensory vesicle is the remnant of a proto-hypothalamus that may have been present in the chordate ancestor. As dopaminergic cells are specified in the hypothalamus in all vertebrates, we suggest that the mechanisms of dopamine cell specification are conserved in the hypothalamus of Ciona and vertebrates. To test this hypothesis, we have identified new candidate regulators of dopaminergic specification in Ciona based on their expression patterns, which can now be compared with those in vertebrates.
Collapse
Affiliation(s)
- Frédéric Moret
- Development, Evolution, Plasticity of the Nervous System, UPR 2197, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 1, ave de la Terrasse, F-91198 Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|