1
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. Development 2025; 152:dev202931. [PMID: 39651654 PMCID: PMC12070064 DOI: 10.1242/dev.202931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
Anteroposterior elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of anteroposterior axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A. Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan D. Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Emig AA, Hansen M, Grimm S, Coarfa C, Lord ND, Williams MK. Temporal dynamics of BMP/Nodal ratio drive tissue-specific gastrulation morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579243. [PMID: 38370754 PMCID: PMC10871350 DOI: 10.1101/2024.02.06.579243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Anteroposterior (AP) elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of AP axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Megan Hansen
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Sandra Grimm
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Nathan D Lord
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Margot Kossmann Williams
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Previous address: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Zhu K, Spaink HP, Durston AJ. Patterning of the Vertebrate Head in Time and Space by BMP Signaling. J Dev Biol 2023; 11:31. [PMID: 37489332 PMCID: PMC10366882 DOI: 10.3390/jdb11030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Center for Life Sciences, Blackfan Circle, Boston, MA 02115, USA
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Antony J Durston
- Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| |
Collapse
|
4
|
Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A. Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Front Cell Dev Biol 2022; 10:844619. [PMID: 35372345 PMCID: PMC8967241 DOI: 10.3389/fcell.2022.844619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) is a central signaling molecule regulating multiple developmental decisions during embryogenesis. Excess RA induces head malformations, primarily by expansion of posterior brain structures at the expense of anterior head regions, i.e., hindbrain expansion. Despite this extensively studied RA teratogenic effect, a number of syndromes exhibiting microcephaly, such as DiGeorge, Vitamin A Deficiency, Fetal Alcohol Syndrome, and others, have been attributed to reduced RA signaling. This causative link suggests a requirement for RA signaling during normal head development in all these syndromes. To characterize this novel RA function, we studied the involvement of RA in the early events leading to head formation in Xenopus embryos. This effect was mapped to the earliest RA biosynthesis in the embryo within the gastrula Spemann-Mangold organizer. Head malformations were observed when reduced RA signaling was induced in the endogenous Spemann-Mangold organizer and in the ectopic organizer of twinned embryos. Two embryonic retinaldehyde dehydrogenases, ALDH1A2 (RALDH2) and ALDH1A3 (RALDH3) are initially expressed in the organizer and subsequently mark the trunk and the migrating leading edge mesendoderm, respectively. Gene-specific knockdowns and CRISPR/Cas9 targeting show that RALDH3 is a key enzyme involved in RA production required for head formation. These observations indicate that in addition to the teratogenic effect of excess RA on head development, RA signaling also has a positive and required regulatory role in the early formation of the head during gastrula stages. These results identify a novel RA activity that concurs with its proposed reduction in syndromes exhibiting microcephaly.
Collapse
|
5
|
Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A. Natural size variation among embryos leads to the corresponding scaling in gene expression. Dev Biol 2020; 462:165-179. [PMID: 32259520 PMCID: PMC8073595 DOI: 10.1016/j.ydbio.2020.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/27/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022]
Abstract
Xenopus laevis frogs from laboratory stocks normally lay eggs exhibiting extensive size variability. We find that these initial size differences subsequently affect the size of the embryos prior to the onset of growth, and the size of tadpoles during the growth period. Even though these tadpoles differ in size, their tissues, organs, and structures always seem to be properly proportioned, i.e. they display static allometry. Initial axial patterning events in Xenopus occur in a spherical embryo, allowing easy documentation of their size-dependent features. We examined the size distribution of early Xenopus laevis embryos and measured diameters that differed by about 38% with a median of about 1.43 mm. This range of embryo sizes corresponds to about a 1.9-fold difference in surface area and a 2.6-fold difference in volume. We examined the relationship between embryo size and gene expression and observed a significant correlation between diameter and RNA content during gastrula stages. In addition, we investigated the expression levels of genes that pattern the mesoderm, induce the nervous system and mediate the progression of ectodermal cells to neural precursors in large and small embryos. We found that most of these factors were expressed at levels that scaled with the different embryo sizes and total embryo RNA content. In agreement with the changes in transcript levels, the expression domains in larger embryos increased proportionally with the increase in surface area, maintaining their relative expression domain size in relation to the total size of the embryo. Thus, our study identified a mechanism for adapting gene expression domains to embryo size by adjusting the transcript levels of the genes regulating mesoderm induction and patterning. In the neural plate, besides the scaling of the expression domains, we observed similar cell sizes and cell densities in small and large embryos suggesting that additional cell divisions took place in large embryos to compensate for the increased size. Our results show in detail the size variability among Xenopus laevis embryos and the transcriptional adaptation to scale gene expression with size. The observations further support the involvement of BMP/ADMP signaling in the scaling process.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Tamir Edri
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Steven L Klein
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, USA
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
6
|
Chen H, Zhang Z, Wang Z, Li Q, Chen H, Guo S, Bao L, Wang Z, Min W, Xiang Q. Stage-specific regulation of Gremlin1 on the differentiation and expansion of human urinary induced pluripotent stem cells into endothelial progenitors. J Cell Mol Med 2020; 24:8018-8030. [PMID: 32468734 PMCID: PMC7348142 DOI: 10.1111/jcmm.15433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/07/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Human urinary induced pluripotent stem cells (hUiPSCs) produced from exfoliated renal epithelial cells present in urine may provide a non-invasive source of endothelial progenitors for the treatment of ischaemic diseases. However, their differentiation efficiency is unsatisfactory and the underlying mechanism of differentiation is still unknown. Gremlin1 (GREM1) is an important gene involved in cell differentiation. Therefore, we tried to elucidate the roles of GREM1 during the differentiation and expansion of endothelial progenitors. HUiPSCs were induced into endothelial progenitors by three stages. After differentiation, GREM1 was obviously increased in hUiPSC-induced endothelial progenitors (hUiPSC-EPs). RNA interference (RNAi) was used to silence GREM1 expression in three stages, respectively. We demonstrated a stage-specific effect of GREM1 in decreasing hUiPSC-EP differentiation in the mesoderm induction stage (Stage 1), while increasing differentiation in the endothelial progenitors' induction stage (Stage 2) and expansion stage (Stage 3). Exogenous addition of GREM1 recombinant protein in the endothelial progenitors' expansion stage (Stage 3) promoted the expansion of hUiPSC-EPs although the activation of VEGFR2/Akt or VEGFR2/p42/44MAPK pathway. Our study provided a new non-invasive source for endothelial progenitors, demonstrated critical roles of GREM1 in hUiPSC-EP and afforded a novel strategy to improve stem cell-based therapy for the ischaemic diseases.
Collapse
Affiliation(s)
- Haixuan Chen
- Translational Medicine Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhecun Wang
- Department of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quhuan Li
- Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Hui Chen
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Bao
- Department of Gynecology and Obstetrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qiuling Xiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
8
|
Leibovich A, Kot-Leibovich H, Ben-Zvi D, Fainsod A. ADMP controls the size of Spemann's organizer through a network of self-regulating expansion-restriction signals. BMC Biol 2018; 16:13. [PMID: 29357852 PMCID: PMC5778663 DOI: 10.1186/s12915-018-0483-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bone morphogenetic protein (BMP) signaling gradient is central for dorsoventral patterning in amphibian embryos. This gradient is established through the interaction of several BMPs and BMP antagonists and modulators, some secreted by Spemann's organizer, a cluster of cells coordinating embryonic development. Anti-dorsalizing morphogenetic protein (ADMP), a BMP-like transforming growth factor beta ligand, negatively affects the formation of the organizer, although it is robustly expressed within the organizer itself. Previously, we proposed that this apparent discrepancy may be important for the ability of ADMP to scale the BMP gradient with embryo size, but how this is achieved is unclear. RESULTS Here we report that ADMP acts in the establishment of the organizer via temporally and mechanistically distinct signals. At the onset of gastrulation, ADMP is required to establish normal organizer-specific gene expression domains, thus displaying a dorsal, organizer-promoting function. The organizer-restricting, BMP-like function of ADMP becomes apparent slightly later, from mid-gastrula. The organizer-promoting signal of ADMP is mediated by the activin A type I receptor, ACVR1 (also known as activin receptor-like kinase-2, ALK2). ALK2 is expressed in the organizer and is required for organizer establishment. The anti-organizer function of ADMP is mediated by ACVRL1 (ALK1), a putative ADMP receptor expressed in the lateral regions flanking the organizer that blocks expansion of the organizer. Truncated ALK1 prevents the organizer-restricting effects of ADMP overexpression, suggesting a ligand-receptor interaction. We also present a mathematical model of the regulatory network controlling the size of the organizer. CONCLUSIONS We show that the opposed, organizer-promoting and organizer-restricting roles of ADMP are mediated by different receptors. A self-regulating network is proposed in which ADMP functions early through ALK2 to expand its own expression domain, the organizer, and later functions through ALK1 to restrict this domain. These effects are dependent on ADMP concentration, timing, and the spatial localization of the two receptors. This self-regulating temporal switch may control the size of the organizer and the genes expressed within in response to genetic and external stimuli during gastrulation.
Collapse
Affiliation(s)
- Avi Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Hadas Kot-Leibovich
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
9
|
Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 77:281-306. [PMID: 27451101 DOI: 10.1016/bs.apha.2016.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review.
Collapse
|
10
|
Liu X, Qi J, Xu X, Zeisberg M, Guan K, Zeisberg EM. Differentiation of functional endothelial cells from human induced pluripotent stem cells: A novel, highly efficient and cost effective method. Differentiation 2016; 92:225-236. [PMID: 27266810 DOI: 10.1016/j.diff.2016.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Abstract
Endothelial cells derived from human induced pluripotent stem cells (hiPSC- EC) are of significant value for research on human vascular development, in vitro disease models and drug screening. Here we report an alternative, highly efficient and cost-effective simple three step method (mesoderm induction, endothelial cell differentiation and endothelial cell expansion) to differentiate hiPSC directly into endothelial cells. We demonstrate that efficiency of described method to derive CD31+ and VE-Cadherin+ double positive cells is higher than 80% in 12 days. Most notably we established that hiPSC-EC differentiation efficacy depends on optimization of both mesoderm differentiation and endothelial cell differentiation steps.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Jing Qi
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, 37075 Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, 37075 Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany; Department of Pharmacology and Toxicology, TU Dresden, 01307 Dresden, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg August University, 37075 Göttingen, Germany; DZHK (German Centre for Cardiovascular Research) Partner Site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
11
|
Katz Imberman S, Kolpakova A, Keren A, Bengal E. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo. FEBS J 2015; 282:2930-47. [PMID: 26038288 DOI: 10.1111/febs.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/28/2022]
Abstract
In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation.
Collapse
Affiliation(s)
- Sandra Katz Imberman
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alina Kolpakova
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
13
|
Di Vito A, Mignogna C, Donato G. The mysterious pathways of cardiac myxomas: a review of histogenesis, pathogenesis and pathology. Histopathology 2014; 66:321-32. [DOI: 10.1111/his.12531] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Di Vito
- Department of Clinical and Experimental Medicine; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| | - Chiara Mignogna
- Department of Health Science, Pathology Unit; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| | - Giuseppe Donato
- Department of Health Science, Pathology Unit; University of Catanzaro ‘Magna Graecia Medical School; Catanzaro Italy
| |
Collapse
|
14
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
15
|
Tsao KC, Tu CF, Lee SJ, Yang RB. Zebrafish scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 1) is involved in primitive hematopoiesis. J Biol Chem 2012; 288:5017-26. [PMID: 23271740 DOI: 10.1074/jbc.m112.375196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Ku-Chi Tsao
- Institute of Biomedical Sciences, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
16
|
Cho GS, Choi SC, Park EC, Han JK. Role of Tbx2 in defining the territory of the pronephric nephron. Development 2011; 138:465-74. [PMID: 21205791 DOI: 10.1242/dev.061234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite extensive study of the development of the nephron, which is the functional unit of the kidney, the molecular mechanisms underlying the determination of nephron size remain largely unknown. Using the Xenopus pronephros, we demonstrate here that Tbx2, a T-box transcriptional repressor, functions to demarcate the territory of the pronephric nephron. Tbx2 is specifically expressed around three distinct components of the pronephric nephron: the tubule, duct and glomus. Gain of function of Tbx2 inhibits nephric mesoderm formation. Conversely, Tbx2 loss of function expands the boundary of each component of the pronephric nephron, resulting in an enlarged pronephros. BMP signals induce Tbx2 in the non-nephric mesoderm, which inhibits the expression of the nephric markers Hey1 and Gremlin. Importantly, these pronephric molecules repress Tbx2 expression by antagonizing BMP signals in the nephric mesoderm. These results suggest that the negative regulatory loops between BMP/Tbx2 and Gremlin or Hey1 are responsible for defining the territory of the pronephric nephron.
Collapse
Affiliation(s)
- Gun-Sik Cho
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Abstract
The endothelium is composed of specialized epithelial cells that line the vasculature, the lymph vessels, and the heart. These endothelial cells are characterized by their stratification and are connected via intercellular junctions that confer specific permeability. Although all endothelium acts as a barrier, considerable heterogeneity exists among different organs and even within vessels. During development, the endothelial cells are specified before they migrate to their final destination, and then they commit to an arterial or venous fate. From the venous endothelial cell population, a subset of cells is further specified as lymphatic endothelium. The endothelium can be highly permeable, as in the lymph vessels, or impenetrable, as in the blood-brain barrier. These differences arise during development and are orchestrated through a series of signaling pathways. This review details how endothelial cells arise and are directed to their specific fate, specifically targeting what differentiates endothelial populations.
Collapse
Affiliation(s)
- Laura A. Dyer
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Abstract
Metazoan organisms can 'scale', that is, maintain similar proportions regardless of size. Ben-Zvi et al. use experiments in Xenopus to support a quantitative model that explains morphological scaling as the result of scaling of a gradient of bone morphogenetic protein (BMP) signals. We believe that the evidence for scaling in Xenopus is misinterpreted, and that their model for embryonic patterning disagrees with prior data. The experiments they present supporting their model admit alternative interpretations.
Collapse
|
19
|
Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N. Reply to Francois et al. Nature 2009. [DOI: 10.1038/nature08306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JBA, Zon LI, Daley GQ. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell 2009; 2:72-82. [PMID: 18371423 DOI: 10.1016/j.stem.2007.10.022] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 01/10/2023]
Abstract
The formation of blood in the embryo is dependent on bone morphogenetic protein (BMP), but how BMP signaling intersects with other regulators of hematopoietic development is unclear. Using embryonic stem (ES) cells, we show that BMP4 first induces ventral-posterior (V-P) mesoderm and subsequently directs mesodermal cells toward blood fate by activating Wnt3a and upregulating Cdx and Hox genes. When BMP signaling is blocked during this latter phase, enforced expression of either Cdx1 or Cdx4 rescues hematopoietic development, thereby placing BMP4 signaling upstream of the Cdx-Hox pathway. Wnt signaling cooperates in BMP-induced hemogenesis, and the Wnt effector LEF1 mediates BMP4 activation of Cdx genes. Our data suggest that BMP signaling plays two distinct and sequential roles during blood formation, initially as an inducer of mesoderm, and later to specify blood via activation of Wnt signaling and the Cdx-Hox pathway.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Robust Stability of the Embryonic Axial Pattern Requires a Secreted Scaffold for Chordin Degradation. Cell 2008; 134:854-65. [DOI: 10.1016/j.cell.2008.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/30/2008] [Accepted: 07/02/2008] [Indexed: 11/15/2022]
|
22
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
23
|
Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N. Scaling of the BMP activation gradient in Xenopus embryos. Nature 2008; 453:1205-11. [DOI: 10.1038/nature07059] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 05/08/2008] [Indexed: 11/09/2022]
|
24
|
Tucker JA, Mintzer KA, Mullins MC. The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 2008; 14:108-19. [PMID: 18194657 DOI: 10.1016/j.devcel.2007.11.004] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 09/21/2007] [Accepted: 11/09/2007] [Indexed: 12/24/2022]
Abstract
Patterning of the vertebrate anteroposterior (AP) axis proceeds temporally from anterior to posterior. How dorsoventral (DV) axial patterning relates to AP temporal patterning is unknown. We examined the temporal activity of BMP signaling in patterning ventrolateral cell fates along the AP axis, using transgenes that rapidly turn "off" or "on" BMP signaling. We show that BMP signaling patterns rostral DV cell fates at the onset of gastrulation, whereas progressively more caudal DV cell fates are patterned at progressively later intervals during gastrulation. Increased BMP signal duration is not required to pattern more caudal DV cell fates; rather, distinct temporal intervals of signaling are required. This progressive action is regulated downstream of, or in parallel to, BMP signal transduction at the level of Smad1/5 phosphorylation. We propose that a temporal cue regulates a cell's competence to respond to BMP signaling, allowing the acquisition of a cell's DV and AP identity simultaneously.
Collapse
Affiliation(s)
- Jennifer A Tucker
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
25
|
Matsui H, Sakabe M, Sakata H, Yanagawa N, Ikeda K, Yamagishi T, Nakajima Y. Induction of initial heart α-actin, smooth muscle α-actin, in chick pregastrula epiblast: The role of hypoblast and fibroblast growth factor-8. Dev Growth Differ 2008; 50:143-57. [DOI: 10.1111/j.1440-169x.2008.00987.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Petrigliano FA, English CS, Barba D, Esmende S, Wu BM, McAllister DR. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. ACTA ACUST UNITED AC 2008; 13:2721-31. [PMID: 17727336 DOI: 10.1089/ten.2006.0434] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objectives of this investigation were (1) to characterize the growth factor release profile of a basic fibroblast growth factor (bFGF)-coated three-dimensional (3D) polymer scaffold under static and cyclically strained conditions, and (2) to delineate the individual and collective contributions of locally released bFGF and mechanical strain on cellular morphology and gene expression in this 3D system. Scaffolds were treated with I(125)-bFGF and subjected to mechanical strain or maintained in a static environment and the media sampled for factor release over a period of 6 days. Over the first 10 hours, a burst release of 25% of the incorporated growth factor into the surrounding media was noted. At 24 hours, approximately 40% of the bFGF was released into the media, after which steady state was achieved and minimal subsequent release was noted. Mechanical stimulation had no effect on growth factor release from the scaffold in this system. To test the concerted effects of bFGF and mechanical stimulation on bone marrow stromal cells (BMSCs), scaffolds were loaded with 0, 100, or 500 ng of bFGF, seeded with cells, and subjected to mechanical strain or maintained in a static environment. Scaffolds were harvested at 1, 7, and 21 days for RT-PCR and histomorphometry. All scaffolds subjected to growth factor and/or mechanical stimulation demonstrated cellular adherence and spreading at 21 days. Conversely, in the absence of both bFGF and mechanical stimulation, cells demonstrated minimal cytoplasmic spread. Moreover, at 21 days, cells subjected to both mechanical stimulation and bFGF (500 ng) demonstrated the highest upregulation of stress-resistive (collagen I, III) and stress-responsive proteins (tenascin-C). The effect of growth factor may be dose sensitive, however, as unstrained scaffolds treated with 100 ng of bFGF demonstrated upregulation of gene expression comparable to strained scaffolds treated with lower doses of bFGF (0 or 100 ng). In conclusion, results from this study suggest that the stimulatory effects of bFGF are dose sensitive and appear to be influenced by the addition of mechanical strain. The concurrent application of biochemical and mechanical stimuli may be important in promoting the adaptation of BMSCs and driving the transcription of genes essential for synthesis of a functional ligament replacement tissue.
Collapse
Affiliation(s)
- Frank A Petrigliano
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Medical Center, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Developmental biology teachers use the example of the frog embryo to introduce young scientists to the wonders of vertebrate development, and to pose the crucial question, 'How does a ball of cells become an exquisitely patterned embryo?'. Classical embryologists also recognized the power of the amphibian model and used extirpation and explant studies to explore early embryo polarity and to define signaling centers in blastula and gastrula stage embryos. This review revisits these early stages of Xenopus development and summarizes the recent explosion of information on the intrinsic and extrinsic factors that are responsible for the first phases of embryonic patterning.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, OH 45229-3039, USA.
| |
Collapse
|