1
|
Zohri M, Arefian E, Azizi Z, Akbari Javar H, Shadboorestan A, Fatahi Y, Chogan F, Taheri M, Karoobi S, Aghaee-Bakhtiari SH, Bonakdar S, Gazori T, Mohammadi S, Saadatpour F, Ghahremani MH. Activation of the BMP2/SMAD4 signaling pathway for enhancing articular cartilage regeneration of mesenchymal stem cells utilizing chitosan/alginate nanoparticles on 3D extracellular matrix scaffold. Int J Biol Macromol 2024; 277:133995. [PMID: 39038571 DOI: 10.1016/j.ijbiomac.2024.133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study investigated the efficacy of using chitosan/alginate nanoparticles loaded with recombinant human bone morphogenetic-2 (rhBMP-2) and SMAD4 encoding plasmid to enhance the chondrogenesis of human bone marrow mesenchymal stem cells (hBM-MSCs) seeded on an extracellular matrix (ECM). The research treatments included the stem cells treated with the biological cocktail (BC), negative control (NC), hBM-MSCs with chondrogenic medium (MCM), hBM-MSCs with naked rhBMP-2 and chondrogenic medium (NB/C), and hBM-MSCs with naked rhBMP-2 and chondrogenic medium plus SMAD4 encoding plasmid transfected with polyethyleneimine (PEI) (NB/C/S/P). The cartilage differentiation was performed with real-time quantitative PCR analysis and alizarin blue staining. The data indicated that the biological cocktail (BC) exhibited significantly higher expression of cartilage-related genes compared to significant differences with MCM and negative control (NC) on chondrogenesis. In the (NB/C/S/P), the expression levels of SOX9 and COLX were lower than those in the BC group. The expression pattern of the ACAN gene was similar to COL2A1 changes suggesting that it holds promising potential for cartilage regeneration.
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Chogan
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Karoobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Mashhad University of Medical Science, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Taraneh Gazori
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 1917733831 Tehran, Iran
| | - Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Ge R, Huang GM. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J Bone Oncol 2023; 43:100513. [PMID: 38021074 PMCID: PMC10666000 DOI: 10.1016/j.jbo.2023.100513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is a rare type of bone cancer, and half of the cases affect children and adolescents younger than 20 years of age. Despite intensive efforts to improve both chemotherapeutics and surgical management, the clinical outcome for metastatic osteosarcoma remains poor. Transforming growth factor β (TGF-β) is one of the most abundant growth factors in bones. The TGF-β signaling pathway has complex and contradictory roles in the pathogenesis of human cancers. TGF-β is primarily a tumor suppressor that inhibits proliferation and induces apoptosis of premalignant epithelial cells. In the later stages of cancer progression, however, TGF-β functions as a metastasis promoter by promoting tumor growth, inducing epithelial-mesenchymal transition (EMT), blocking antitumor immune responses, increasing tumor-associated fibrosis, and enhancing angiogenesis. In contrast with the dual effects of TGF-β on carcinoma (epithelial origin) progression, TGF-β seems to mainly have a pro-tumoral effect on sarcomas including osteosarcoma (mesenchymal origin). Many drugs that target TGF-β signaling have been developed: neutralizing antibodies that prevent TGF-β binding to receptor complexes; ligand trap employing recombinant Fc-fusion proteins containing the soluble ectodomain of either type II (TβRII) or the type III receptor ((TβRIII), preventing TGF-β from binding to its receptors; antisense nucleotides that reduce TGF-β expression at the transcriptional/translational level; small molecule inhibitors of serine/threonine kinases of the type I receptor (TβRI) preventing downstream signaling; and vaccines that contain cell lines transfected with TβRII antisense genes, or target furin convertase, resulting in reduced TGF-β signaling. TGF-β antagonists have been shown to have effects on osteosarcoma in vitro and in vivo. One of the small molecule TβRI inhibitors, Vactosertib, is currently undergoing a phase 1/2 clinical trial to evaluate its effect on osteosarcoma. Several phase 1/2/3 clinical trials have shown TGF-β antagonists are safe and well tolerated. For instance, Luspatercept, a TGF-β ligand trap, has been approved by the FDA for the treatment of anemia associated with myeloid dysplastic syndrome (MDS) with ring sideroblasts/mutated SF3B1 with acceptable safety. Clinical trials evaluating the long-term safety of Luspatercept are in process.
Collapse
Affiliation(s)
- Rongrong Ge
- Hillman Cancer Center at Central Pennsylvania, University of Pittsburg Medical Center, Harrisburg, PA, 17109, USA
| | - Gavin M. Huang
- Harrisburg Academy School, 10 Erford Rd, Wormleysburg, PA, 17043, USA
| |
Collapse
|
3
|
Kuhns BD, Reuter JM, Hansen VL, Soles GL, Jonason JH, Ackert-Bicknell CL, Wu CL, Giordano BD. Whole-genome RNA sequencing identifies distinct transcriptomic profiles in impingement cartilage between patients with femoroacetabular impingement and hip osteoarthritis. J Orthop Res 2022. [PMID: 36463522 DOI: 10.1002/jor.25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Femoroacetabular impingement (FAI) has a strong clinical association with the development of hip osteoarthritis (OA); however, the pathobiological mechanisms underlying the transition from focal impingement to global joint degeneration remain poorly understood. The purpose of this study is to use whole-genome RNA sequencing to identify and subsequently validate differentially expressed genes (DEGs) in femoral head articular cartilage samples from patients with FAI and hip OA secondary to FAI. Thirty-seven patients were included in the study with whole-genome RNA sequencing performed on 10 gender-matched patients in the FAI and OA cohorts and the remaining specimens were used for validation analyses. We identified a total of 3531 DEGs between the FAI and OA cohorts with multiple targets for genes implicated in canonical OA pathways. Quantitative reverse transcription-polymerase chain reaction validation confirmed increased expression of FGF18 and WNT16 in the FAI samples, while there was increased expression of MMP13 and ADAMTS4 in the OA samples. Expression levels of FGF18 and WNT16 were also higher in FAI samples with mild cartilage damage compared to FAI samples with severe cartilage damage or OA cartilage. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. We independently validated the results of the sequencing analysis and found increased expression of anabolic markers in patients with FAI and minimal histologic cartilage damage, suggesting that anabolic signaling may be increased in early FAI with a transition to catabolic and inflammatory gene expression as FAI progresses towards more severe hip OA. Clinical significance:Cam-type FAI has a strong clinical association with hip OA; however, the cellular pathophysiology of disease progression remains poorly understood. Several previous studies have demonstrated increased expression of inflammatory markers in FAI cartilage samples, suggesting the involvement of these inflammatory pathways in the disease progression. Our study further expands the knowledge regarding distinct genetic reprogramming in the cartilage between FAI and hip OA patients. In addition to differences in inflammatory gene expression, we also identified differential expression in multiple pathways involved in hip OA progression.
Collapse
Affiliation(s)
- Benjamin D Kuhns
- Center for Regenerative and Personalized Medicine, Steadman-Philippon Research Institute, Vail, Colorado, USA
| | - John M Reuter
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Victoria L Hansen
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Gillian L Soles
- Department of Orthopedic Surgery, University of California Davis Health System, Sacramento, California, USA
| | - Jennifer H Jonason
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Brian D Giordano
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
4
|
Yang DD, Rio M, Michot C, Boddaert N, Yacoub W, Garcelon N, Thierry B, Bonnet D, Rondeau S, Herve D, Guey S, Angoulvant F, Cormier-Daire V. Natural history of Myhre syndrome. Orphanet J Rare Dis 2022; 17:304. [PMID: 35907855 PMCID: PMC9338657 DOI: 10.1186/s13023-022-02447-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Myhre syndrome (MS) is a rare genetic disease characterized by skeletal disorders, facial features and joint limitation, caused by a gain of function mutation in SMAD4 gene. The natural history of MS remains incompletely understood.
Methods We recruited in a longitudinal retrospective study patients with molecular confirmed MS from the French reference center for rare skeletal dysplasia. We described natural history by chaining data from medical reports, clinical data warehouse, medical imaging and photographies.
Results We included 12 patients. The median age was 22 years old (y/o). Intrauterine and postnatal growth retardation were consistently reported. In preschool age, neurodevelopment disorders were reported in 80% of children. Specifics facial and skeletal features, thickened skin and joint limitation occured mainly in school age children. The adolescence was marked by the occurrence of pulmonary arterial hypertension (PAH) and vascular stenosis. We reported for the first time recurrent strokes from the age of 26 y/o, caused by a moyamoya syndrome in one patient. Two patients died at late adolescence and in their 20 s respectively from PAH crises and mesenteric ischemia. Conclusion Myhre syndrome is a progressive disease with severe multisystemic impairement and life-threathning complication requiring multidisciplinary monitoring.
Collapse
Affiliation(s)
- David Dawei Yang
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138 Team 22, Université de Paris, 75006, Paris, France.,Pediatric Emergency Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
| | - Marlene Rio
- Université de Paris, Institut IMAGINE, Developmental Brain Disorders Laboratory, INSERM UMR1163, 75015, Paris, France.,Departement of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
| | - Caroline Michot
- Departement of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France.,Université de Paris, Institut IMAGINE, Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, 75015, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Universitaire Necker Enfants Malades, 75015, Paris, France.,Université de Paris, Institut IMAGINE, INSERM1163, 75015, Paris, France
| | - Wael Yacoub
- Paediatric Radiology Department, AP-HP, Hôpital Universitaire Necker Enfants Malades, 75015, Paris, France.,Université de Paris, Institut IMAGINE, INSERM1163, 75015, Paris, France
| | - Nicolas Garcelon
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138 Team 22, Université de Paris, 75006, Paris, France.,Université de Paris, Institut IMAGINE, Data Science Platform, INSERM UMR1163, 75015, Paris, France
| | - Briac Thierry
- Department of Pediatric Otolaryngology-Head and Neck Surgery, AP-HP, Hôpital Universitaire Necker - Enfants Malades, 75015, Paris, France.,Université de Paris, Human Immunology, Pathophysiology, Immunotherapy/HIPI/INSERM UMR976, Stem Cell Biotechnologies, 75010, Paris, France
| | - Damien Bonnet
- Université de Paris, Institut IMAGINE, INSERM1163, 75015, Paris, France.,M3C-Paediatric Cardiology, AP-HP, Hôpital Universitaire Necker Enfants Malades, 75015, Paris, France
| | - Sophie Rondeau
- Departement of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France.,Université de Paris, Institut IMAGINE, Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, 75015, Paris, France
| | - Dominique Herve
- Department of Neurology, AP-HP Nord, Referral Center for Rare Vascular Diseases of the Brain and Retina (CERVCO), DHU NeuroVasc, INSERM U 1161, 75010, Paris, France
| | - Stephanie Guey
- Department of Neurology, AP-HP, Hôpital Lariboisière, UMR-S1161, 75010, Paris, France
| | - Francois Angoulvant
- Centre de Recherche Des Cordeliers, INSERM UMRS 1138 Team 22, Université de Paris, 75006, Paris, France.,Pediatric Emergency Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
| | - Valerie Cormier-Daire
- Departement of Medical Genetics, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France. .,Université de Paris, Institut IMAGINE, Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR1163, 75015, Paris, France.
| |
Collapse
|
5
|
Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Curr Biol 2022; 32:289-303.e6. [PMID: 34793695 PMCID: PMC8792248 DOI: 10.1016/j.cub.2021.10.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
Despite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), the latter of which has "mouse-like" arms but extremely long metatarsals of the feet. Intersecting gene-expression differences in metatarsals and forearms of the two species revealed that about 10% of orthologous genes are associated with the disproportionately rapid elongation of neonatal jerboa feet. These include genes and enriched pathways not previously associated with endochondral elongation as well as those that might diversify skeletal proportion in addition to their known requirements for bone growth throughout the skeleton. We also identified transcription regulators that might act as "nodes" for sweeping differences in genome expression between species. Among these, Shox2, which is necessary for proximal limb elongation, has gained expression in jerboa metatarsals where it has not been detected in other vertebrates. We show that Shox2 is sufficient to increase mouse distal limb length, and a nearby putative cis-regulatory region is preferentially accessible in jerboa metatarsals. In addition to mechanisms that might directly promote growth, we found evidence that jerboa foot elongation may occur in part by de-repressing latent growth potential. The genes and pathways that we identified here provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Pushpanathan Muthuirulan
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stanley J Neufeld
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mai P Tran
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haydee L Gutierrez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
6
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
7
|
Feng Y, He PY, Kong WD, Cen WJ, Wang PL, Liu C, Zhang W, Li SS, Jiang JW. Apoptosis-promoting properties of miR-3074-5p in MC3T3-E1 cells under iron overload conditions. Cell Mol Biol Lett 2021; 26:37. [PMID: 34399682 PMCID: PMC8365891 DOI: 10.1186/s11658-021-00281-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Iron overload can promote the development of osteoporosis by inducing apoptosis in osteoblasts. However, the mechanism by which miRNAs regulate apoptosis in osteoblasts under iron overload has not been elucidated. Method The miRNA expression profile in MC3T3-E1 cells under iron overload was detected by next generation sequencing. qRT-PCR was used to determine the expression of miR-3074-5p in MC3T3-E1 cells under iron overload. The proliferation of MC3T3-E1 cells was tested using CCK-8 assays, and apoptosis was measured using flow cytometry. The miRanda and TargetScan databases were used to predict the target genes of miR-3074-5p. Interaction between miR-3074-5p and the potential target gene was validated by qRT-PCR, luciferase reporter assay and western blotting. Results We found that iron overload decreased the cell viability and induced apoptosis of MC3T3-E1 cells. The results of next generation sequencing analysis showed that miR-3074-5p expression was significantly increased in MC3T3-E1 cells under iron overload conditions, which was confirmed by further experiments. The inhibition of miR-3074-5p attenuated the apoptosis of iron-overloaded MC3T3-E1 cells. Furthermore, the expression of Smad4 was decreased and was inversely correlated with miR-3074-5p expression, and overexpression of Smad4 partially reversed the viability inhibition of iron-overloaded MC3T3-E1 cells by relieving the suppression of ERK, AKT, and Stat3 phosphorylation, suggesting its regulatory role in the viability inhibition of iron-overloaded MC3T3-E1 cells. The luciferase reporter assay results showed that Smad4 was the target gene of miR-3074-5p. Conclusion miR-3074-5p functions as an apoptosis promoter in iron-overloaded MC3T3-E1 cells by directly targeting Smad4. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00281-w.
Collapse
Affiliation(s)
- Yi Feng
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Pei-Yan He
- Department of Biochemistry, Basic Medical College, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China
| | - Wei-Dong Kong
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Wan-Jing Cen
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Peng-Lin Wang
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Chang Liu
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Wu Zhang
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China.,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China
| | - Shu-Shu Li
- Department of Orthodontics, The First Affiliated Hospital of Jinan University, No.613 Huangpu Road West, Guangzhou, 510630, China. .,Department of Orthodontics, School of Stomatology, Jinan University, Guangzhou, China.
| | - Jian-Wei Jiang
- Department of Biochemistry, Basic Medical College, Jinan University, No.601 Huangpu Road West, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Schlesinger SY, Seo S, Pryce BA, Tufa SF, Keene DR, Huang AH, Schweitzer R. Loss of Smad4 in the scleraxis cell lineage results in postnatal joint contracture. Dev Biol 2020; 470:108-120. [PMID: 33248111 DOI: 10.1016/j.ydbio.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022]
Abstract
Growth of the musculoskeletal system requires precise coordination between bone, muscle, and tendon during development. Insufficient elongation of the muscle-tendon unit relative to bone growth results in joint contracture, a condition characterized by reduction or complete loss of joint range of motion. Here we establish a novel murine model of joint contracture by targeting Smad4 for deletion in the tendon cell lineage using Scleraxis-Cre (ScxCre). Smad4ScxCre mutants develop a joint contracture shortly after birth. The contracture is stochastic in direction and increases in severity with age. Smad4ScxCre mutant tendons exhibited a stable reduction in cellularity and a progressive reduction in extracellular matrix volume. Collagen fibril diameters were reduced in the Smad4ScxCre mutants, suggesting a role for Smad4 signaling in the regulation of matrix accumulation. Although ScxCre also has sporadic activity in both cartilage and muscle, we demonstrate an essential role for Smad4 loss in tendons for the development of joint contractures. Disrupting the canonical TGFβ-pathway in Smad2;3ScxCre mutants did not result in joint contractures. Conversely, disrupting the BMP pathway by targeting BMP receptors (Alk3ScxCre/Alk6null) recapitulated many features of the Smad4ScxCre contracture phenotype, suggesting that joint contracture in Smad4ScxCre mutants is caused by disruption of BMP signaling. Overall, these results establish a model of murine postnatal joint contracture and a role for BMP signaling in tendon elongation and extracellular matrix accumulation.
Collapse
Affiliation(s)
| | - Seongkyung Seo
- Research Division, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR, 97239, USA
| | - Alice H Huang
- Department of Orthopedic, Icahn School of Medicine at Mount Sinai, New York, NY, 10037, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR, 97239, USA; Department of Orthopedics, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
9
|
Liu P, Yu C. Long-term expansion and enhanced osteogenic potential of Macaca MSCs via BMP signaling modulation. Tissue Cell 2020; 67:101449. [PMID: 33096464 DOI: 10.1016/j.tice.2020.101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023]
Abstract
Mesenchymal stem cells (MSCs) are a potential source of osteoblasts for the treatment of osteoporosis, but how to better preserve the stemness of MSCs in vitro culture conditions is the main challenge for MSC transplantation. The use of fibroblast growth factor 2 (FGF2) supplement has been described and used extensively to increase the expansion of MSCs. Cumulative evidence indicates that bone morphogenetic protein 2 (BMP2; a member of the TGF-β superfamily) is a secreted protein that promotes bone formation, which can regulate cell growth, differentiation, and development. Here we found that BMP2, in combination with FGF2, not only enhanced the proliferation of Macaca bone marrow-derived MSCs but also strengthened their osteogenic potential after short-term expansion in vitro. During long-term expansion, these cells still retained their osteogenic potential as well as other functional characteristics of pluripotent MSCs, which are gradually lost in the absence of BMP2. In addition, the BMP antagonist Noggin did not affect MSC expansion and the osteogenic potential. This study demonstrates that the regulation of BMP signaling can maintain the effectiveness of MSCs during expansion, which promotes the clinical application of MSCs in bone repair.
Collapse
Affiliation(s)
- Ping Liu
- School of Medicine, Yunnan University, Kunming, Yunnan, PR China.
| | - Cecilia Yu
- Sifang College, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
10
|
Stanley S, Balic Z, Hubmacher D. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann N Y Acad Sci 2020; 1490:57-76. [PMID: 32880985 DOI: 10.1111/nyas.14465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Acromelic dysplasias are a group of rare musculoskeletal disorders that collectively present with short stature, pseudomuscular build, stiff joints, and tight skin. Acromelic dysplasias are caused by mutations in genes (FBN1, ADAMTSL2, ADAMTS10, ADAMTS17, LTBP2, and LTBP3) that encode secreted extracellular matrix proteins, and in SMAD4, an intracellular coregulator of transforming growth factor-β (TGF-β) signaling. The shared musculoskeletal presentations in acromelic dysplasias suggest that these proteins cooperate in a biological pathway, but also fulfill distinct roles in specific tissues that are affected in individual disorders of the acromelic dysplasia group. In addition, most of the affected proteins directly interact with fibrillin microfibrils in the extracellular matrix and have been linked to the regulation of TGF-β signaling. Together with recently developed knockout mouse models targeting the affected genes, novel insights into molecular mechanisms of how these proteins regulate musculoskeletal development and homeostasis have emerged. Here, we summarize the current knowledge highlighting pathogenic mechanisms of the different disorders that compose acromelic dysplasias and provide an overview of the emerging biological roles of the individual proteins that are compromised. Finally, we develop a conceptual model of how these proteins may interact and form an "acromelic dysplasia complex" on fibrillin microfibrils in connective tissues of the musculoskeletal system.
Collapse
Affiliation(s)
- Sarah Stanley
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerina Balic
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
11
|
Zhao L, Wang X, Pomlok K, Liao H, Yang G, Yang X, Chen YG. DDB1 promotes the proliferation and hypertrophy of chondrocytes during mouse skeleton development. Dev Biol 2020; 465:100-107. [PMID: 32479761 DOI: 10.1016/j.ydbio.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
The proliferation and hypertrophy of chondrocytes play important roles in endochondral ossification, which is tightly regulated during skeleton development. However, the regulation mechanism remains largely unknown. Here we show that DDB1 (Damaged DNA Binding Protein 1) has a critical function in the development of growth plates. Using chondrocyte-specific DDB1 knockout mice, we found that DDB1 deletion in chondrocytes results in dwarfism due to the aberrant skeleton development. The structure of growth plate in tibia becomes disordered at P21, not in femur. But at P70, the changes are severer in femur than tibia. Chondrocyte proliferation and differentiation are attenuated and asynchronous in both tibia and femur at P7 and P21. Furthermore, DDB1 deficiency induces p27 upregulation and subsequent cell cycle arrest in primary chondrocytes. Therefore, our data reveal that DDB1 is essential for the skeleton development by controlling chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kumpanat Pomlok
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongwei Liao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Maridas DE, Feigenson M, Renthal NE, Chim SM, Gamer LW, Rosen V. Bone morphogenetic proteins. PRINCIPLES OF BONE BIOLOGY 2020:1189-1197. [DOI: 10.1016/b978-0-12-814841-9.00048-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 2019; 76:3939-3952. [PMID: 31201464 PMCID: PMC11105481 DOI: 10.1007/s00018-019-03191-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022]
Abstract
Articular cartilage is formed at the end of epiphyses in the synovial joint cavity and permanently contributes to the smooth movement of synovial joints. Most skeletal elements develop from transient cartilage by a biological process known as endochondral ossification. Accumulating evidence indicates that articular and growth plate cartilage are derived from different cell sources and that different molecules and signaling pathways regulate these two kinds of cartilage. As the first sign of joint development, the interzone emerges at the presumptive joint site within a pre-cartilage tissue. After that, joint cavitation occurs in the center of the interzone, and the cells in the interzone and its surroundings gradually form articular cartilage and the synovial joint. During joint development, the interzone cells continuously migrate out to the epiphyseal cartilage and the surrounding cells influx into the joint region. These complicated phenomena are regulated by various molecules and signaling pathways, including GDF5, Wnt, IHH, PTHrP, BMP, TGF-β, and FGF. Here, we summarize current literature and discuss the molecular mechanisms underlying joint formation and articular development.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Bone and Cartilage Regenerative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
14
|
Aspera-Werz RH, Chen T, Ehnert S, Zhu S, Fröhlich T, Nussler AK. Cigarette Smoke Induces the Risk of Metabolic Bone Diseases: Transforming Growth Factor Beta Signaling Impairment via Dysfunctional Primary Cilia Affects Migration, Proliferation, and Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:2915. [PMID: 31207955 PMCID: PMC6628373 DOI: 10.3390/ijms20122915] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/27/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
It is well established that smoking has detrimental effects on bone integrity and is a preventable risk factor for metabolic bone disorders. Following orthopedic surgeries, smokers frequently show delayed fracture healing associated with many complications, which results in prolonged hospital stays. One crucial factor responsible for fracture repair is the recruitment and differentiation of mesenchymal stem cells (MSCs) at early stages, a mechanism mediated by transforming growth factor β (TGF-β). Although it is known that smokers frequently have decreased TGF-β levels, little is known about the actual signaling occurring in these patients. We investigated the effect of cigarette smoke on TGF-β signaling in MSCs to evaluate which step in the pathway is affected by cigarette smoke extract (CSE). Single-cell-derived human mesenchymal stem cell line (SCP-1 cells) were treated with CSE concentrations associated with smoking up to 20 cigarettes a day. TGF-β signaling was analyzed using an adenovirus-based reporter assay system. Primary cilia structure and downstream TGF-β signaling modulators (Smad2, Smad3, and Smad4) were analyzed by Western blot and immunofluorescence staining. CSE exposure significantly reduced TGF-β signaling. Intriguingly, we observed that protein levels of phospho-Smad2/3 (active forms) as well as nuclear translocation of the phospho-Smad3/4 complex decreased after CSE exposure, phenomena that affected signal propagation. CSE exposure reduced the activation of TGF-β modulators under constitutive activation of TGF-β receptor type I (ALK5), evidencing that CSE affects signaling downstream of the ALK5 receptor but not the binding of the cytokine to the receptor itself. CSE-mediated TGF-β signaling impaired MSC migration, proliferation, and differentiation and ultimately affected endochondral ossification. Thus, we conclude that CSE-mediated disruption of TGF-β signaling in MSCs is partially responsible for delayed fracture healing in smokers.
Collapse
Affiliation(s)
- Romina H Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| | - Tao Chen
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| | - Sheng Zhu
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| | - Theresa Fröhlich
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Tam WL, Luyten FP, Roberts SJ. From skeletal development to the creation of pluripotent stem cell-derived bone-forming progenitors. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0218. [PMID: 29786553 DOI: 10.1098/rstb.2017.0218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 02/06/2023] Open
Abstract
Bone has many functions. It is responsible for protecting the underlying soft organs, it allows locomotion, houses the bone marrow and stores minerals such as calcium and phosphate. Upon damage, bone tissue can efficiently repair itself. However, healing is hampered if the defect exceeds a critical size and/or is in compromised conditions. The isolation or generation of bone-forming progenitors has applicability to skeletal repair and may be used in tissue engineering approaches. Traditionally, bone engineering uses osteochondrogenic stem cells, which are combined with scaffold materials and growth factors. Despite promising preclinical data, limited translation towards the clinic has been observed to date. There may be several reasons for this including the lack of robust cell populations with favourable proliferative and differentiation capacities. However, perhaps the most pertinent reason is the failure to produce an implant that can replicate the developmental programme that is observed during skeletal repair. Pluripotent stem cells (PSCs) can potentially offer a solution for bone tissue engineering by providing unlimited cell sources at various stages of differentiation. In this review, we summarize key embryonic signalling pathways in bone formation coupled with PSC differentiation strategies for the derivation of bone-forming progenitors.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Wai Long Tam
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium
| | - Frank P Luyten
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium
| | - Scott J Roberts
- Laboratory for Developmental and Stem Cell Biology (DSB), Skeletal Biology and Engineering Research Center (SBE), KU Leuven, Herestraat 49 Box 813, 3000 Leuven, Belgium .,Bone Therapeutic Area, UCB Pharma, 208 Bath Road, Slough, Berkshire SL1 3WE, UK
| |
Collapse
|
16
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|
17
|
de Kroon LMG, van den Akker GGH, Brachvogel B, Narcisi R, Belluoccio D, Jenner F, Bateman JF, Little CB, Brama PAJ, Blaney Davidson EN, van der Kraan PM, van Osch GJVM. Identification of TGFβ-related genes regulated in murine osteoarthritis and chondrocyte hypertrophy by comparison of multiple microarray datasets. Bone 2018; 116:67-77. [PMID: 30010080 DOI: 10.1016/j.bone.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a joint disease characterized by progressive degeneration of articular cartilage. Some features of OA, including chondrocyte hypertrophy and focal calcification of articular cartilage, resemble the endochondral ossification processes. Alterations in transforming growth factor β (TGFβ) signaling have been associated with OA as well as with chondrocyte hypertrophy. Our aim was to identify novel candidate genes implicated in chondrocyte hypertrophy during OA pathogenesis by determining which TGFβ-related genes are regulated during murine OA and endochondral ossification. METHODS A list of 580 TGFβ-related genes, including TGFβ signaling pathway components and TGFβ-target genes, was generated. Regulation of these TGFβ-related genes was assessed in a microarray of murine OA cartilage: 1, 2 and 6 weeks after destabilization of the medial meniscus (DMM). Subsequently, genes regulated in the DMM model were studied in two independent murine microarray datasets on endochondral ossification: the growth plate and transient embryonic cartilage (joint development). RESULTS A total of 106 TGFβ-related genes were differentially expressed in articular cartilage of DMM-operated mice compared to sham-control. From these genes, 43 were similarly regulated during chondrocyte hypertrophy in the growth plate or embryonic joint development. Among these 43 genes, 18 genes have already been associated with OA. The remaining 25 genes were considered as novel candidate genes involved in OA pathogenesis and endochondral ossification. In supplementary data of published human OA microarrays we found indications that 15 of the 25 novel genes are indeed regulated in articular cartilage of human OA patients. CONCLUSION By focusing on TGFβ-related genes during OA and chondrocyte hypertrophy in mice, we identified 18 known and 25 new candidate genes potentially implicated in phenotypical changes in chondrocytes leading to OA. We propose that 15 of these candidates warrant further investigation as therapeutic target for OA as they are also regulated in articular cartilage of OA patients.
Collapse
Affiliation(s)
- Laurie M G de Kroon
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Guus G H van den Akker
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bent Brachvogel
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty, University of Cologne, Cologne, Germany.
| | - Roberto Narcisi
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| | - Daniele Belluoccio
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine, Vienna, Austria.
| | - John F Bateman
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, St Leonards, New South Wales, Australia.
| | - Pieter A J Brama
- Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | - Esmeralda N Blaney Davidson
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Peter M van der Kraan
- Department of Rheumatology, Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Gerjo J V M van Osch
- Department of Orthopedics, Erasmus MC University Medical Center, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
|
19
|
Yan J, Li J, Hu J, Zhang L, Wei C, Sultana N, Cai X, Zhang W, Cai CL. Smad4 deficiency impairs chondrocyte hypertrophy via the Runx2 transcription factor in mouse skeletal development. J Biol Chem 2018; 293:9162-9175. [PMID: 29735531 DOI: 10.1074/jbc.ra118.001825] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.
Collapse
Affiliation(s)
- Jianyun Yan
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029.,the Laboratory of Heart Center and Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China, and
| | - Jun Li
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Jun Hu
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Lu Zhang
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chengguo Wei
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Nishat Sultana
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Xiaoqiang Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Weijia Zhang
- the Renal Division of the Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Chen-Leng Cai
- From the Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
20
|
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 2017; 35:2369-2377. [PMID: 28244607 PMCID: PMC5573664 DOI: 10.1002/jor.23552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/18/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR-483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR-483 during chondrogenesis, lentiviral strategies were used to overexpress miR-483 during in vitro chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While the in vivo expression patterns led us to hypothesize that miR-483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR-483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR-483 overexpression resulted in downregulation of the TGF-β pathway member SMAD4, a known direct target of miR-483-3p. From these studies, we conclude that constitutive overexpression of miR-483 in hBM-MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369-2377, 2017.
Collapse
Affiliation(s)
- Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO,Corresponding author:: , Phone: (314) 454-8860
| |
Collapse
|
21
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells. Biosci Rep 2017; 37:BSR20170347. [PMID: 28674107 PMCID: PMC5520215 DOI: 10.1042/bsr20170347] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023] Open
Abstract
miRNAs have been reported to regulate cellular differentiation by modulating multiple signaling pathways. Long noncoding RNA (lnc RNA) DANCR was previously identified to be critical for the chondrogenesis of human synovium-derived mesenchymal stem cells (SMSC), however, the underlying molecular mechanism requires better understanding. Here, miRNA expression profiling in DANCR overexpressed in SMSCs identified significant down-regulation of miR-1305, which serves as a downstream target of DANCR. Notably, miR-1305 overexpression reversed DANCR-induced cell proliferation and chondrogenic differentiation of SMSCs, which suggested that miR-1305 antagonized the function of DANCR. Mechanistically, highly expressed miR-1305 resulted in the decreased expression of the TGF-β pathway member Smad4, and inhibition of miR-1305 enhanced the expression level of Smad4. Depletion of Smad4 suppressed the promotion of DANCR in cell proliferation and chondrogenesis of SMSCs. Collectively, our results characterized miR-1305-Smad4 axis as a major downstream functional mechanism of lncRNA DANCR in promoting the chondrogenesis in SMSCs.
Collapse
|
23
|
Cheng S, Pourteymoor S, Alarcon C, Mohan S. Conditional Deletion of the Phd2 Gene in Articular Chondrocytes Accelerates Differentiation and Reduces Articular Cartilage Thickness. Sci Rep 2017; 7:45408. [PMID: 28349987 PMCID: PMC5368651 DOI: 10.1038/srep45408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α (target of PHD2) are mainly expressed in the middle-deep zone (MDZ). Conditional deletion of the Phd2 gene (cKO) in chondrocytes accelerated the transition of progenitors to hypertrophic (differentiating) chondrocytes as revealed by reduced SZ thickness, and increased MDZ thickness, as well as increased chondrocyte hypertrophy. Immunohistochemistry further revealed decreased levels of progenitor markers but increased levels of hypertrophy markers in the articular cartilage of the cKO mice. Treatment of primary articular chondrocytes, in vitro, with IOX2, a specific inhibitor of PHD2, promoted articular chondrocyte differentiation. Knockdown of Hif-1α expression in primary articular chondrocytes using lentiviral vectors containing Hif-1α shRNA resulted in reduced expression levels of Vegf, Glut1, Pgk1, and Col10 compared to control shRNA. We conclude that Phd2 is a key regulator of articular cartilage development that acts by inhibiting the differentiation of articular cartilage progenitors via modulating HIF-1α signaling.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA.,Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
24
|
Whitaker AT, Berthet E, Cantu A, Laird DJ, Alliston T. Smad4 regulates growth plate matrix production and chondrocyte polarity. Biol Open 2017; 6:358-364. [PMID: 28167493 PMCID: PMC5374397 DOI: 10.1242/bio.021436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. Summary: Smad4 is a key regulator of extracellular matrix production and chondrocyte proliferation, shape and orientation in the growth plate. Smad4 dysregulation results in skeletal dysplasias, such as Myhre syndrome.
Collapse
Affiliation(s)
- Amanda T Whitaker
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Ellora Berthet
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Andrea Cantu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
SMAD3 and SMAD4 have a more dominant role than SMAD2 in TGFβ-induced chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Sci Rep 2017; 7:43164. [PMID: 28240243 PMCID: PMC5327413 DOI: 10.1038/srep43164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022] Open
Abstract
To improve cartilage formation by bone marrow-derived mesenchymal stem cells (BMSCs), the signaling mechanism governing chondrogenic differentiation requires better understanding. We previously showed that the transforming growth factor-β (TGFβ) receptor ALK5 is crucial for chondrogenesis induced by TGFβ. ALK5 phosphorylates SMAD2 and SMAD3 proteins, which then form complexes with SMAD4 to regulate gene transcription. By modulating the expression of SMAD2, SMAD3 and SMAD4 in human BMSCs, we investigated their role in TGFβ-induced chondrogenesis. Activation of TGFβ signaling, represented by SMAD2 phosphorylation, was decreased by SMAD2 knockdown and highly increased by SMAD2 overexpression. Moreover, TGFβ signaling via the alternative SMAD1/5/9 pathway was strongly decreased by SMAD4 knockdown. TGFβ-induced chondrogenesis of human BMSCs was strongly inhibited by SMAD4 knockdown and only mildly inhibited by SMAD2 knockdown. Remarkably, both knockdown and overexpression of SMAD3 blocked chondrogenic differentiation. Chondrogenesis appears to rely on a delicate balance in the amount of SMAD3 and SMAD4 as it was not enhanced by SMAD4 overexpression and was inhibited by SMAD3 overexpression. Furthermore, this study reveals that TGFβ-activated phosphorylation of SMAD2 and SMAD1/5/9 depends on the abundance of SMAD4. Overall, our findings suggest a more dominant role for SMAD3 and SMAD4 than SMAD2 in TGFβ-induced chondrogenesis of human BMSCs.
Collapse
|
26
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
27
|
Cheng S, Aghajanian P, Pourteymoor S, Alarcon C, Mohan S. Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice. Sci Rep 2016; 6:35748. [PMID: 27775044 PMCID: PMC5075779 DOI: 10.1038/srep35748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/25/2022] Open
Abstract
Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We investigated the role of Phd2 on endochondral ossification of the epiphyses by conditionally deleting the Phd2 gene in osteoblasts and chondrocytes. We found that the deletion of Phd2 in osteoblasts did not cause changes in bone parameters in the proximal tibial epiphyses in 5 week old mice. In contrast, deletion of Phd2 in chondrocytes resulted in increased bone mass and bone formation rate (normalized to tissue volume) in long bone epiphyses, indicating that Phd2 expressed in chondrocytes, but not osteoblasts, negatively regulates secondary ossification of epiphyses. Phd2 deletion in chondrocytes elevated mRNA expression of hypoxia-inducible factor (HIF) signaling molecules including Hif-1α, Hif-2α, Vegfa, Vegfb, and Epo, as well as markers for chondrocyte hypertrophy and mineralization such as Col10, osterix, alkaline phosphatase, and bone sialoprotein. These data suggest that Phd2 expressed in chondrocytes inhibits endochondral ossification at the epiphysis by suppressing HIF signaling pathways.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Patrick Aghajanian
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Catrina Alarcon
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Veterans Affairs Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
28
|
Smad4 is required to inhibit osteoclastogenesis and maintain bone mass. Sci Rep 2016; 6:35221. [PMID: 27731422 PMCID: PMC5059689 DOI: 10.1038/srep35221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/26/2016] [Indexed: 01/22/2023] Open
Abstract
Bone homeostasis is maintained as a delicate balance between bone-resorption and bone-formation, which are coupled to maintain appropriate bone mass. A critical question is how bone-resorption is terminated to allow bone-formation to occur. Here, we show that TGFβs inhibit osteoclastogenesis and maintain bone-mass through Smad4 activity in osteoclasts. We found that latent-TGFβ1 was activated by osteoclasts to inhibit osteoclastogenesis. Osteoclast-specific Smad4 conditional knockout mice (Smad4-cKO) exhibited significantly reduced bone-mass and elevated osteoclast formation relative to controls. TGFβ1-activation induced expression of Irf8 and Bcl6, both of which encode factors inhibiting osteoclastogenesis, by blocking their negative regulator, Prdm1, in osteoclasts in a Smad4-dependent manner. Reduced bone-mass and accelerated osteoclastogenesis seen in Smad4-cKO were abrogated by Prdm1 deletion. Administration of latent-TGFβ1-Fc to wild-type mice antagonized LPS-induced bone destruction in a model of activated osteoclast-mediated bone destruction. Thus, latent-TGFβ1-Fc could serve as a promising new therapeutic agent in bone diseases marked by excessive resorption.
Collapse
|
29
|
Wen X, Li X, Tang Y, Tang J, Zhou S, Xie Y, Guo J, Yang J, Du X, Su N, Chen L. Chondrocyte FGFR3 Regulates Bone Mass by Inhibiting Osteogenesis. J Biol Chem 2016; 291:24912-24921. [PMID: 27729453 DOI: 10.1074/jbc.m116.730093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/24/2016] [Indexed: 12/13/2022] Open
Abstract
Chondrogenesis can regulate bone formation. Fibroblast growth factor receptor 3, highly expressed in chondrocytes, is a negative regulator of bone growth. To investigate whether chondrocyte FGFR3 regulates osteogenesis, thereby contributing to postnatal bone formation and bone remodeling, mice with conditional knock-out of Fgfr3 in chondrocytes (mutant (MUT)) were generated. MUT mice displayed overgrowth of bone with lengthened growth plates. Bone mass of MUT mice was significantly increased at both 1 month and 4 months of age. Histological analysis showed that osteoblast number and bone formation were remarkably enhanced after deletion of Fgfr3 in chondrocytes. Chondrocyte-osteoblast co-culture assay further revealed that Fgfr3 deficiency in chondrocytes promoted differentiation and mineralization of osteoblasts by up-regulating the expressions of Ihh, Bmp2, Bmp4, Bmp7, Wnt4, and Tgf-β1, as well as down-regulating Nog expression. In addition, osteoclastogenesis was also impaired in MUT mice with decreased number of osteoclasts lining trabecular bone, which may be related to the reduced ratio of Rankl to Opg in Fgfr3-deficient chondrocytes. This study reveals that chondrocyte FGFR3 is involved in the regulation of bone formation and bone remodeling by a paracrine mechanism.
Collapse
Affiliation(s)
- Xuan Wen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaogang Li
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the 305 Hospital of Chinese People's Liberation Army, Beijing 100017, and
| | - Yubin Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042.,the Department of Emergency Treatment, Lanzhou General Hospital, Lanzhou Command, Chinese People's Liberation Army, Lanzhou 730050, China
| | - Junzhou Tang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Siru Zhou
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Yangli Xie
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jingyuan Guo
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Jing Yang
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Xiaolan Du
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042
| | - Nan Su
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| | - Lin Chen
- From the Department of Rehabilitation Medicine, Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042,
| |
Collapse
|
30
|
Chameettachal S, Midha S, Ghosh S. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. ACS Biomater Sci Eng 2016; 2:1450-1463. [DOI: 10.1021/acsbiomaterials.6b00152] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Swati Midha
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| |
Collapse
|
31
|
Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 2016; 4:16009. [PMID: 27563484 PMCID: PMC4985055 DOI: 10.1038/boneres.2016.9] [Citation(s) in RCA: 1146] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-β and BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-β and BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-β and BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| | - Guiqian Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA; Department of neurology, Bruke Medical Research Institute, Weil Cornell Medicine of Cornell University, White Plains, USA
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham , Birmingham, USA
| |
Collapse
|
32
|
Abstract
Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
Collapse
Affiliation(s)
- Valerie S Salazar
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Laura W Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Cheng S, Xing W, Pourteymoor S, Schulte J, Mohan S. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation. Endocrinology 2016; 157:127-40. [PMID: 26562260 PMCID: PMC4701886 DOI: 10.1210/en.2015-1473] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Weirong Xing
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Jan Schulte
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| | - Subburaman Mohan
- Musculoskeletal Disease Center (S.C., W.X., S.P., J.S., S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357; and Department of Medicine (W.X., S.M.), Loma Linda University, Loma Linda, California 92354
| |
Collapse
|
34
|
Lim J, Shi Y, Karner CM, Lee SY, Lee WC, He G, Long F. Dual function of Bmpr1a signaling in restricting preosteoblast proliferation and stimulating osteoblast activity in mouse. Development 2015; 143:339-47. [PMID: 26657771 DOI: 10.1242/dev.126227] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023]
Abstract
Exogenous bone morphogenetic proteins (Bmp) are well known to induce ectopic bone formation, but the physiological effect of Bmp signaling on normal bone is not completely understood. By deleting the receptor Bmpr1a in osteoblast lineage cells with Dmp1-Cre, we observed a dramatic increase in trabecular bone mass in postnatal mice, which was due to a marked increase in osteoblast number that was likely to be driven by hyperproliferation of Sp7(+) preosteoblasts. Similarly, inducible deletion of Bmpr1a in Sp7(+) cells specifically in postnatal mice increased trabecular bone mass. However, deletion of Smad4 by the same approaches had only a minor effect, indicating that Bmpr1a signaling suppresses trabecular bone formation through effectors beyond Smad4. Besides increasing osteoblast number in the trabecular bone, deletion of Bmpr1a by Dmp1-Cre also notably reduced osteoblast activity, resulting in attenuation of periosteal bone growth. The impairment in osteoblast activity correlated with reduced mTORC1 signaling in vivo, whereas inhibition of mTORC1 activity abolished the induction of protein anabolism genes by BMP2 treatment in vitro. Thus, physiological Bmpr1a signaling in bone exerts a dual function in both restricting preosteoblast proliferation and promoting osteoblast activity.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Yu Shi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Seung-Yon Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Wen-Chih Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Guangxu He
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA Department of Orthopedics, The Second Hospital of Xiangya, Central South University, Hunan 410013, People's Republic of China
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO 63110, USA Department of Medicine, Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
35
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
36
|
Geister KA, Brinkmeier ML, Cheung LY, Wendt J, Oatley MJ, Burgess DL, Kozloff KM, Cavalcoli JD, Oatley JM, Camper SA. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A) Causes Growth Insufficiency and Male Infertility in Mice. PLoS Genet 2015; 11:e1005569. [PMID: 26496357 PMCID: PMC4619696 DOI: 10.1371/journal.pgen.1005569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.
Collapse
Affiliation(s)
- Krista A. Geister
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Wendt
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Melissa J. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Daniel L. Burgess
- Roche NimbleGen, Inc., Research and Development, Madison, Wisconsin, United States of America
| | - Kenneth M. Kozloff
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James D. Cavalcoli
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jon M. Oatley
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Sally A. Camper
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
37
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
38
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
39
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
40
|
Chondrodysplasias and TGFβ signaling. BONEKEY REPORTS 2015; 4:642. [PMID: 25798233 DOI: 10.1038/bonekey.2015.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/18/2014] [Indexed: 11/08/2022]
Abstract
Human chondrodysplasias are a group of conditions that affect the cartilage. This review is focused on the involvement of transforming growth factor-β signaling in a group of chondrodysplasias, entitled acromelic dysplasia, characterized by short stature, short hands and restricted joint mobility.
Collapse
|
41
|
TGF-β signal transduction pathways and osteoarthritis. Rheumatol Int 2015; 35:1283-92. [DOI: 10.1007/s00296-015-3251-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/09/2015] [Indexed: 12/15/2022]
|
42
|
Tong KK, Ma TC, Kwan KM. BMP/Smad signaling and embryonic cerebellum development: Stem cell specification and heterogeneity of anterior rhombic lip. Dev Growth Differ 2015; 57:121-34. [DOI: 10.1111/dgd.12198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Ka Kui Tong
- School of Life Sciences; The Chinese University of Hong Kong; Hong Kong China
| | - Tsz Ching Ma
- School of Life Sciences; The Chinese University of Hong Kong; Hong Kong China
| | - Kin Ming Kwan
- School of Life Sciences; The Chinese University of Hong Kong; Hong Kong China
- RGC-AoE Centre for Organelle Biogenesis and Function; The Chinese University of Hong Kong; Hong Kong China
- Partner State Key Laboratory of Agrobiotechnology (CUHK); The Chinese University of Hong Kong; Hong Kong China
| |
Collapse
|
43
|
Lim J, Tu X, Choi K, Akiyama H, Mishina Y, Long F. BMP-Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 2015; 400:132-8. [PMID: 25641697 DOI: 10.1016/j.ydbio.2015.01.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/30/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate multiple aspects of skeletal development in vertebrates. Although exogenously applied BMPs can induce chondrogenesis de novo, the role and mechanism of physiologic BMP signaling during precartilaginous mesenchymal condensation is not well understood. By deleting the type I BMP receptors or the transcription factor Smad4 in the limb bud mesenchyme, we find that loss of BMP-Smad signaling abolishes skeletal development due to a failure in mesenchymal condensation. In the absence of Smad4, expression of Sox9, an essential transcription factor for chondrogenesis, initiates normally in the proximal mesenchyme of the limb bud, but fails to maintain its level or expand to the more distal territory at the later stages. However, forced-expression of Sox9 does not restore cartilage formation in the Smad4-deficeint embryo. In vitro micromass cultures show that the Smad4-deficient cells fail to condense in a cell-autonomous manner, even though they express several cell adhesion molecules either normally or even at a higher level. Thus, BMP-Smad signaling critically controls mesenchymal condensation to initiate skeletal development likely through a Sox9-independent mechanism.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xiaolin Tu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Kyoto University, Kyoto, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, the University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
44
|
Zhou G, Jiang X, Zhang H, Lu Y, Liu A, Ma X, Yang G, Yang R, Shen H, Zheng J, Hu Y, Yang X, Zhang WJ, Xie Z. Zbtb20 regulates the terminal differentiation of hypertrophic chondrocytes via repression of Sox9. Development 2015; 142:385-93. [DOI: 10.1242/dev.108530] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The terminal differentiation of hypertrophic chondrocytes is a tightly regulated process that plays a pivotal role in endochondral ossification. As a negative regulator, Sox9 is essentially downregulated in terminally differentiated hypertrophic chondrocytes. However, the underlying mechanism of Sox9 silencing is undefined. Here we show that the zinc finger protein Zbtb20 regulates the terminal differentiation of hypertrophic chondrocytes by repressing Sox9. In the developing skeleton of the mouse, Zbtb20 protein is highly expressed by hypertrophic chondrocytes from late embryonic stages. To determine its physiological role in endochondral ossification, we have generated chondrocyte-specific Zbtb20 knockout mice and demonstrate that disruption of Zbtb20 in chondrocytes results in delayed endochondral ossification and postnatal growth retardation. Zbtb20 deficiency caused a delay in cartilage vascularization and an expansion of the hypertrophic zone owing to reduced expression of Vegfa in the hypertrophic zone. Interestingly, Sox9, a direct suppressor of Vegfa expression, was ectopically upregulated at both mRNA and protein levels in the late Zbtb20-deficient hypertrophic zone. Furthermore, knockdown of Sox9 greatly increased Vegfa expression in Zbtb20-deficient hypertrophic chondrocytes. Our findings point to Zbtb20 as a crucial regulator governing the terminal differentiation of hypertrophic chondrocytes at least partially through repression of Sox9.
Collapse
Affiliation(s)
- Guangdi Zhou
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Xuchao Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Yinzhong Lu
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Anjun Liu
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Guan Yang
- Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Rui Yang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Hongxing Shen
- Department of Orthopedics, Changhai Hospital, Shanghai 200433, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Shanghai 200433, China
| | - Yiping Hu
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Xiao Yang
- Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
45
|
Yang G, Yuan G, Ye W, Cho KWY, Chen Y. An atypical canonical bone morphogenetic protein (BMP) signaling pathway regulates Msh homeobox 1 (Msx1) expression during odontogenesis. J Biol Chem 2014; 289:31492-502. [PMID: 25274628 DOI: 10.1074/jbc.m114.600064] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays an essential role in early tooth development, evidenced by disruption of BMP signaling leading to an early arrested tooth development. Despite being a central mediator of BMP canonical signaling pathway, inactivation of Smad4 in dental mesenchyme does not result in early developmental defects. In the current study, we investigated the mechanism of receptor-activated Smads (R-Smads) and Smad4 in the regulation of the odontogenic gene Msx1 expression in the dental mesenchyme. We showed that the canonical BMP signaling is not operating in the early developing tooth, as assessed by failed activation of the BRE-Gal transgenic allele and the absence of phospho-(p)Smad1/5/8-Smad4 complexes. The absence of pSmad1/5/8-Smad4 complex appeared to be the consequence of saturation of Smad4 by pSmad2/3 in the dental mesenchyme as knockdown of Smad2/3 or overexpression of Smad4 led to the formation of pSmad1/5/8-Smad4 complexes and activation of canonical BMP signaling in dental mesenchymal cells. We showed that Smad1/5 but not Smad4 are required for BMP-induced expression of Msx1 in dental mesenchymal cells. We further presented evidence that in the absence of Smad4, BMPs are still able to induce pSmad1/5/8 nuclear translocation and their binding to the Msx1 promoter directly in dental mesenchymal cells. Our results demonstrate the functional operation of an atypical canonical BMP signaling (Smad4-independent and Smad1/5/8-dependent) pathway in the dental mesenchyme during early odontogenesis, which may have general implication in the development of other organs.
Collapse
Affiliation(s)
- Guobin Yang
- From the State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China, the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Guohua Yuan
- From the State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, China, the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Wenduo Ye
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| | - Ken W Y Cho
- the Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92697
| | - YiPing Chen
- the Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, and
| |
Collapse
|
46
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 733] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Pignatti E, Zeller R, Zuniga A. To BMP or not to BMP during vertebrate limb bud development. Semin Cell Dev Biol 2014; 32:119-27. [PMID: 24718318 DOI: 10.1016/j.semcdb.2014.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
Abstract
The analysis of vertebrate limb bud development provides insight of general relevance into the signaling networks that underlie the controlled proliferative expansion of large populations of mesenchymal progenitors, cell fate determination and initiation of differentiation. In particular, extensive genetic analysis of mouse and experimental manipulation of chicken limb bud development has revealed the self-regulatory feedback signaling systems that interlink the main morphoregulatory signaling pathways including BMPs and their antagonists. It this review, we showcase the key role of BMPs and their antagonists during limb bud development. This review provides an understanding of the key morphoregulatory interactions that underlie the highly dynamic changes in BMP activity and signal transduction as limb bud development progresses from initiation and setting-up the signaling centers to determination and formation of the chondrogenic primordia for the limb skeletal elements.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| |
Collapse
|
48
|
Le Goff C, Michot C, Cormier-Daire V. Myhre syndrome. Clin Genet 2014; 85:503-13. [PMID: 24580733 DOI: 10.1111/cge.12365] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Abstract
Myhre syndrome (MS) is a developmental disorder characterized by typical facial dysmorphism, thickened skin, joint limitation and muscular pseudohypertrophy. Other features include brachydactyly, short stature, intellectual deficiency with behavioral problems and deafness. We identified SMAD4 as the gene responsible for MS. The identification of SMAD4 mutations in Laryngotracheal stenosis, Arthropathy, Prognathism and Short stature (LAPS) cases supports that LAPS and MS are a unique entity. The long-term follow up of patients shows that these conditions are progressive with life threatening complications. All mutations are de novo and changing in the majority of cases Ile500, located in the MH2 domain involved in transcriptional activation. We further showed an impairment of the transcriptional regulation via TGFβ target genes in patient fibroblasts. Finally, the absence of SMAD4 mutations in three MS cases may support genetic heterogeneity.
Collapse
Affiliation(s)
- C Le Goff
- Département de Génétique, Unité INSERM U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades, Paris, France
| | | | | |
Collapse
|
49
|
Michot C, Le Goff C, Mahaut C, Afenjar A, Brooks AS, Campeau PM, Destree A, Di Rocco M, Donnai D, Hennekam R, Heron D, Jacquemont S, Kannu P, Lin AE, Manouvrier-Hanu S, Mansour S, Marlin S, McGowan R, Murphy H, Raas-Rothschild A, Rio M, Simon M, Stolte-Dijkstra I, Stone JR, Sznajer Y, Tolmie J, Touraine R, van den Ende J, Van der Aa N, van Essen T, Verloes A, Munnich A, Cormier-Daire V. Myhre and LAPS syndromes: clinical and molecular review of 32 patients. Eur J Hum Genet 2014; 22:1272-7. [PMID: 24424121 DOI: 10.1038/ejhg.2013.288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022] Open
Abstract
Myhre syndrome is characterized by short stature, brachydactyly, facial features, pseudomuscular hypertrophy, joint limitation and hearing loss. We identified SMAD4 mutations as the cause of Myhre syndrome. SMAD4 mutations have also been identified in laryngotracheal stenosis, arthropathy, prognathism and short stature syndrome (LAPS). This study aimed to review the features of Myhre and LAPS patients to define the clinical spectrum of SMAD4 mutations. We included 17 females and 15 males ranging in age from 8 to 48 years. Thirty were diagnosed with Myhre syndrome and two with LAPS. SMAD4 coding sequence was analyzed by Sanger sequencing. Clinical and radiological features were collected from a questionnaire completed by the referring physicians. All patients displayed a typical facial gestalt, thickened skin, joint limitation and muscular pseudohypertrophy. Growth retardation was common (68.7%) and was variable in severity (from -5.5 to -2 SD), as was mild-to-moderate intellectual deficiency (87.5%) with additional behavioral problems in 56.2% of the patients. Significant health concerns like obesity, arterial hypertension, bronchopulmonary insufficiency, laryngotracheal stenosis, pericarditis and early death occurred in four. Twenty-nine patients had a de novo heterozygous SMAD4 mutation, including both patients with LAPS. In 27 cases mutation affected Ile500 and in two cases Arg496. The three patients without SMAD4 mutations had typical findings of Myhre syndrome. Myhre-LAPS syndrome is a clinically homogenous condition with life threatening complications in the course of the disease. Our identification of SMAD4 mutations in 29/32 cases confirms that SMAD4 is the major gene responsible for Myhre syndrome.
Collapse
Affiliation(s)
- Caroline Michot
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Carine Le Goff
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Clémentine Mahaut
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Alexandra Afenjar
- Neuropediatry Department, Centre de Référence Maladies Rares 'anomalies du développement et syndromes malformatifs - Île de France', Armand-Trousseau CHU, Paris, France
| | - Alice S Brooks
- Department of Clinical Genetics, Ersamus MC, Rotterdam, The Netherlands
| | - Philippe M Campeau
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Anne Destree
- Department of Human Genetics, Institute of Pathology and Genetics, Gosselies, Belgium
| | - Maja Di Rocco
- Unit of Rare Diseases, Department of Pediatrics, Gaslini Institute, Genoa, Italy
| | - Dian Donnai
- Manchester Academic Health Science Centre, Genetic Medicine-University of Manchester, St Mary's Hospital, Manchester, UK
| | - Raoul Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Delphine Heron
- Genetics and Cytogenetics Department, GRC-upmc,Pitié-Salpétrière CHU, Paris, France
| | | | - Peter Kannu
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela E Lin
- Medical Genetics, Massachussets General Hospital for Children, Boston, MA, USA
| | | | - Sahar Mansour
- Clinical Genetics, St George's Healthcare NHS Trust, London, UK
| | - Sandrine Marlin
- Genetic and Medical Embryology Unit, Centre de Référence des Surdités Génétiques, Armand-Trousseau CHU, Paris, France
| | - Ruth McGowan
- West of Scotland Regional Genetics Service, Glasgow, UK
| | - Helen Murphy
- Manchester Academic Health Science Centre, Genetic Medicine-University of Manchester, St Mary's Hospital, Manchester, UK
| | | | - Marlène Rio
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Marleen Simon
- Department of Clinical Genetics, Ersamus MC, Rotterdam, The Netherlands
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - James R Stone
- Department of Pathology, Massachussets General Hospital, Boston, MA, USA
| | - Yves Sznajer
- Center for Human Genetics, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - John Tolmie
- West of Scotland Regional Genetics Service, Glasgow, UK
| | - Renaud Touraine
- Department of Clinical Genetics, Saint-Etienne CHU, Saint-Etienne, France
| | - Jenneke van den Ende
- Department of Medical Genetics, University and University Hospital Antwerp, Edegem, Belgium
| | - Nathalie Van der Aa
- Department of Medical Genetics, University and University Hospital Antwerp, Edegem, Belgium
| | - Ton van Essen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alain Verloes
- Department of Genetics, INSERM U676, AP-HP, Robert Debré Hospital, Paris, France
| | - Arnold Munnich
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| | - Valérie Cormier-Daire
- INSERM U781 Unit, Department of Genetics, Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Necker Enfants-Malades Hospital, Paris, France
| |
Collapse
|
50
|
Salazar VS, Zarkadis N, Huang L, Norris J, Grimston SK, Mbalaviele G, Civitelli R. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. J Cell Sci 2013; 126:4974-84. [PMID: 24006258 DOI: 10.1242/jcs.131953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β-BMP pathway, in Osx1(+) cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt.
Collapse
Affiliation(s)
- Valerie S Salazar
- Washington University School of Medicine, Division of Bone and Mineral Disease, Departments of Internal Medicine and Cell Biology and Physiology, 660 South Euclid, Campus Box 8301, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|