1
|
Lim D, Wu KC, Lee A, Saunders TL, Ritchie HH. DSPP dosage affects tooth development and dentin mineralization. PLoS One 2021; 16:e0250429. [PMID: 34038418 PMCID: PMC8153449 DOI: 10.1371/journal.pone.0250429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2021] [Indexed: 11/29/2022] Open
Abstract
Dentin Sialoprotein (DSP) and phosphophoryn (PP) are two most dominant non-collagenous proteins in dentin, which are the cleavage products of the DSPP (dentin sialophosphoprotein) precursor protein. The absence of the DSPP gene in DSPP knock-out (KO) mice results in characteristics that are consistent with dentinogenesis imperfecta type III in humans. Symptoms include thin dentin, bigger pulp chamber with frequent pulp exposure as well as abnormal epithelial-mesenchymal interactions, and the appearance of chondrocyte-like cells in dental pulp. To better understand how DSPP influences tooth development and dentin formation, we used a bacterial artificial chromosome transgene construct (BAC-DSPP) that contained the complete DSPP gene and promoter to generate BAC-DSPP transgenic mice directly in a mouse DSPP KO background. Two BAC-DSPP transgenic mouse strains were generated and characterized. DSPP mRNA expression in BAC-DSPP Strain A incisors was similar to that from wild-type (wt) mice. DSPP mRNA expression in BAC-DSPP Strain B animals was only 10% that of wt mice. PP protein content in Strain A incisors was 25% of that found in wt mice, which was sufficient to completely rescue the DSPP KO defect in mineral density, since microCT dentin mineral density analysis in 21-day postnatal animal molars showed essentially identical mineral density in both strain A and wt mice. Strain B mouse incisors, with 5% PP expression, only partially rescued the DSPP KO defect in mineral density, as microCT scans of 21-day postnatal animal molars indicated a reduced dentin mineral density compared to wt mice, though the mineral density was still increased over that of DSPP KO. Furthermore, our findings showed that DSPP dosage in Strain A was sufficient to rescue the DSPP KO defect in terms of epithelial-mesenchymal interactions, odontoblast lineage maintenance, along with normal dentin thickness and normal mineral density while DSPP gene dosage in Strain B only partially rescued the aforementioned DSPP KO defect.
Collapse
Affiliation(s)
- Dandrich Lim
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Ko-Chien Wu
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Arthur Lee
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
| | - Thomas L. Saunders
- Division of Medical Medicine and Genetics, Department of Internal Medicine, Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Helena H. Ritchie
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
2
|
The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein. Int J Oral Sci 2018; 10:31. [PMID: 30393383 PMCID: PMC6215839 DOI: 10.1038/s41368-018-0035-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 07/15/2018] [Accepted: 08/06/2018] [Indexed: 11/11/2022] Open
Abstract
Phosphophoryn (PP) and dentin sialoprotein (DSP) are the most dominant non-collagenous proteins in dentin. PP is an extremely acidic protein that can function as a mineral nucleator for dentin mineralization. DSP was first identified in 1981, yet its functional significance is still controversial. Historically, these two proteins were considered to be independently synthesized and secreted by dental pulp cells into the developing dentin matrix. However, with the identification of the DSP coding sequence in 1994, followed 2 years later by the finding that the PP coding sequence was located immediately downstream from the DSP sequence, it became immediately clear that DSP and PP proteins were derived from a single DSP-PP (i.e., dentin sialophosphoprotein, DSPP) transcript. Since DSPP cDNA became available, tremendous progress has been made in studying DSP-PP mRNA distribution and DSP generation from the DSP-PP precursor protein at specific cleavage sites by protease tolloid-related-1 (TLR1) or bone morphogenetic protein 1 (BMP1). The functions of DSP-PP and DSP were investigated via DSP-PP knockout (KO) and DSP knockin in DSP-PP KO mice. In addition, a number of in vitro studies aimed to elucidate DSPP and DSP function in dental pulp cells. Along with phosphophoryn (PP), dental sialoprotein (DSP) is the dominant non-collagen protein in dentin, and in vitro studies have demonstrated that DSP is involved in inducing the differentiation of dental pulp cells into odontoblast-like cells, which form dentin. PP is known to be involved in the mineralization of dentin, but the functional significance of DSP had been controversial. Helena Ritchie of the University of Michigan School of Dentistry conducted a review of studies investigating the derivation, function and distribution of PP and DSP. It was originally thought that PP and DSP were synthesized independently; later, it became evident that they derive from a single DSP-PP gene. Wider DSP-PP distribution in various tissues, including kidney and salivary glands, and DSP or PP expression in non-mineralized tissues suggest that the proteins may have functions other than mineralization.
Collapse
|
3
|
Guo S, Lim D, Dong Z, Saunders TL, Ma PX, Marcelo CL, Ritchie HH. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev 2014; 23:2883-94. [PMID: 25027178 DOI: 10.1089/scd.2014.0066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dentin sialophosphoprotein (dspp) transcript is expressed during tooth development as a DSPP precursor protein, which then undergoes cleavage to form mature dentin sialoprotein (DSP) and phosphophoryn (PP) proteins. Previous studies using DSPP-knockout (KO) mice have reported that these animals have hypomineralized teeth, thin dentin, and a large dental pulp chamber, similar to those from patients with dentinogenesis imperfecta III. However, there is no information about factors that regulate dental pulp stem cell lineage fate, a critical early event in the odontoblast-dentin mineralization scheme. To reveal the role of DSPP in odontoblast lineage differentiation during tooth development, we systematically examined teeth from wild-type (wt) and DSPP-KO C57BL/6 mice between the ages of postnatal day 1 and 3 months. We found developmental abnormalities not previously reported, such as circular dentin formation within dental pulp cells and altered odontoblast differentiation in DSPP-KO mice, even as early as 1 day after birth. Surprisingly, we also identified chondrocyte-like cells in the dental pulp from KO-mice teeth. Thus, these studies that compare wt and DSPP-KO mice suggest that the expression of DSPP precursor protein is required for normal odontoblast lineage differentiation and that the absence of DSPP allows dental pulp cells to differentiate into chondrocyte-like cells, which could negatively impact pulpal wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Shiliang Guo
- 1 Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|
4
|
Yang RT, Lim GL, Dong Z, Lee AM, Yee CT, Fuller RS, Ritchie HH. The efficiency of dentin sialoprotein-phosphophoryn processing is affected by mutations both flanking and distant from the cleavage site. J Biol Chem 2013; 288:6024-33. [PMID: 23297400 DOI: 10.1074/jbc.m112.382952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Normal dentin mineralization requires two highly acidic proteins, dentin sialoprotein (DSP) and phosphophoryn (PP). DSP and PP are synthesized as part of a single secreted precursor, DSP-PP, which is conserved in marsupial and placental mammals. Using a baculovirus expression system, we previously found that DSP-PP is accurately cleaved into DSP and PP after secretion into medium by an endogenous, secreted, zinc-dependent Sf9 cell activity. Here we report that mutation of conserved residues near and distant from the G(447)↓D(448) cleavage site in DSP-PP(240) had dramatic effects on cleavage efficiency by the endogenous Sf9 cell processing enzyme. We found that: 1) mutation of residues flanking the cleavage site from P(4) to P(4)' blocked, impaired, or enhanced DSP-PP(240) cleavage; 2) certain conserved amino acids distant from the cleavage site were important for precursor cleavage; 3) modification of the C terminus by appending a C-terminal tag altered the pattern of processing; and 4) mutations in DSP-PP(240) had similar effects on cleavage by recombinant human BMP1, a candidate physiological processing enzyme, as was seen with the endogenous Sf9 cell activity. An analysis of a partial TLR1 cDNA from Sf9 cells indicates that residues that line the substrate-binding cleft of Sf9 TLR1 and human BMP1 are nearly perfectly conserved, offering an explanation of why Sf9 cells so accurately process mammalian DSP-PP. The fact that several mutations in DSP-PP(240) significantly modified the amount of PP(240) product generated from DSP-PP(240) precursor protein cleavage suggests that such mutation may affect the mineralization process.
Collapse
Affiliation(s)
- Robert T Yang
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Ritchie HH, Yee CT, Tang XN, Dong Z, Fuller RS. DSP-PP precursor protein cleavage by tolloid-related-1 protein and by bone morphogenetic protein-1. PLoS One 2012; 7:e41110. [PMID: 22815932 PMCID: PMC3398931 DOI: 10.1371/journal.pone.0041110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/20/2012] [Indexed: 11/21/2022] Open
Abstract
Dentin sialoprotein (DSP) and phosphophoryn (PP), acidic proteins critical to dentin mineralization, are translated from a single transcript as a DSP-PP precursor that undergoes specific proteolytic processing to generate DSP and PP. The cleavage mechanism continues to be controversial, in part because of the difficulty of obtaining DSP-PP from mammalian cells and dentin matrix. We have infected Sf9 cells with a recombinant baculovirus to produce large amounts of secreted DSP-PP240, a variant form of rat DSP-PP. Mass spectrometric analysis shows that DSP-PP240 secreted by Sf9 cells undergoes specific cleavage at the site predicted from the N-terminal sequence of PP extracted from dentin matrix: SMQG447↓D448DPN. DSP-PP240 is cleaved after secretion by a zinc-dependent activity secreted by Sf9 cells, generating DSP430 and PP240 products that are stable in the medium. DSP-PP processing activity is constitutively secreted by Sf9 cells, but secretion is diminished 3 days after infection. Using primers corresponding to the highly conserved catalytic domain of Drosophila melanogaster tolloid (a mammalian BMP1 homolog), we isolated a partial cDNA for a Spodopotera frugiperda tolloid-related-1 protein (TLR1) that is 78% identical to Drosophila TLR1 but only 65% identical to Drosophila tolloid. Tlr1 mRNA decreased rapidly in Sf9 cells after baculovirus infection and was undetectable 4d after infection, paralleling the observed decrease in secretion of the DSP-PP240 processing activity after infection. Human BMP1 is more similar to Sf9 and Drosophila TLR1 than to tolloid, and Sf9 TLR1 is more similar to BMP1 than to other mammalian homologs. Recombinant human BMP1 correctly processed baculovirus-expressed DSP-PP240 in a dose-dependent manner. Together, these data suggest that the physiologically accurate cleavage of mammalian DSP-PP240 in the Sf9 cell system represents the action of a conserved processing enzyme and support the proposed role of BMP1 in processing DSP-PP in dentin matrix.
Collapse
Affiliation(s)
- Helena H Ritchie
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | | | |
Collapse
|
6
|
Expression of mineralized tissue associated proteins: dentin sialoprotein and phosphophoryn in rodent hair follicles. J Dermatol Sci 2011; 64:92-8. [PMID: 21908176 DOI: 10.1016/j.jdermsci.2011.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 08/11/2011] [Accepted: 08/21/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mammalian hair development and tooth development are controlled by a series of reciprocal epithelial-mesenchymal interactions. Similar growth factors and transcription factors, such as fibroblast growth factor (FGF), sonic hedgehog homolog (SHH), bone morphogenetic proteins (BMPs) and Wnt10a, were reported to be involved in both of these interactions. Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two major non-collagenous proteins secreted by odontoblasts that participate in dentin mineralization during tooth development. Because of striking similarities between tooth development and hair follicle development, we investigated whether DSP and/or PP proteins may also play a role in hair follicle development. OBJECTIVE In this study, we examined the presence and location of DSP/PP proteins during hair follicle development. METHODS Rat PP proteins were detected using immunohistochemical/immunofluorescent staining. DSP-PP mRNAs were detected by in situ hybridization with riboprobes. LacZ expression was detected in mouse tissues using a DSP-PP promoter-driven LUC in transgenic mice. RESULTS We found that PP proteins and DSP-PP mRNAs are present in rat hair follicles. We also demonstrate that an 8 kb DSP-PP promoter is able to drive lacZ expression in hair follicles. CONCLUSION We have firmly established the presence of DSP/PP in mouse and rat hair follicles by immunohistochemical/immunofluorescent staining, in situ hybridization with riboprobes and transgenic mice studies. The expression of DSP/PP in hair follicles is the first demonstration that major mineralization proteins likely may also contribute to soft tissue development. This finding opens a new avenue for future investigations into the molecular-genetic management of soft tissue development.
Collapse
|
7
|
Farahani RM, Nguyen KA, Simonian M, Hunter N. Adaptive calcified matrix response of dental pulp to bacterial invasion is associated with establishment of a network of glial fibrillary acidic protein+/glutamine synthetase+ cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1901-14. [PMID: 20802180 DOI: 10.2353/ajpath.2010.100073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report evidence for anatomical and functional changes of dental pulp in response to bacterial invasion through dentin that parallel responses to noxious stimuli reported in neural crest-derived sensory tissues. Sections of resin-embedded carious adult molar teeth were prepared for immunohistochemistry, in situ hybridization, ultrastructural analysis, and microdissection to extract mRNA for quantitative analyses. In odontoblasts adjacent to the leading edge of bacterial invasion in carious teeth, expression levels of the gene encoding dentin sialo-protein were 16-fold greater than in odontoblasts of healthy teeth, reducing progressively with distance from this site of the carious lesion. In contrast, gene expression for dentin matrix protein-1 by odontoblasts was completely suppressed in carious teeth relative to healthy teeth. These changes in gene expression were related to a gradient of deposited reactionary dentin that displayed a highly modified structure. In carious teeth, interodontoblastic dentin sialo-protein(-) cells expressing glutamine synthetase (GS) showed up-regulation of glial fibrillary acidic protein (GFAP). These cells extended processes that associated with odontoblasts. Furthermore, connexin 43 established a linkage between adjacent GFAP(+)/GS(+) cells in carious teeth only. These findings indicate an adaptive pulpal response to encroaching caries that includes the deposition of modified, calcified, dentin matrix associated with networks of GFAP(+)/GS(+) interodontoblastic cells. A regulatory role for the networks of GFAP(+)/GS(+) cells is proposed, mediated by the secretion of glutamate to modulate odontoblastic response.
Collapse
Affiliation(s)
- Ramin M Farahani
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead, Australia.
| | | | | | | |
Collapse
|
8
|
Adiponectin Induces Dentin Sialophosphoprotein in Rat Dental Pulp Cells: An In Vitro Study. J Endod 2008; 34:679-83. [DOI: 10.1016/j.joen.2008.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 02/24/2008] [Accepted: 02/27/2008] [Indexed: 02/07/2023]
|
9
|
Hu Y, Papagerakis P, Ye L, Feng JQ, Simmer JP, Hu JCC. Distal cis-regulatory elements are required for tissue-specific expression of enamelin (Enam). Eur J Oral Sci 2008; 116:113-23. [PMID: 18353004 PMCID: PMC2701970 DOI: 10.1111/j.1600-0722.2007.00519.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enamel formation is orchestrated by the sequential expression of genes encoding enamel matrix proteins; however, the mechanisms sustaining the spatio-temporal order of gene transcription during amelogenesis are poorly understood. The aim of this study was to characterize the cis-regulatory sequences necessary for normal expression of enamelin (Enam). Several enamelin transcription regulatory regions, showing high sequence homology among species, were identified. DNA constructs containing 5.2 or 3.9 kb regions upstream of the enamelin translation initiation site were linked to a LacZ reporter and used to generate transgenic mice. Only the 5.2-Enam-LacZ construct was sufficient to recapitulate the endogenous pattern of enamelin tooth-specific expression. The 3.9-Enam-LacZ transgenic lines showed no expression in dental cells, but ectopic beta-galactosidase activity was detected in osteoblasts. Potential transcription factor-binding sites were identified that may be important in controlling enamelin basal promoter activity and in conferring enamelin tissue-specific expression. Our study provides new insights into regulatory mechanisms governing enamelin expression.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Ling Ye
- Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, TX, USA
| | - Jerry Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Dallas, TX, USA
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jan C-C. Hu
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Godovikova V, Ritchie HH. Dynamic processing of recombinant dentin sialoprotein-phosphophoryn protein. J Biol Chem 2007; 282:31341-8. [PMID: 17698853 DOI: 10.1074/jbc.m702605200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin sialoprotein (DSP) and phosphophoryn (PP) are the two noncollagenous proteins classically linked to dentin but more recently found in bone, kidney, and salivary glands. These two proteins are derived from a single copy DSP-PP gene. Although this suggests that the DSP-PP gene is first transcribed into DSP-PP mRNAs, which later undergo processing to yield the DSP and PP proteins, this mechanism has not yet been demonstrated because of the inability to identify a DSP-PP precursor protein from any cell or tissue sample. To study this problem, we utilized a baculovirus expression system to produce recombinant DSP-PP precursor proteins from a DSP-PP(240) cDNA, which represents one of several endogenous DSP-PP transcripts that influence various tooth mineralization phases. Our in vitro results demonstrate that DSP-PP(240) precursor proteins are produced by this system and are capable of self-processing to yield both DSP and PP proteins. We further demonstrated that purified recombinant DSP-PP(240), purified recombinant PP(240), and the native highly phosphorylated protein (equivalent to the PP(523) isoform) have proteolytic activity. These newly identified tissue proteases may play key roles in tissue modeling during organogenesis.
Collapse
Affiliation(s)
- Valentina Godovikova
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA
| | | |
Collapse
|
11
|
White SN, Paine ML, Ngan AYW, Miklus VG, Luo W, Wang H, Snead ML. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel. J Biol Chem 2006; 282:5340-5. [PMID: 17189271 DOI: 10.1074/jbc.m604814200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.
Collapse
Affiliation(s)
- Shane N White
- School of Dentistry, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|