1
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
2
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
3
|
Gerhold AR, Labbé JC, Singh R. Uncoupling cell division and cytokinesis during germline development in metazoans. Front Cell Dev Biol 2022; 10:1001689. [PMID: 36407108 PMCID: PMC9669650 DOI: 10.3389/fcell.2022.1001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The canonical eukaryotic cell cycle ends with cytokinesis, which physically divides the mother cell in two and allows the cycle to resume in the newly individualized daughter cells. However, during germline development in nearly all metazoans, dividing germ cells undergo incomplete cytokinesis and germ cells stay connected by intercellular bridges which allow the exchange of cytoplasm and organelles between cells. The near ubiquity of incomplete cytokinesis in animal germ lines suggests that this is an ancient feature that is fundamental for the development and function of this tissue. While cytokinesis has been studied for several decades, the mechanisms that enable regulated incomplete cytokinesis in germ cells are only beginning to emerge. Here we review the current knowledge on the regulation of germ cell intercellular bridge formation, focusing on findings made using mouse, Drosophila melanogaster and Caenorhabditis elegans as experimental systems.
Collapse
Affiliation(s)
- Abigail R. Gerhold
- Department of Biology, McGill University, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC, Canada
- *Correspondence: Abigail R. Gerhold, ; Jean-Claude Labbé,
| | - Ramya Singh
- Department of Biology, McGill University, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC, Canada
| |
Collapse
|
4
|
Noncanonical function of Capicua as a growth termination signal in Drosophila oogenesis. Proc Natl Acad Sci U S A 2022; 119:e2123467119. [PMID: 35881788 PMCID: PMC9351367 DOI: 10.1073/pnas.2123467119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Capicua (Cic) proteins are conserved HMG-box transcriptional repressors that control receptor tyrosine kinase (RTK) signaling responses and are implicated in human neurological syndromes and cancer. While Cic is known to exist as short (Cic-S) and long (Cic-L) isoforms with identical HMG-box and associated core regions but distinct N termini, most previous studies have focused on Cic-S, leaving the function of Cic-L unexplored. Here we show that Cic-L acts in two capacities during Drosophila oogenesis: 1) as a canonical sensor of RTK signaling in somatic follicle cells, and 2) as a regulator of postmitotic growth in germline nurse cells. In these latter cells, Cic-L behaves as a temporal signal that terminates endoreplicative growth before they dump their contents into the oocyte. We show that Cic-L is necessary and sufficient for nurse cell endoreplication arrest and induces both stabilization of CycE and down-regulation of Myc. Surprisingly, this function depends mainly on the Cic-L-specific N-terminal module, which is capable of acting independently of the Cic HMG-box-containing core. Mirroring these observations, basal metazoans possess truncated Cic-like proteins composed only of Cic-L N-terminal sequences, suggesting that this module plays unique, ancient roles unrelated to the canonical function of Cic.
Collapse
|
5
|
Incomplete abscission and cytoplasmic bridges in the evolution of eukaryotic multicellularity. Curr Biol 2022; 32:R385-R397. [DOI: 10.1016/j.cub.2022.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Moneer J, Siebert S, Krebs S, Cazet J, Prexl A, Pan Q, Juliano C, Böttger A. Differential gene regulation in DAPT-treated Hydra reveals candidate direct Notch signalling targets. J Cell Sci 2021; 134:jcs258768. [PMID: 34346482 PMCID: PMC8353520 DOI: 10.1242/jcs.258768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/03/2021] [Indexed: 11/20/2022] Open
Abstract
In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes. Interrogating the available single-cell sequencing data set revealed the gene expression patterns of Notch-regulated Hydra genes. Through these analyses, a comprehensive picture of the molecular pathways regulated by Notch signalling in head patterning and in interstitial cell differentiation in Hydra emerged. As prime candidates for direct Notch target genes, in addition to Hydra (Hy)Hes, we suggest Sp5 and HyAlx. They rapidly recovered their expression levels after DAPT removal and possess Notch-responsive RBPJ transcription factor-binding sites in their regulatory regions.
Collapse
Affiliation(s)
- Jasmin Moneer
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stefan Krebs
- Ludwig-Maximilians-University Munich, Gene Center Munich, Feodor-Lynen-Str. 25 81377 Munich, Germany
| | - Jack Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Andrea Prexl
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Qin Pan
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Angelika Böttger
- Ludwig Maximilians-University Munich, Germany, Biocenter, 82152 Planegg-Martinsried, Großhaderner Str. 2, Germany
| |
Collapse
|
7
|
Pillai A, Gungi A, Reddy PC, Galande S. Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Front Cell Dev Biol 2021; 9:663208. [PMID: 34041242 PMCID: PMC8141815 DOI: 10.3389/fcell.2021.663208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Transitions in gene regulatory processes responsible for the emergence of specialized cell types and spatiotemporal regulation of developmental signaling prior to the divergence of Cnidaria and Bilateria are poorly understood. As a sister group of Bilateria, the phylum Cnidaria can provide significant insights into these processes. Among the cnidarians, hydrae have been studied for >250 years to comprehend the mechanisms underlying their unique immortality and robust regenerative capacity. Studies on Hydra spp. and other pre-bilaterians alike have advanced our understanding of the evolutionary underpinnings governing eumetazoan tissue development, homeostasis, and regeneration. In addition to its regenerative potential, Hydra exhibits continuously active axial patterning due to its peculiar tissue dynamics. These distinctive physiological processes necessitate large scale gene expression changes that are governed by the multitude of epigenetic mechanisms operating in cells. This review highlights the contemporary knowledge of epigenetic regulation in Hydra with contemporary studies from other members of Cnidaria, as well as the interplay between regulatory mechanisms wherever demonstrated. The studies covered in the scope of this review reveal both ancestral and divergent roles played by conserved epigenetic mechanisms with emphasis on transcriptional regulation. Additionally, single-cell transcriptomics data was mined to predict the physiological relevance of putative gene regulatory components, which is in agreement with published findings and yielded insights into the possible functions of the gene regulatory mechanisms that are yet to be deciphered in Hydra, such as DNA methylation. Finally, we delineate potentially rewarding epigenetics research avenues that can further leverage the unique biology of Hydra.
Collapse
Affiliation(s)
| | | | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
8
|
Ali-Murthy Z, Fetter RD, Wang W, Yang B, Royer LA, Kornberg TB. Elimination of nurse cell nuclei that shuttle into oocytes during oogenesis. J Cell Biol 2021; 220:212051. [PMID: 33950159 PMCID: PMC8105724 DOI: 10.1083/jcb.202012101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
Drosophila oocytes develop together with 15 sister germline nurse cells (NCs), which pass products to the oocyte through intercellular bridges. The NCs are completely eliminated during stages 12-14, but we discovered that at stage 10B, two specific NCs fuse with the oocyte and extrude their nuclei through a channel that opens in the anterior face of the oocyte. These nuclei extinguish in the ooplasm, leaving 2 enucleated and 13 nucleated NCs. At stage 11, the cell boundaries of the oocyte are mostly restored. Oocytes in egg chambers that fail to eliminate NC nuclei at stage 10B develop with abnormal morphology. These findings show that stage 10B NCs are distinguished by position and identity, and that NC elimination proceeds in two stages: first at stage 10B and later at stages 12-14.
Collapse
Affiliation(s)
- Zehra Ali-Murthy
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Wanpeng Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Bin Yang
- Chan Zuckerberg Biohub, San Francisco, CA
| | | | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
10
|
Steichele M, Sauermann LS, König AC, Hauck S, Böttger A. Ancestral role of TNF-R pathway in cell differentiation in the basal metazoan Hydra. J Cell Sci 2021; 134:224109. [PMID: 33277380 DOI: 10.1242/jcs.255422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Tumour necrosis factor receptors (TNF-Rs) and their ligands, tumour necrosis factors, are highly conserved proteins described in all metazoan phyla. They function as inducers of extrinsic apoptotic signalling and facilitate inflammation, differentiation and cell survival. TNF-Rs use distinct adaptor molecules to activate signalling cascades. Fas-associated protein with death domain (FADD) family adaptors often mediate apoptosis, and TNF-R-associated factor (TRAF) family adaptors mediate cell differentiation and inflammation. Most of these pathway components are conserved in cnidarians, and, here, we investigated the Hydra TNF-R. We report that it is related to the ectodysplasin receptor, which is involved in epithelial cell differentiation in mammals. In Hydra, it is localised in epithelial cells with incorporated nematocytes in tentacles and body column, indicating a similar function. Further experiments suggest that it interacts with the Hydra homologue of a TRAF adaptor, but not with FADD proteins. Hydra FADD proteins colocalised with Hydra caspases in death effector filaments and recruited caspases, suggesting that they are part of an apoptotic signalling pathway. Regulating epithelial cell differentiation via TRAF adaptors therefore seems to be an ancient function of TNF-Rs, whereas FADD-caspase interactions may be part of a separate apoptotic pathway.
Collapse
Affiliation(s)
- Mona Steichele
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Lara S Sauermann
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Ann-Christine König
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Stefanie Hauck
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| | - Angelika Böttger
- Ludwig-Maximilians-Universität München, Department Biologie II, Groβhaderner Str. 2, 82152 Planegg-Martinsried, Munich, Germany
| |
Collapse
|
11
|
Sebestyén F, Miklós M, Iván K, Tökölyi J. Age-dependent plasticity in reproductive investment, regeneration capacity and survival in a partially clonal animal (Hydra oligactis). J Anim Ecol 2020; 89:2246-2257. [PMID: 32596821 DOI: 10.1111/1365-2656.13287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/17/2020] [Indexed: 01/19/2023]
Abstract
Asexual reproduction diversifies life-history priorities and is associated with unusual reproduction and somatic maintenance patterns, such as constant fertility with age, extensive regeneration ability and negligible senescence. While age-dependent plasticity in relative allocation to sexual versus asexual reproductive modes is relatively well studied, the modulation of somatic maintenance traits in parallel with age-dependent reproduction is much less well understood in clonal or partially clonal animals. Here, we asked how age-dependent investment into sexual and asexual reproduction co-varies with somatic maintenance such as regeneration in a partially clonal freshwater cnidarian Hydra oligactis, a species with remarkable regeneration abilities and experimentally inducible sex. We induced gametogenesis by lowering temperature at two ages, 1 or 4 weeks after detachment from an asexual parent, in animals of a male and a female clone. Then we measured phenotypically asexual and sexual reproductive traits (budding rate, start day and number of sexual organs) together with head regeneration rate, survival and the cellular background of these traits (number of reproductive and interstitial stem cells) for 2 or 5 months. Younger animals had higher asexual reproduction while individuals in the older group had more intensive gametogenesis and reproductive cell production. In parallel with these age-dependent reproductive differences, somatic maintenance of older individuals was also impacted: head regeneration, survival and interstitial stem cell numbers were reduced compared to younger polyps. Some of the traits investigated showed an ontogenetic effect, suggesting that age-dependent plasticity and a fixed ontogenetic response might both contribute to differences between age groups. We show that in H. oligactis asexual reproduction coupled with higher somatic maintenance is prioritized earlier in life, while sexual reproduction with higher maintenance costs occurs later if sex is induced. These findings confirm general life-history theory predictions on resource allocation between somatic maintenance and sexual reproduction applying in a partially clonal species. At the same time, our study also highlights the age-dependent integration of these resource allocation decisions with sexual/asexual strategies. Accounting for age-related differences might enhance repeatability of research done with clonal individuals derived from mass cultures.
Collapse
Affiliation(s)
- Flóra Sebestyén
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Máté Miklós
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Katalin Iván
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Jácint Tökölyi
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
12
|
Shikina S, Chen CC, Chiu YL, Tsai PH, Chang CF. Apoptosis in gonadal somatic cells of scleractinian corals: implications of structural adjustments for gamete production and release. Proc Biol Sci 2020; 287:20200578. [PMID: 32605522 DOI: 10.1098/rspb.2020.0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apoptosis is an evolutionarily conserved process of programmed cell death. Here, we show structural changes in the gonads caused by apoptosis during gametogenesis in the scleractinian coral, Euphyllia ancora. Anatomical and histological analyses revealed that from the non-spawning to the spawning season, testes and ovaries increased in size due to active proliferation, differentiation and development of germ cells. Additionally, the thickness and cell density of the gonadal somatic layer decreased significantly as the spawning season approached. Further analyses demonstrated that the changes in the gonadal somatic layer were caused by apoptosis in a subpopulation of gonadal somatic cells. The occurrence of apoptosis in the gonadal somatic layer was also confirmed in other scleractinian corals. Our findings suggest that decreases in thickness and cell density of the gonadal somatic layer are structural adjustments facilitating oocyte and spermary (male germ cell cluster) enlargement and subsequent gamete release from the gonads. In animal reproduction, apoptosis in germ cells is an important process that controls the number and quality of gametes. However, apoptosis in gonadal somatic cells has rarely been reported among metazoans. Thus, our data provide evidence for a unique use of apoptosis in animal reproduction.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.,Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Pin-Hsuan Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,Department of AquSaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
13
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
14
|
Abstract
Sex in social amoebae (or dictyostelids) has a number of striking features. Dictyostelid zygotes do not proliferate but grow to a large size by feeding on other cells of the same species, each zygote ultimately forming a walled structure called a macrocyst. The diploid macrocyst nucleus undergoes meiosis, after which a single meiotic product survives to restart haploid vegetative growth. Meiotic recombination is generally initiated by the Spo11 enzyme, which introduces DNA double-strand breaks. Uniquely, as far as is known among sexual eukaryotes, dictyostelids lack a SPO11 gene. Despite this, recombination occurs at high frequencies during meiosis in dictyostelids, through unknown mechanisms. The molecular processes underlying these events, and the evolutionary drivers that brought them into being, may shed light on the genetic conflicts that occur within and between genomes, and how they can be resolved.
Collapse
|
15
|
Roles of Germline Stem Cells and Somatic Multipotent Stem Cells in Hydra Sexual Reproduction. DIVERSITY AND COMMONALITY IN ANIMALS 2018. [DOI: 10.1007/978-4-431-56609-0_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Bilinski SM, Halajian A, Tworzydlo W. Ovaries and oogenesis in an epizoic dermapteran, Hemimerus talpoides (Dermaptera, Hemimeridae): Structural and functional adaptations to viviparity and matrotrophy. ZOOLOGY 2017; 125:32-40. [PMID: 28869120 DOI: 10.1016/j.zool.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/27/2022]
Abstract
The Dermaptera are traditionally classified in three taxa: the free living Forficulina and two viviparous (matrotrophic) groups, the Hemimerina and Arixeniina. Recent molecular and histological analyses suggest that both matrotrophic groups should be nested among the most derived taxon of the Forficulina, the Eudermaptera. We present results of ultrastructural analyses of ovary/ovariole morphology and oogenesis in a representative of the Hemimerina, Hemimerus talpoides (Walker, 1871). Our results strongly reinforce the idea that the Hemimerina should be classified within the Eudermaptera. We show additionally that the ovaries of the studied species are characterized by two peculiar modifications, i.e. the presence of numerous tracheoles in contact with the basement lamina covering the ovarioles, and an unusual development of the ovariole stalks. We believe that both characters are related to viviparity and unconventional "intra-ovariolar" embryo development. Finally, our study also indicates that the oocytes of H. talpoides reveal characters apparently associated with a matrotrophic type of embryo nourishment. They are completely yolkless and devoid of the typical, multilayered egg envelopes; instead, they comprise unconventional organelles (para-crystalline stacks of endoplasmic reticulum cisternae and translucent vacuoles) that seem to function after initiation of embryonic development. Thus, the ovaries as well as the oocytes of H. talpoides are characterized by an exceptional mixture of features shared with derived dermapterans and adaptations to matrotrophy.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, Sovenga 0727, South Africa
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
17
|
Ovaries of the white worm ( Enchytraeus albidus , Annelida, Clitellata) are composed of 16-celled meroistic germ-line cysts. Dev Biol 2017; 426:28-42. [DOI: 10.1016/j.ydbio.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
|
18
|
Lei L, Spradling AC. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science 2016; 352:95-9. [PMID: 26917595 PMCID: PMC6910648 DOI: 10.1126/science.aad2156] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/11/2016] [Indexed: 12/29/2022]
Abstract
Oocytes differentiate in diverse species by receiving organelles and cytoplasm from sister germ cells while joined in germline cysts or syncytia. Mouse primordial germ cells form germline cysts, but the role of cysts in oogenesis is unknown. We find that mouse germ cells receive organelles from neighboring cyst cells and build a Balbiani body to become oocytes, whereas nurselike germ cells die. Organelle movement, Balbiani body formation, and oocyte fate determination are selectively blocked by low levels of microtubule-dependent transport inhibitors. Membrane breakdown within the cyst and an apoptosis-like process are associated with organelle transfer into the oocyte, events reminiscent of nurse cell dumping in Drosophila We propose that cytoplasmic and organelle transport plays an evolutionarily conserved and functionally important role in mammalian oocyte differentiation.
Collapse
Affiliation(s)
- Lei Lei
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA.
| |
Collapse
|
19
|
Taylor DH, Chu ETJ, Spektor R, Soloway PD. Long non-coding RNA regulation of reproduction and development. Mol Reprod Dev 2015; 82:932-56. [PMID: 26517592 PMCID: PMC4762656 DOI: 10.1002/mrd.22581] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have long been known to play vital roles in eukaryotic gene regulation. Studies conducted over a decade ago revealed that maturation of spliced, polyadenylated coding mRNA occurs by reactions involving small nuclear RNAs and small nucleolar RNAs; mRNA translation depends on activities mediated by transfer RNAs and ribosomal RNAs, subject to negative regulation by micro RNAs; transcriptional competence of sex chromosomes and some imprinted genes is regulated in cis by ncRNAs that vary by species; and both small-interfering RNAs and piwi-interacting RNAs bound to Argonaute-family proteins regulate post-translational modifications on chromatin and local gene expression states. More recently, gene-regulating noncoding RNAs have been identified, such as long intergenic and long noncoding RNAs (collectively referred to as lncRNAs)--a class totaling more than 100,000 transcripts in humans, which include some of the previously mentioned RNAs that regulate dosage compensation and imprinted gene expression. Here, we provide an overview of lncRNA activities, and then review the role of lncRNAs in processes vital to reproduction, such as germ cell specification, sex determination and gonadogenesis, sex hormone responses, meiosis, gametogenesis, placentation, non-genetic inheritance, and pathologies affecting reproductive tissues. Results from many species are presented to illustrate the evolutionarily conserved processes lncRNAs are involved in.
Collapse
Affiliation(s)
- David H. Taylor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Erin Tsi-Jia Chu
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
| | - Roman Spektor
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
| | - Paul D. Soloway
- Field of Genetics, Genomics and Development, Cornell University, Ithaca, New York
- Field of Comparative Biomedical Sciences, Cornell University, Ithaca, New York
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| |
Collapse
|
20
|
Jaglarz MK, Kubrakiewicz J, Bilinski SM. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:349-360. [PMID: 24858464 DOI: 10.1016/j.asd.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies.
Collapse
Affiliation(s)
- Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Janusz Kubrakiewicz
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
21
|
Naturally occurring tumours in the basal metazoan Hydra. Nat Commun 2014; 5:4222. [PMID: 24957317 DOI: 10.1038/ncomms5222] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/27/2014] [Indexed: 01/04/2023] Open
Abstract
The molecular nature of tumours is well studied in vertebrates, although their evolutionary origin remains unknown. In particular, there is no evidence for naturally occurring tumours in pre-bilaterian animals, such as sponges and cnidarians. This is somewhat surprising given that recent computational studies have predicted that most metazoans might be prone to develop tumours. Here we provide first evidence for naturally occurring tumours in two species of Hydra. Histological, cellular and molecular data reveal that these tumours are transplantable and might originate by differentiation arrest of female gametes. Growth of tumour cells is independent from the cellular environment. Tumour-bearing polyps have significantly reduced fitness. In addition, Hydra tumours show a greatly altered transcriptome that mimics expression shifts in vertebrate cancers. Therefore, this study shows that spontaneous tumours have deep evolutionary roots and that early branching animals may be informative in revealing the fundamental mechanisms of tumorigenesis.
Collapse
|
22
|
Tworzydlo W, Kisiel E, Jankowska W, Bilinski SM. Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. ZOOLOGY 2014; 117:200-6. [DOI: 10.1016/j.zool.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
|
23
|
Hartl M, Glasauer S, Valovka T, Breuker K, Hobmayer B, Bister K. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis. Biol Open 2014; 3:397-407. [PMID: 24771621 PMCID: PMC4021362 DOI: 10.1242/bio.20147005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc–Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1–Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Stella Glasauer
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria Present address: Institute of Molecular Life Sciences, University of Zurich, CH-8057 Zurich, Switzerland
| | - Taras Valovka
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| | - Kathrin Breuker
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Organic Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bert Hobmayer
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria Institute of Zoology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus Bister
- Institute of Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
24
|
Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. Dev Biol 2013; 386:237-51. [PMID: 24355748 DOI: 10.1016/j.ydbio.2013.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/24/2022]
Abstract
To preserve genome integrity, an evolutionarily conserved small RNA-based silencing mechanism involving PIWI proteins and PIWI-interacting RNAs (piRNAs) represses potentially deleterious transposons in animals. Although there has been extensive research into PIWI proteins in bilaterians, these proteins remain to be examined in ancient phyla. Here, we investigated the PIWI proteins Hywi and Hyli in the cnidarian Hydra, and found that both PIWI proteins are enriched in multipotent stem cells, germline stem cells, and in the female germline. Hywi and Hyli localize to the nuage, a perinuclear organelle that has been implicated in piRNA-mediated transposon silencing, together with other conserved nuage and piRNA pathway components. Our findings provide the first report of nuage protein localization patterns in a non-bilaterian. Hydra PIWI proteins possess symmetrical dimethylarginines: modified residues that are known to aid in PIWI protein localization to the nuage and proper piRNA loading. piRNA profiling suggests that transposons are the major targets of the piRNA pathway in Hydra. Our data suggest that piRNA biogenesis through the ping-pong amplification cycle occurs in Hydra and that Hywi and Hyli are likely to preferentially bind primary and secondary piRNAs, respectively. Presumptive piRNA clusters are unidirectionally transcribed and primarily give rise to piRNAs that are antisense to transposons. These results indicate that various conserved features of PIWI proteins, the piRNA pathway, and their associations with the nuage were likely established before the evolution of bilaterians.
Collapse
|
25
|
Morris DJ. A new model for myxosporean (Myxozoa) development explains the endogenous budding phenomenon, the nature of cell within cell life stages and evolution of parasitism from a cnidarian ancestor. Int J Parasitol 2012; 42:829-40. [PMID: 22749958 DOI: 10.1016/j.ijpara.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 11/17/2022]
Abstract
The phylum Myxozoa is composed of endoparasitic species that have predominately been recorded within aquatic vertebrates. The simple body form of a trophic cell containing other cells within it, as observed within these hosts, has provided few clues to relationships with other organisms. In addition, the placement of the group using molecular phylogenies has proved very difficult, although the majority of analyses now suggest that they are cnidarians. There have been relatively few studies of myxozoan stages within invertebrate hosts, even though these exhibit multicellular and sexual stages that may provide clues to myxozoan evolution. Therefore an ultrastructural examination of a myxozoan infection of a freshwater oligochaete was conducted, to reassess and formulate a model for myxozoan development in these hosts. This deemed that meiosis occurs within the oligochaete, but that fertilisation is not immediate. Rather, the resultant haploid germ cell (oocyte) is engulfed by a diploid sporogonic cell (nurse cell) to form a sporoplasm. It is this sporoplasm that infects the fish, resulting in the multicellular stages observed. Fertilisation occurs after the parasites leave the fish and enter the oligochaete host. The nurse cell/oocyte model explains previously conflicting evidence in the literature regarding myxosporean biology, and aligns phenomena considered distinctive to the Myxozoa, such as endogenous budding and cell within cell development, with processes recorded in cnidarians. Finally, the evolutionary origin of the Myxozoa as cnidarian parasites of ova is hypothesised.
Collapse
Affiliation(s)
- D J Morris
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK.
| |
Collapse
|
26
|
Galliot B. [Between homeostasis and development, which strategies to regenerate?]. Biol Aujourdhui 2011; 205:125-37. [PMID: 21831343 DOI: 10.1051/jbio/2011011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Indexed: 11/14/2022]
Abstract
The Hydra model system is well suited to decipher the mechanisms underlying adult regeneration, specifically those that were robust enough to be maintained across evolution. After mid-gastric bissection head regeneration in Hydra relies on apoptosis-induced compensatory proliferation via the release of Wnt3 by the apoptotic interstitial cells and activation of the β-catenin pathway in the surrounding cycling interstitial cells. As apoptosis-induced compensatory proliferation is also at work in Drosophila regenerating imaginal discs, Xenopus tadpole regenerating their tail and mice regenerating their skin or their liver, this mechanism might represent an evolutionarily-conserved way to launch a regenerative response. However after decapitation, the analysis of the activation of the canonical Wnt pathway in decapitated Hydra showed that apoptosis-induced compensatory proliferation does not take place in this context. Given that the proportion of interstitial stem cells is significantly higher in the middle part than in the upper part of the body column, this suggested that the route taken to regenerate a structure as complex as the head dramatically varies according to the homeostatic status of the tissue at the time of injury. From these observations, we propose a tri-modular model for animal regeneration where the first module or "wound healing module" is followed by a transient module named "inducing module of regeneration" that allows the recruitment of the third module named "re-development module", necessary for repatterning the missing structure. We claim that among these three modules, the inducing module of regeneration is the most drastically constrained by the homeostatic conditions of any given tissue or organ at the time of injury and therefore the most variable.
Collapse
Affiliation(s)
- Brigitte Galliot
- Département de Génétique et Évolution, Faculté des Sciences, Universite de genève, genève Suisse
| |
Collapse
|
27
|
Duffy DJ, Plickert G, Kuenzel T, Tilmann W, Frank U. Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development 2010; 137:3057-66. [DOI: 10.1242/dev.046631] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the role of Wnt signaling in axis formation during metamorphosis and regeneration in the cnidarian Hydractinia. Activation of Wnt downstream events during metamorphosis resulted in a complete oralization of the animals and repression of aboral structures (i.e. stolons). The expression of Wnt3, Tcf and Brachyury was upregulated and became ubiquitous. Rescue experiments using Tcf RNAi resulted in normal metamorphosis and quantitatively normal Wnt3 and Brachyury expression. Isolated, decapitated polyps regenerated only heads but no stolons. Activation of Wnt downstream targets in regenerating animals resulted in oralization of the polyps. Knocking down Tcf or Wnt3 by RNAi inhibited head regeneration and resulted in complex phenotypes that included ectopic aboral structures. Multiple heads then grew when the RNAi effect had dissipated. Our results provide functional evidence that Wnt promotes head formation but represses the formation of stolons, whereas downregulation of Wnt promotes stolons and represses head formation.
Collapse
Affiliation(s)
- David J. Duffy
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland, Galway, Galway, Ireland
| | - Günter Plickert
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Timo Kuenzel
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Wido Tilmann
- Biozentrum Köln, University of Köln, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Uri Frank
- School of Natural Sciences and Martin Ryan Marine Science Institute, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
28
|
Abstract
Background In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals.
Collapse
|
29
|
Galliot B, Chera S. The Hydra model: disclosing an apoptosis-driven generator of Wnt-based regeneration. Trends Cell Biol 2010; 20:514-23. [PMID: 20691596 DOI: 10.1016/j.tcb.2010.05.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 12/11/2022]
Abstract
The Hydra model system is well suited for the eludication of the mechanisms underlying regeneration in the adult, and an understanding of the core mechanisms is likely to cast light on pathways conserved in other species. Recent detailed analyses of the activation of the Wnt-beta-catenin pathway in bisected Hydra shows that the route taken to regenerate a structure as complex as the head varies dramatically according to the level of the amputation. When decapitation induces direct re-development due to Wnt3 signaling from epithelial cells, head regeneration after mid-gastric section relies first on Wnt3 signaling from interstitial cells, that undergo apoptosis-induced compensatory proliferation, and subsequently on activation of Wnt3 signaling in the epithelial cells. The relative distribution between stem cells and head progenitor cells is strikingly different in these two contexts, indicating that the pre-amputation homeostatic conditions define and constrain the route that bridges wound-healing to the re-development program of the missing structure.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Zoology and Animal Biology, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
30
|
Abstract
Hydra is a member of the ancient metazoan phylum Cnidaria and is an especially well investigated model organism for questions of the evolutionary origin of metazoan processes. Apoptosis in Hydra is important for the regulation of cellular homeostasis under different conditions of nutrient supply. The molecular mechanisms leading to apoptosis in Hydra are surprisingly extensive and comparable to those in mammals. Genome wide sequence analysis has revealed the presence of large caspase and Bcl-2 families, the apoptotic protease activating factor (APAF-1), inhibitors of apoptotic proteases (IAPs) and components of a putative death receptor pathway. Regulation of apoptosis in Hydra may involve BH-3 only proteins and survival pathways, possibly including insulin signalling.
Collapse
|
31
|
Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Käsbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Söding J, David CN, Böttger A. The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 2010; 20:812-25. [PMID: 20479784 DOI: 10.1038/cr.2010.66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fresh water polyp Hydra belongs to the phylum Cnidaria, which diverged from the metazoan lineage before the appearance of bilaterians. In order to understand the evolution of apoptosis in metazoans, we have begun to elucidate the molecular cell death machinery in this model organism. Based on ESTs and the whole Hydra genome assembly, we have identified 15 caspases. We show that one is activated during apoptosis, four have characteristics of initiator caspases with N-terminal DED, CARD or DD domain and two undergo autoprocessing in vitro. In addition, we describe seven Bcl-2-like and two Bak-like proteins. For most of the Bcl-2 family proteins, we have observed mitochondrial localization. When expressed in mammalian cells, HyBak-like 1 and 2 strongly induced apoptosis. Six of the Bcl-2 family members inhibited apoptosis induced by camptothecin in mammalian cells with HyBcl-2-like 4 showing an especially strong protective effect. This protein also interacted with HyBak-like 1 in a yeast two-hybrid assay. Mutation of the conserved leucine in its BH3 domain abolished both the interaction with HyBak-like 1 and the anti-apoptotic effect. Moreover, we describe novel Hydra BH-3-only proteins. One of these interacted with Bcl-2-like 4 and induced apoptosis in mammalian cells. Our data indicate that the evolution of a complex network for cell death regulation arose at the earliest and simplest level of multicellular organization, where it exhibited a substantially higher level of complexity than in the protostome model organisms Caenorhabditis and Drosophila.
Collapse
Affiliation(s)
- Margherita Lasi
- Department Biology II, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vogt KSC, Geddes GC, Bross LS, Blackstone NW. Physiological characterization of stolon regression in a colonial hydroid. J Exp Biol 2008; 211:731-40. [DOI: 10.1242/jeb.011148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY
As with many colonial animals, hydractiniid hydroids display a range of morphological variation. Sheet-like forms exhibit feeding polyps close together with short connecting stolons, whereas runner-like forms have more distant polyps and longer connecting stolons. These morphological patterns are thought to derive from rates of stolon growth and polyp formation. Here,stolon regression is identified and characterized as a potential process underlying this variation. Typically, regression can be observed in a few stolons of a normally growing colony. For detailed studies, many stolons of a colony can be induced to regress by pharmacological manipulations of reactive oxygen species (e.g. hydrogen peroxide) or reactive nitrogen species (e.g. nitric oxide). The regression process begins with a cessation of gastrovascular flow to the distal part of the stolon. High levels of endogenous H2O2 and NO then accumulate in the regressing stolon. Remarkably, exogenous treatments with either H2O2 or an NO donor equivalently trigger endogenous formation of both H2O2 and NO. Cell death during regression is suggested by both morphological features, detected by transmission electron microscopy, and DNA fragmentation, detected by TUNEL. Stolon regression may occur when colonies detect environmental signals that favor continued growth in the same location rather than outward growth.
Collapse
Affiliation(s)
| | - Gabrielle C. Geddes
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| | - Lori S. Bross
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| | - Neil W. Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb,IL 60115, USA
| |
Collapse
|
33
|
Hwang JS, Ohyanagi H, Hayakawa S, Osato N, Nishimiya-Fujisawa C, Ikeo K, David CN, Fujisawa T, Gojobori T. The evolutionary emergence of cell type-specific genes inferred from the gene expression analysis of Hydra. Proc Natl Acad Sci U S A 2007; 104:14735-40. [PMID: 17766437 PMCID: PMC1963347 DOI: 10.1073/pnas.0703331104] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell lineages of cnidarians including Hydra represent the fundamental cell types of metazoans and provides us a unique opportunity to study the evolutionary diversification of cell type in the animal kingdom. Hydra contains epithelial cells as well as a multipotent interstitial cell (I-cell) that gives rise to nematocytes, nerve cells, gland cells, and germ-line cells. We used cDNA microarrays to identify cell type-specific genes by comparing gene expression in normal Hydra with animals lacking the I-cell lineage, so-called epithelial Hydra. We then performed in situ hybridization to localize expression to specific cell types. Eighty-six genes were shown to be expressed in specific cell types of the I-cell lineage. An additional 29 genes were expressed in epithelial cells and were down-regulated in epithelial animals lacking I-cells. Based on the above information, we constructed a database (http://hydra.lab.nig.ac.jp/hydra/), which describes the expression patterns of cell type-specific genes in Hydra. Most genes expressed specifically in either I-cells or epithelial cells have homologues in higher metazoans. By comparison, most nematocyte-specific genes and approximately half of the gland cell- and nerve cell-specific genes are unique to the cnidarian lineage. Because nematocytes, gland cells, and nerve cells appeared along with the emergence of cnidarians, this suggests that lineage-specific genes arose in cnidarians in conjunction with the evolution of new cell types required by the cnidarians.
Collapse
Affiliation(s)
| | - Hajime Ohyanagi
- *Center for Information Biology and DNA Data Bank of Japan
- Tsukuba Division, Mitsubishi Space Software Co., Ltd., 1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan; and
| | - Shiho Hayakawa
- *Center for Information Biology and DNA Data Bank of Japan
| | - Naoki Osato
- *Center for Information Biology and DNA Data Bank of Japan
| | - Chiemi Nishimiya-Fujisawa
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540 Japan
| | - Kazuho Ikeo
- *Center for Information Biology and DNA Data Bank of Japan
| | - Charles N. David
- Department Biologie II, Ludwig Maximilians University, Grosshadernerstrasse 2, D-82152 Planegg/Martinsried, Germany
| | - Toshitaka Fujisawa
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540 Japan
| | - Takashi Gojobori
- *Center for Information Biology and DNA Data Bank of Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Böttger A, Alexandrova O. Programmed cell death in Hydra. Semin Cancer Biol 2006; 17:134-46. [PMID: 17197196 DOI: 10.1016/j.semcancer.2006.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/25/2006] [Indexed: 11/21/2022]
Abstract
Hydra is one of the simplest metazoans and thus an important model organism for studies on the evolution of developmental mechanisms in multi-cellular animals. In Hydra apoptosis is involved in the regulation of cell numbers in response to feeding, in regeneration and in the removal of non-self cells. It also participates in the maintenance of cellular homeostasis in germ cells. During oogenesis a special "arrested" apoptosis of nurse cells is observed. The morphology of apoptotic hydra cells is almost indistinguishable from apoptosis in higher animals and caspases as well as members of the Bcl-2 family participate in the process.
Collapse
Affiliation(s)
- Angelika Böttger
- Ludwig-Maximilians-University Munich, Department Biology II, 82110 Planegg-Martinsried, Grosshaderner Str. 2, Germany.
| | | |
Collapse
|
35
|
Käsbauer T, Towb P, Alexandrova O, David CN, Dall'armi E, Staudigl A, Stiening B, Böttger A. The Notch signaling pathway in the cnidarian Hydra. Dev Biol 2006; 303:376-90. [PMID: 17184766 DOI: 10.1016/j.ydbio.2006.11.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/24/2022]
Abstract
Many of the major pathways that govern early development in higher animals have been identified in cnidarians, including the Wnt, TGFbeta and tyrosine kinase signaling pathways. We show here that Notch signaling is also conserved in these early metazoans. We describe the Hydra Notch receptor (HvNotch) and provide evidence for the conservation of the Notch signaling mode via regulated intramembrane proteolysis. We observed that nuclear translocation of the Notch intracellular domain (NID) was inhibited by the synthetic gamma-secretase inhibitor DAPT. Moreover, DAPT treatment of hydra polyps caused distinct differentiation defects in their interstitial stem cell lineage. Nerve cell differentiation proceeded normally but post-mitotic nematocyte differentiation was dramatically reduced. Early female germ cell differentiation was inhibited before exit from mitosis. From these results we conclude that gamma-secretase activity and presumably Notch signaling are required to control differentiation events in the interstitial cell lineage of Hydra.
Collapse
Affiliation(s)
- Tina Käsbauer
- Department Biologie II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tammaro S, Simoniello P, Filosa S, Motta CM. Block of mitochondrial apoptotic pathways in lizard ovarian follicle cells as an adaptation to their nurse function. Cell Tissue Res 2006; 327:625-35. [PMID: 17036231 DOI: 10.1007/s00441-006-0256-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 05/23/2006] [Indexed: 11/25/2022]
Abstract
Pyriforms are ovarian follicle nurse cells that undergo apoptosis at the end of previtellogenesis and are completely eliminated by the epithelium. This event is accompanied by the active transfer of organelles and macromolecules to the oocyte via an intercellular bridge. Since it would be a nonsense for damaged mitochondria to reach the oocyte, we have postulated that pyriform cells have adapted their apoptotic machinery to prevent mitochondrial degradation. To verify this hypothesis, we have studied mitochondrial morphology and functionality during follicle cell regression. Cytological and biochemical evidence indicates that mitochondria in pyriforms maintain their size, organization and membrane potential. This clearly indicates that they are not involved in apoptosis signalling/progression. This block would favour both the oocyte, by increasing the pool of organelles available from follicle cells, and also the regressing pyriforms, by maintaining the energy resources required for completion of their nurse function. The block is probably attributable to an over-expression of Bcl-2 and might be carried out by sequestering cytochrome c inside the organelles. As demonstrated by in vitro experiments, the mitochondrial apoptosis pathway can be activated by stress induction, such as serum deprivation, but not following physiological pro-apoptotic signalling, such as treatment with gonadotrophin-releasing hormone.
Collapse
Affiliation(s)
- Stefania Tammaro
- Dipartimento delle Scienze Biologiche, Section of Evolutionary and Comparative Biology, University of Naples Federico II, 80134 Naples, Italy
| | | | | | | |
Collapse
|
37
|
Genikhovich G, Kürn U, Hemmrich G, Bosch TCG. Discovery of genes expressed in Hydra embryogenesis. Dev Biol 2006; 289:466-81. [PMID: 16337937 DOI: 10.1016/j.ydbio.2005.10.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 10/04/2005] [Accepted: 10/18/2005] [Indexed: 11/22/2022]
Abstract
Hydra's remarkable capacity to regenerate, to proliferate asexually by budding, and to form a pattern de novo from aggregates allows studying complex cellular and molecular processes typical for embryonic development. The underlying assumption is that patterning in adult hydra tissue relies on factors and genes which are active also during early embryogenesis. Previously, we reported that in Hydra the timing of expression of conserved regulatory genes, known to be involved in adult patterning, differs greatly in adults and embryos (Fröbius, A.C., Genikhovich, G., Kürn, U., Anton-Erxleben, F. and Bosch, T.C.G., 2003. Expression of developmental genes during early embryogenesis of Hydra. Dev. Genes Evol. 213, 445-455). Here, we describe an unbiased screening strategy to identify genes that are relevant to Hydra vulgaris embryogenesis. The approach yielded two sets of differentially expressed genes: one set was expressed exclusively or nearly exclusively in the embryos, while the second set was upregulated in embryos in comparison to adult polyps. Many of the genes identified in hydra embryos had no matches in the database. Among the conserved genes upregulated in embryos is the Hydra orthologue of Embryonic Ectoderm Development (HyEED). The expression pattern of HyEED in developing embryos suggests that interstitial stem cells in Hydra originate in the endoderm. Importantly, the observations uncover previously unknown differences in genes expressed by embryos and polyps and indicate that not only the timing of expression of developmental genes but also the genetic context is different in Hydra embryos compared to adults.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Zoological Institute, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | | | | | | |
Collapse
|