1
|
Tilic E, Miyamoto N, Herranz M, Worsaae K. Hooked on zombie worms? Genetic blueprints of bristle formation in Osedax japonicus (Annelida). EvoDevo 2024; 15:7. [PMID: 38831357 PMCID: PMC11149249 DOI: 10.1186/s13227-024-00227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND This study sheds light on the genetic blueprints of chaetogenesis (bristle formation), a complex biomineralization process essential not only for the diverse group of bristle worms (annelids) but also for other spiralians. We explore the complex genetic mechanisms behind chaetae formation in Osedax japonicus, the bone-devouring deep-sea worm known for its unique ecological niche and morphological adaptations. RESULTS We characterized the chaetal structure and musculature using electron microscopy and immunohistochemistry, and combined RNAseq of larval stages with in-situ hybridization chain reaction (HCR) to reveal gene expression patterns integral to chaetogenesis. Our findings pinpoint a distinct surge in gene expression during the larval stage of active chaetogenesis, identifying specific genes and cells involved. CONCLUSIONS Our research underscores the value of studying on non-model, "aberrant" organisms like Osedax, whose unique, temporally restricted chaetogenesis provided insights into elevated gene expression across specific larval stages and led to the identification of genes critical for chaetae formation. The genes identified as directly involved in chaetogenesis lay the groundwork for future comparative studies across Annelida and Spiralia, potentially elucidating the homology of chaetae-like chitinous structures and their evolution.
Collapse
Affiliation(s)
- Ekin Tilic
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Marine Zoology Department, Senckenberg Research Institute and Museum, Frankfurt, Germany.
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Herranz
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Area of Biodiversity and Conservation, Superior School of Experimental Science and Technology (ESCET), Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Boidin-Wichlacz C, Andersen AC, Jouy N, Hourdez S, Tasiemski A. A single coelomic cell type is involved in both immune and respiratory functions of the coastal bioindicator annelid: Capitella C-Channel1 from the English Channel. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105132. [PMID: 38181832 DOI: 10.1016/j.dci.2024.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The polychaete Capitella is a typical member of the 'thiobiome', and is commonly used as an eutrophication indicator species in environmental assessment studies. To deal with a sulfide-rich and poisonous surrounding, cells in close contact with the environment, and thus able to play a major role in detoxication and survival, are circulating cells. This work aimed to morpho-functionally describe the circulating coelomic cells of Capitella from the English Channel inhabiting the sulfide-rich mud in Roscoff Harbor. In general, worms have three types of circulating cells, granulocytes involved in bacterial clearance and defense against microorganisms, eleocytes with an essentially trophic role and elimination of cellular waste, and erythrocytes which play a role in detoxification and respiration via their intracellular hemoglobin. By combining diverse microscopic and cellular approaches, we provide evidence that Capitella does not possess granulocytes and eleocytes, but rather a single abundant rounded cell type with the morphological characteristics of erythrocytes i.e. small size and production of intracellular hemoglobin. Surprisingly, our data show that in addition to their respiratory function, these red cells could exert phagocytic activities, and produce an antimicrobial peptide. This latter immune role is usually supported by granulocytes. Our data highlight that the erythrocytes of Capitella from the English Channel differ in morphology and bear more functions than the erythrocytes of other annelids. The simplicity of this multi-task (or polyvalent) single-cell type makes Capitella an interesting model for studies of the impact of the environment on the immunity of this bioindicator species.
Collapse
Affiliation(s)
- Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| | - Ann C Andersen
- Station Biologique de Roscoff, Sorbonne Université, CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Place G. Teissier, 29680, Roscoff, France
| | - Nathalie Jouy
- UMS 2014-US 41- PLBS- Plateforme Lilloise en Biologie & Santé, BioImaging Center Lille (BICeL), Univ, Lille, France
| | - Stéphane Hourdez
- Observatoire Oceanologique de Banyuls-sur-Mer, UMR 8222, CNRS-SU Laboratoire d'Ecogéochimie des Environnements Benthiques, avenue Pierre Fabre, 66650, Banyuls-sur-mer, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|
3
|
Kostyuchenko RP, Amosov AV. Spatial Colinear but Broken Temporal Expression of Duplicated ParaHox Genes in Asexually Reproducing Annelids, Nais communis and Pristina longiseta. Genes (Basel) 2023; 14:1501. [PMID: 37510405 PMCID: PMC10379933 DOI: 10.3390/genes14071501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic development often remain unknown. In this study, we identified for the first time all ParaHox orthologs in two naidid oligochaetes, N. communis and P. longiseta, and described their expression patterns during normal growth and fission in these animals. We showed that Gsx and Cdx are presented by two paralogs, while Xlox is a single copy gene in both species. Using whole-mount in situ hybridization, we also found that orthologs, except for the Xlox gene, have similar activity patterns with minor differences in details, while the expression patterns of paralogs can differ significantly. However, all these genes are involved in axial patterning and/or in tissue remodeling during growth and asexual reproduction in naidids. Moreover, during paratomic fission, these genes are expressed with spatial colinearity but temporal colinearity is broken. The results of this study may be evidence of the functional diversification of duplicated genes and suggest involvement of the ParaHox genes in whole-body patterning during growth and asexual reproduction in annelids.
Collapse
Affiliation(s)
- Roman P Kostyuchenko
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| | - Artem V Amosov
- Department of Embryology, St. Petersburg State University, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Kong D, Wei M, Liu D, Zhang Z, Ma Y, Zhang Z. Morphological Observation and Transcriptome Analysis of Ciliogenesis in Urechis unicinctus (Annelida, Echiura). Int J Mol Sci 2023; 24:11537. [PMID: 37511295 PMCID: PMC10380512 DOI: 10.3390/ijms241411537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During the early development of marine invertebrates, planktic larvae usually occur, and their body surfaces often form specific types of cilia that are involved in locomotion and feeding. The echiuran worm Urechis unicinctus sequentially undergoes the formation and disappearance of different types of body surface cilia during embryonic and larval development. The morphological characteristics and molecular mechanisms involved in the process remain unclear. In this study, we found that body surface cilia in U. unicinctus embryos and larvae can be distinguished into four types: body surface short cilia, apical tufts, circumoral cilia and telotrochs. Further, distribution and genesis of the body surface cilia were characterized using light microscope and electron microscope. To better understand the molecular mechanism during ciliogenesis, we revealed the embryonic and larval transcriptome profile of the key stages of ciliogenesis in U. unicinctus using RNA-Seq technology. A total of 29,158 differentially expressed genes (DEGs) were obtained from 24 cDNA libraries by RNA-Seq. KEGG pathway enrichment results showed that Notch, Wnt and Ca2+ signaling pathways were significantly enriched during the occurrence of apical tufts and circumoral cilia. Furthermore, all DEGs were classified according to their expression pattern, and DEGs with similar expression pattern were grouped into a module. All DEG co-expression modules were correlated with traits (body surface short cilia, apical tufts, circumoral cilia and telotrochs) by WGCNA, the results showed DEGs were divided into 13 modules by gene expression patterns and that the genes in No. 7, No. 8 and No. 10 modules were to be highly correlated with the occurrence of apical tufts, circumoral cilia and telotrochs. The top 10 hub genes in the above three modules were identified to be highly correlated with ciliogenesis, including the reported cilium-related gene Cnbd2 and unreported cilium-related candidate genes FAM181B, Capsl, Chst3, TMIE and Innexin. Notably, Innexin was included in the top10 hub genes of the two modules (No. 7 and No. 8), suggesting that Innexin may play an important role in U. unicinctus apical tufts, circumoral cilia and telotrochs genesis. This study revealed the characteristics of ciliogenesis on the body surface of U. unicinctus embryos and larvae, providing basic data for exploring the molecular mechanism of ciliogenesis on the body surface.
Collapse
Affiliation(s)
- Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhengrui Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| |
Collapse
|
5
|
Platova S, Poliushkevich L, Kulakova M, Nesterenko M, Starunov V, Novikova E. Gotta Go Slow: Two Evolutionarily Distinct Annelids Retain a Common Hedgehog Pathway Composition, Outlining Its Pan-Bilaterian Core. Int J Mol Sci 2022; 23:ijms232214312. [PMID: 36430788 PMCID: PMC9695228 DOI: 10.3390/ijms232214312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Hedgehog signaling is one of the key regulators of morphogenesis, cell differentiation, and regeneration. While the Hh pathway is present in all bilaterians, it has mainly been studied in model animals such as Drosophila and vertebrates. Despite the conservatism of its core components, mechanisms of signal transduction and additional components vary in Ecdysozoa and Deuterostomia. Vertebrates have multiple copies of the pathway members, which complicates signaling implementation, whereas model ecdysozoans appear to have lost some components due to fast evolution rates. To shed light on the ancestral state of Hh signaling, models from the third clade, Spiralia, are needed. In our research, we analyzed the transcriptomes of two spiralian animals, errantial annelid Platynereis dumerilii (Nereididae) and sedentarian annelid Pygospio elegans (Spionidae). We found that both annelids express almost all Hh pathway components present in Drosophila and mouse. We performed a phylogenetic analysis of the core pathway components and built multiple sequence alignments of the additional key members. Our results imply that the Hh pathway compositions of both annelids share more similarities with vertebrates than with the fruit fly. Possessing an almost complete set of single-copy Hh pathway members, lophotrochozoan signaling composition may reflect the ancestral features of all three bilaterian branches.
Collapse
Affiliation(s)
- Sofia Platova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | | | - Milana Kulakova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| | | | - Viktor Starunov
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
| | - Elena Novikova
- Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
- Zoological Institute RAS, Saint Petersburg 199034, Russia
- Correspondence: (M.K.); (E.N.)
| |
Collapse
|
6
|
Diacylglycerol, PKC and MAPK signaling initiate tubeworm metamorphosis in response to bacteria. Dev Biol 2022; 487:99-109. [DOI: 10.1016/j.ydbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
|
7
|
Chen J, Zhai Z, Lu L, Li S, Guo D, Bai L, Yu D. Identification and Characterization of miRNAs and Their Predicted mRNAs in the Larval Development of Pearl Oyster Pinctada fucata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:303-319. [PMID: 35353261 DOI: 10.1007/s10126-022-10105-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
As an important economic shellfish, the pearl oyster, Pinctada fucata, and its larvae are an ideal model for studying molecular mechanisms of larval development in invertebrates. Larval development directly affects the quantity and quality of pearl oysters. MicroRNAs (miRNAs) may play important roles in development, but the effects of miRNA expression on P. fucata early development remain unknown. In this study, miRNA and mRNA transcriptomics of seven different P. fucata developmental stages were analyzed using Illumina RNA sequencing. A total of 329 miRNAs, including 87 known miRNAs and 242 novel miRNAs, and 33,550 unigenes, including 26,333 known genes and 7217 predicted new genes, were identified in these stages. A cluster analysis showed that the difference in the numbers of miRNAs was greatest between fertilized eggs and trochophores. In addition, the integrated mRNA transcriptome was used to predict target genes for differentially expressed miRNAs between adjacent developmental stages, and the target genes were subjected to a gene ontology enrichment analysis. Using the gene ontology annotation, 100 different expressed genes and 95 differentially expressed miRNAs were identified as part of larval development regulation. Real-time PCR was used to identify eight mRNAs and three miRNAs related to larval development. The present findings will be helpful for further clarifying the regulatory mechanisms of miRNA in invertebrate larval development.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Ziqin Zhai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lili Lu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Suping Li
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Dan Guo
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China
| | - Lirong Bai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, Qinzhou, 535011, People's Republic of China.
| |
Collapse
|
8
|
Seaver EC. Sifting through the mud: A tale of building the annelid Capitella teleta for EvoDevo studies. Curr Top Dev Biol 2022; 147:401-432. [PMID: 35337457 DOI: 10.1016/bs.ctdb.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the last few decades, the annelid Capitella teleta has been used increasingly as a study system for investigations of development and regeneration. Its favorable properties include an ability to continuously maintain a laboratory culture, availability of a sequenced genome, a stereotypic cleavage program of early development, substantial regeneration abilities, and established experimental and functional genomics techniques. With this review I tell of my adventure of establishing the Capitella teleta as an emerging model and share examples of a few of the contributions our work has made to the fields of evo-devo and developmental biology. I highlight examples of conservation in developmental programs as well as surprising deviations from existing paradigms that highlight the importance of leveraging biological diversity to shift thinking in the field. The story for each study system is unique, and every animal has its own advantages and disadvantages as an experimental system. Just like most progress in science, it takes strategy, hard work and determination to develop tools and resources for a less studied animal, but luck and serendipity also play a role. I include a few narratives to personalize the science, share details of the story that are not included in typical publications, and provide perspective for investigators who are interested in developing their own study organism.
Collapse
Affiliation(s)
- Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
9
|
Seaver EC, de Jong DM. Regeneration in the Segmented Annelid Capitella teleta. Genes (Basel) 2021; 12:genes12111769. [PMID: 34828375 PMCID: PMC8623021 DOI: 10.3390/genes12111769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
The segmented worms, or annelids, are a clade within the Lophotrochozoa, one of the three bilaterian superclades. Annelids have long been models for regeneration studies due to their impressive regenerative abilities. Furthermore, the group exhibits variation in adult regeneration abilities with some species able to replace anterior segments, posterior segments, both or neither. Successful regeneration includes regrowth of complex organ systems, including the centralized nervous system, gut, musculature, nephridia and gonads. Here, regenerative capabilities of the annelid Capitella teleta are reviewed. C. teleta exhibits robust posterior regeneration and benefits from having an available sequenced genome and functional genomic tools available to study the molecular and cellular control of the regeneration response. The highly stereotypic developmental program of C. teleta provides opportunities to study adult regeneration and generate robust comparisons between development and regeneration.
Collapse
|
10
|
Rawlinson KA, Lapraz F, Ballister ER, Terasaki M, Rodgers J, McDowell RJ, Girstmair J, Criswell KE, Boldogkoi M, Simpson F, Goulding D, Cormie C, Hall B, Lucas RJ, Telford MJ. Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment. eLife 2019; 8:45465. [PMID: 31635694 PMCID: PMC6805122 DOI: 10.7554/elife.45465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane. Eyes are elaborate organs that many animals use to detect light and see, but light can also be sensed in other, simpler ways and for purposes other than seeing. All animals that perceive light rely on cells called photoreceptors, which come in two main types: ciliary or rhabdomeric. Sometimes, an organism has both types of photoreceptors, but one is typically more important than the other. For example, most vertebrates see using ciliary photoreceptors, while rhabdomeric photoreceptors underpin vision in invertebrates. Flatworms are invertebrates that have long been studied due to their ability to regenerate following injuries. These worms have rhabdomeric photoreceptors in their eyes, but they also have unusual cells outside their eyes that have cilia – slender protuberances from the cell body - and could potentially be light sensitive. One obvious way to test if a cell is a photoreceptor is to see if it produces any light-sensing proteins, such as opsins. Until recently it was thought that each type of photoreceptor produced a different opsin, which were therefore classified into rhabdomeric of ciliary opsins. However, recent work has identified a new type of opsin, called xenopsin, in the ciliary photoreceptors of the larvae of some marine invertebrates. To determine whether the cells outside the flatworm’s eye were ciliary photoreceptors, Rawlinson et al. examined the genetic code of 30 flatworm species looking for ciliary opsin and xenopsin genes. This search revealed that all the flatworm species studied contained the genetic sequence for xenopsin, but not for the ciliary opsin. Rawlinson et al. chose the tiger flatworm to perform further experiments. First, they showed that, in this species, xenopsin genes are active both in the eyes of larvae and in the unusual ciliary cells found outside the eyes of the adult. Next, they put the xenopsin from the tiger flatworm into human embryonic kidney cells, and found that when the protein is present these cells can respond to light. This demonstrates that the newly discovered xenopsin is light-sensitive, suggesting that the unusual ciliary cells found expressing this protein outside the eyes in flatworms are likely photoreceptive cells. It is unclear why flatworms have developed these unusual ciliary photoreceptor cells or what their purpose is outside the eye. Often, photoreceptor cells outside the eyes are used to align the ‘body clock’ with the day-night cycle. This can be a factor in healing, hinting perhaps that these newly found cells may have a role in flatworms’ ability to regenerate.
Collapse
Affiliation(s)
- Kate A Rawlinson
- Wellcome Sanger Institute, Hinxton, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Francois Lapraz
- Université Côte D'Azur, CNRS, Institut de Biologie Valrose, Nice, France
| | - Edward R Ballister
- New York University School of Medicine, New York, United States.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark Terasaki
- Marine Biological Laboratory, Woods Hole, United States.,University of Connecticut Health Center, Farmington, United States
| | - Jessica Rodgers
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Richard J McDowell
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Johannes Girstmair
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katharine E Criswell
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Marine Biological Laboratory, Woods Hole, United States
| | - Miklos Boldogkoi
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Fraser Simpson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | | | | | - Brian Hall
- Department of Biology, Dalhousie University, Halifax, Canada
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Maximilian J Telford
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
11
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
12
|
Carrillo-Baltodano AM, Boyle MJ, Rice ME, Meyer NP. Developmental architecture of the nervous system in Themiste lageniformis (Sipuncula): New evidence from confocal laser scanning microscopy and gene expression. J Morphol 2019; 280:1628-1650. [PMID: 31487090 DOI: 10.1002/jmor.21054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 11/09/2022]
Abstract
Sipuncula is a clade of unsegmented marine worms that are currently placed among the basal radiation of conspicuously segmented Annelida. Their new location provides a unique opportunity to reinvestigate the evolution and development of segmented body plans. Neural segmentation is clearly evident during ganglionic ventral nerve cord (VNC) formation across Sedentaria and Errantia, which includes the majority of annelids. However, recent studies show that some annelid taxa outside of Sedentaria and Errantia have a medullary cord, without ganglia, as adults. Importantly, neural development in these taxa is understudied and interpretation can vary widely. For example, reports in sipunculans range from no evidence of segmentation to vestigial segmentation as inferred from a few pairs of serially repeated neuronal cell bodies along the VNC. We investigated patterns of pan-neuronal, neuronal subtype, and axonal markers using immunohistochemistry and whole mount in situ hybridization (WMISH) during neural development in an indirect-developing sipunculan, Themiste lageniformis. Confocal imaging revealed two clusters of 5HT+ neurons, two pairs of FMRF+ neurons, and Tubulin+ peripheral neurites that appear to be serially positioned along the VNC, similar to other sipunculans, to other annelids, and to spiralian taxa outside of Annelida. WMISH of a synaptotagmin1 ortholog in T. lageniformis (Tl-syt1) showed expression throughout the centralized nervous system (CNS), including the VNC where it appears to correlate with mature 5HT+ and FMRF+ neurons. An ortholog of elav1 (Tl-elav1) showed expression in differentiated neurons of the CNS with continuous expression in the VNC, supporting evidence of a medullary cord, and refuting evidence of ontogenetic segmentation during formation of the nervous system. Thus, we conclude that sipunculans do not exhibit any signs of morphological segmentation during development.
Collapse
Affiliation(s)
| | - Michael J Boyle
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Mary E Rice
- Smithsonian Institution, Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida
| | - Néva P Meyer
- Biology Department, Clark University, Worcester, Massachusetts
| |
Collapse
|
13
|
Klann M, Seaver EC. Functional role of pax6 during eye and nervous system development in the annelid Capitella teleta. Dev Biol 2019; 456:86-103. [PMID: 31445008 DOI: 10.1016/j.ydbio.2019.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
The transcription factor Pax6 is an important regulator of early animal development. Loss of function mutations of pax6 in a range of animals result in a reduction or complete loss of the eye, a reduction of a subset of neurons, and defects in axon growth. There are no studies focusing on the role of pax6 during development of any lophotrochozoan representative, however, expression of pax6 in the developing eye and nervous system in a number of species suggest that pax6 plays a highly conserved role in eye and nervous system formation. We investigated the functional role of pax6 during development of the marine annelid Capitella teleta. Expression of pax6 transcripts in C. teleta larvae is similar to patterns found in other animals, with distinct subdomains in the brain and ventral nerve cord as well as in the larval and juvenile eye. To perturb pax6 function, two different splice-blocking morpholinos and a translation-blocking morpholino were used. Larvae resulting from microinjections with either splice-blocking morpholino show a reduction of the pax6 transcript. Development of both the larval eyes and the central nervous system architecture are highly disrupted following microinjection of each of the three morpholinos. The less severe phenotype observed when only the homeodomain is disrupted suggests that presence of the paired domain is sufficient for partial function of the Pax6 protein. Preliminary downstream target analysis confirms disruption in expression of some components of the retinal gene regulatory network, as well as disruption of genes involved in nervous system development. Results from this study, taken together with studies from other species, reveal an evolutionarily conserved role for pax6 in eye and neural specification and development.
Collapse
Affiliation(s)
- Marleen Klann
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St. Augustine, Fl, 32080, USA.
| |
Collapse
|
14
|
Pechenik JA, Levy M, Allen JD. Instant Ocean Versus Natural Seawater: Impacts on Aspects of Reproduction and Development in Three Marine Invertebrates. THE BIOLOGICAL BULLETIN 2019; 237:16-25. [PMID: 31441700 DOI: 10.1086/705134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Marine invertebrate larvae have often been reared in artificial rather than natural seawater, either for convenience or to avoid potentially confounding effects of unknown contaminants. This study sought to determine the impact of artificial seawater on various aspects of development for three marine invertebrate species. We examined the impact of Instant Ocean on growth, survival, and fecundity of the deposit-feeding polychaete Capitella teleta at 2 salinities: 24 and 34 ppt; the impact on survival, growth rate, and time to metamorphic competence for the slipper limpet Crepidula fornicata; and the impact on larval growth for the sea star Asterias forbesi. Juveniles of C. teleta survived better in natural seawater than in Instant Ocean at both salinities but at the higher salinity grew more quickly in Instant Ocean; fecundity was not significantly affected by the type of seawater used at either salinity. Using Instant Ocean in place of natural seawater had no pronounced impact on the survival of C. fornicata larvae or on how long it took them to become competent to metamorphose; however, larvae grew somewhat more quickly in Instant Ocean than in natural seawater for the first 4 days of development, but by day 7 they were about 4.5% larger if they had been reared in seawater. The type of seawater used affected the growth of A. forbesi larvae, with larvae growing significantly more slowly in Instant Ocean than in natural seawater, no matter how growth was measured. In conclusion, our results suggest that although Instant Ocean may be a reasonable substitute for natural seawater for work with some species, using it may affect experimental outcomes in some aspects of work with other species.
Collapse
|
15
|
Neal S, de Jong DM, Seaver EC. CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva. Proc Biol Sci 2019; 286:20182491. [PMID: 31161907 PMCID: PMC6571462 DOI: 10.1098/rspb.2018.2491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Many marine animals depend upon a larval phase of their life cycle to locate suitable habitat, and larvae use light detection to influence swimming behaviour and dispersal. Light detection is mediated by the opsin genes, which encode light-sensitive transmembrane proteins. Previous studies suggest that r-opsins in the eyes mediate locomotory behaviour in marine protostomes, but few have provided direct evidence through gene mutagenesis. Larvae of the marine annelid Capitella teleta have simple eyespots and are positively phototactic, although the molecular components that mediate this behaviour are unknown. Here, we characterize the spatio-temporal expression of the rhabdomeric opsin genes in C. teleta and show that a single rhabdomeric opsin gene, Ct-r-opsin1, is expressed in the larval photoreceptor cells. To investigate its function, Ct-r-opsin1 was disrupted using CRISPR/CAS9 mutagenesis. Polymerase chain reaction amplification and DNA sequencing demonstrated efficient editing of the Ct-r-opsin1 locus. In addition, the pattern of Ct-r-opsin1 expression in photoreceptor cells was altered. Notably, there was a significant decrease in larval phototaxis, although the eyespot photoreceptor cell and associated pigment cell formed normally and persisted in Ct-r-opsin1-mutant animals. The loss of phototaxis owing to mutations in Ct-r-opsin1 is similar to that observed when the entire photoreceptor and pigment cell are deleted, demonstrating that a single r-opsin gene is sufficient to mediate phototaxis in C. teleta. These results establish the feasibility of gene editing in animals like C. teleta, and extend previous work on the development, evolution and function of the C. teleta visual system . Our study represents one example of disruption of animal behaviour by gene editing through CRISPR/CAS9 mutagenesis, and has broad implications for performing genome editing studies in a wide variety of other understudied animals.
Collapse
Affiliation(s)
| | | | - E. C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, 32080USA
| |
Collapse
|
16
|
Kozin VV, Borisenko IE, Kostyuchenko RP. Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Hou X, Wei M, Li Q, Zhang T, Zhou D, Kong D, Xie Y, Qin Z, Zhang Z. Transcriptome Analysis of Larval Segment Formation and Secondary Loss in the Echiuran Worm Urechis unicinctus. Int J Mol Sci 2019; 20:E1806. [PMID: 31013695 PMCID: PMC6514800 DOI: 10.3390/ijms20081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/23/2019] [Accepted: 04/10/2019] [Indexed: 01/06/2023] Open
Abstract
The larval segment formation and secondary loss in echiurans is a special phenomenon, which is considered to be one of the important characteristics in the evolutionary relationship between the Echiura and Annelida. To better understand the molecular mechanism of this phenomenon, we revealed the larval transcriptome profile of the echiuran worm Urechis unicinctus using RNA-Seq technology. Twelve cDNA libraries of U. unicinctus larvae, late-trochophore (LT), early-segmentation larva (ES), segmentation larva (SL), and worm-shaped larva (WL) were constructed. Totally 243,381 unigenes were assembled with an average length of 1125 bp and N50 of 1836 bp, and 149,488 unigenes (61.42%) were annotated. We obtained 70,517 differentially expressed genes (DEGs) by pairwise comparison of the larval transcriptome data at different developmental stages and clustered them into 20 gene expression profiles using STEM software. Based on the typical profiles during the larval segment formation and secondary loss, eight signaling pathways were enriched, and five of which, mTOR, PI3K-AKT, TGF-β, MAPK, and Dorso-ventral axis formation signaling pathway, were proposed for the first time to be involved in the segment formation. Furthermore, we identified 119 unigenes related to the segment formation of annelids, arthropods, and chordates, in which 101 genes were identified in Drosophila and annelids. The function of most segment polarity gene homologs (hedgehog, wingless, engrailed, etc.) was conserved in echiurans, annelids, and arthropods based on their expression profiles, while the gap and pair-rule gene homologs were not. Finally, we verified that strong positive signals of Hedgehog were indeed located on the boundary of larval segments using immunofluorescence. Data in this study provide molecular evidence for the understanding of larval segment development in echiurans and may serve as a blueprint for segmented ancestors in future research.
Collapse
Affiliation(s)
- Xitan Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Maokai Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qi Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Tingting Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Di Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Dexu Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yueyang Xie
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Ponz‐Segrelles G, Bleidorn C, Aguado MT. Expression of
vasa
,
piwi
, and
nanos
during gametogenesis in
Typosyllis antoni
(Annelida, Syllidae). Evol Dev 2018; 20:132-145. [DOI: 10.1111/ede.12263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guillermo Ponz‐Segrelles
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| | - Christoph Bleidorn
- Animal Evolution and BiodiversityGeorg‐August‐University GöttingenGöttingenGermany
| | - M. Teresa Aguado
- Departamento de BiologíaFacultad de CienciasUniversidad Autónoma de MadridCantoblancoMadridSpain
| |
Collapse
|
19
|
Regeneration of the germline in the annelid Capitella teleta. Dev Biol 2018; 440:74-87. [DOI: 10.1016/j.ydbio.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
|
20
|
de Jong DM, Seaver EC. Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta. ACTA ACUST UNITED AC 2017; 5:61-77. [PMID: 29721327 PMCID: PMC5911572 DOI: 10.1002/reg2.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022]
Abstract
Many animals can regenerate, although there is great diversity in regenerative capabilities. A major question in regenerative biology is determining the cellular source of newly formed tissue. The polychaete annelid, Capitella teleta, can regenerate posterior segments following transverse amputation. However, the source, behavior and molecular characteristics of the cells that form new tissue during regeneration are largely unknown. Using an indirect cell tracking method involving 5′‐ethynyl‐2′‐deoxyuridine (EdU) incorporation, we show that cell migration occurs during C. teleta posterior regeneration. Expression of the multipotency/germ line marker CapI‐vasa led us to hypothesize that stem cells originate from a multipotent progenitor cell (MPC) cluster, migrate through the coelomic cavity, and contribute to regeneration of tissue. We show that the capacity for posterior regeneration and segment formation is greater with than without the MPC cluster. Finally, we propose a working model of posterior regeneration in C. teleta. This work is the first in C. teleta that addresses the potential source of cells contributing to posterior regeneration, and may provide clues as to why some animals are highly successful regenerators.
Collapse
Affiliation(s)
- Danielle M de Jong
- Whitney Laboratory for Marine Bioscience University of Florida St Augustine FL 32080 USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience University of Florida St Augustine FL 32080 USA
| |
Collapse
|
21
|
Janssen R, Budd GE. Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Dev Biol 2017; 427:155-164. [DOI: 10.1016/j.ydbio.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
|
22
|
Kuo DH. The polychaete-to-clitellate transition: An EvoDevo perspective. Dev Biol 2017; 427:230-240. [DOI: 10.1016/j.ydbio.2017.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
|
23
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
24
|
Feitosa NM, Pechmann M, Schwager EE, Tobias-Santos V, McGregor AP, Damen WGM, Nunes da Fonseca R. Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 2017; 55. [PMID: 28432834 DOI: 10.1002/dvg.23033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
The development of a digestive system is an essential feature of bilaterians. Studies of the molecular control of gut formation in arthropods have been studied in detail in the fruit fly Drosophila melanogaster. However, little is known in other arthropods, especially in noninsect arthropods. To better understand the evolution of arthropod alimentary system, we investigate the molecular control of gut development in the spider Parasteatoda tepidariorum (Pt), the primary chelicerate model species for developmental studies. Orthologs of the ectodermal genes Pt-wingless (Pt-wg) and Pt-hedgehog (Pt-hh), of the endodermal genes, Pt-serpent (Pt-srp) and Pt-hepatocyte-nuclear factor-4 (Pt-hnf4) and of the mesodermal gene Pt-twist (Pt-twi) are expressed in the same germ layers during spider gut development as in D. melanogaster. Thus, our expression data suggest that the downstream molecular components involved in gut development in arthropods are conserved. However, Pt-forkhead (Pt-fkh) expression and function in spiders is considerably different from its D. melanogaster ortholog. Pt-fkh is expressed before gastrulation in a cell population that gives rise to endodermal and mesodermal precursors, suggesting a possible role for this factor in specification of both germ layers. To test this hypothesis, we knocked down Pt-fkh via RNA interference. Pt-fkh RNAi embryos not only fail to develop a proper gut, but also lack the mesodermal Pt-twi expressing cells. Thus, in spiders Pt-fkh specifies endodermal and mesodermal germ layers. We discuss the implications of these findings for the evolution and development of gut formation in Ecdysozoans.
Collapse
Affiliation(s)
- Natália Martins Feitosa
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Matthias Pechmann
- Institute for Developmental Biology, University of Cologne, Cologne, North-Rhine Westphalia, 50674, Germany
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, 198 Riverside Street, Lowell, Massachusetts, 01854
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, United Kingdom
| | - Wim G M Damen
- Department of Genetics, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena, 07743, Germany
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro (UFRJ), Macaé, Rio de Janeiro, 27920-560, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), 21941-599 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Batzel G, Nedved BT, Hadfield MG. Expression and Localization of Carbonic Anhydrase Genes in the Serpulid Polychaete Hydroides elegans. THE BIOLOGICAL BULLETIN 2016; 231:175-184. [PMID: 28048959 DOI: 10.1086/691065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The metalloenzyme, carbonic anhydrase (CA), catalyzes the reversible hydration of carbon dioxide into bicarbonate, and is responsible for biomineralization processes in animals. In the Annelida, the marine worms in the family Serpulidae are typified by the construction of calcium carbonate tubes. Hydroides elegans, a common member of warmwater biofouling communities around the world, provides an outstanding model for studies of calcification. To better understand the molecular process of biomineralization in H. elegans, we searched transcriptomes for CA genes at several life-history stages. Twelve CA genes were recovered in the transcriptomes. Whole mount in situ hybridization was performed for two of those genes on larvae and calcifying juveniles. A cytosolic CA isoform, HeCA1, and a secreted CA isoform, HeCA2, were expressed within the collar segment corresponding to the location of glands involved in formation of the calcified tube. Expression of these genes within collar segment tissues supports the role of CAs in generating bicarbonate for biomineralization processes. A phylogenetic tree of the α-CA gene family was constructed to increase understanding of CA-gene evolution within the family and its relationship to CA genes among the Metazoa.
Collapse
|
26
|
Differential Gene Expression during Larval Metamorphic Development in the Pearl Oyster, Pinctada fucata, Based on Transcriptome Analysis. Int J Genomics 2016; 2016:2895303. [PMID: 27843935 PMCID: PMC5097826 DOI: 10.1155/2016/2895303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022] Open
Abstract
P. fucata experiences a series of transformations in appearance, from swimming larvae to sessile juveniles, during which significant changes in gene expression likely occur. Thus, P. fucata could be an ideal model in which to study the molecular mechanisms of larval metamorphosis during development in invertebrates. To study the molecular driving force behind metamorphic development in larvae of P. fucata, transcriptomes of five larval stages (trochophore, D-shape, umbonal, eyespots, and spats) were sequenced using an Illumina HiSeq™ 2000 system and assembled and characterized with the transcripts of six tissues. As a result, a total of 174,126 unique transcripts were assembled and 60,999 were annotated. The number of unigenes varied among the five larval stages. Expression profiles were distinctly different between trochophore, D-shape, umbonal, eyespots, and spats larvae. As a result, 29 expression trends were sorted, of which eight were significant. Among others, 80 development-related, differentially expressed unigenes (DEGs) were identified, of which the majority were homeobox-containing genes. Most DEGs occurred among trochophore, D-shaped, and UES (umbonal, eyespots, and spats) larvae as verified by qPCR. Principal component analysis (PCA) also revealed significant differences in expression among trochophore, D-shaped, and UES larvae with ten transcripts identified but no matching annotations.
Collapse
|
27
|
Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Sci Rep 2016; 6:32387. [PMID: 27561213 PMCID: PMC4999882 DOI: 10.1038/srep32387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/09/2016] [Indexed: 01/25/2023] Open
Abstract
The diverse and complex developmental mechanisms of segmentation have been more thoroughly studied in arthropods, vertebrates and annelids-distantly related animals considered to be segmented. Far less is known about the role of "segmentation genes" in organisms that lack a segmented body. Here we investigate the expression of the arthropod segment polarity genes engrailed, wnt1 and hedgehog in the development of brachiopods-marine invertebrates without a subdivided trunk but closely related to the segmented annelids. We found that a stripe of engrailed expression demarcates the ectodermal boundary that delimits the anterior region of Terebratalia transversa and Novocrania anomala embryos. In T. transversa, this engrailed domain is abutted by a stripe of wnt1 expression in a pattern similar to the parasegment boundaries of insects-except for the expression of hedgehog, which is restricted to endodermal tissues of the brachiopod embryos. We found that pax6 and pax2/5/8, putative regulators of engrailed, also demarcate the anterior boundary in the two species, indicating these genes might be involved in the anterior patterning of brachiopod larvae. In a comparative phylogenetic context, these findings suggest that bilaterians might share an ancestral, non-segmental domain of engrailed expression during early embryogenesis.
Collapse
|
28
|
Özpolat BD, Bely AE. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Curr Opin Genet Dev 2016; 40:144-153. [PMID: 27505269 DOI: 10.1016/j.gde.2016.07.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 11/29/2022]
Abstract
Studies of annelid regeneration have greatly increased in frequency in recent years, providing new insights into the developmental basis and evolution of regeneration. In this review, we summarize recent findings related to regeneration in annelids, focusing on molecular and developmental studies of epimorphic (blastema-based) regeneration, morphallactic (tissue-remodeling based) regeneration, and development and regeneration of putative stem cells of the posterior growth zone and germline. Regeneration is being investigated in a broad range of annelids spanning the phylum, and comparing findings among species reveals both widely conserved features that may be ancestral for the phylum as well as features that are variable across the group.
Collapse
Affiliation(s)
- B Duygu Özpolat
- Department of Biology, University of Maryland, College Park, MD, USA.
| | - Alexandra E Bely
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
29
|
Battelle BA, Ryan JF, Kempler KE, Saraf SR, Marten CE, Warren WC, Minx PJ, Montague MJ, Green PJ, Schmidt SA, Fulton L, Patel NH, Protas ME, Wilson RK, Porter ML. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus polyphemus (Arthropoda: Chelicerata). Genome Biol Evol 2016; 8:1571-89. [PMID: 27189985 PMCID: PMC4898813 DOI: 10.1093/gbe/evw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 12/19/2022] Open
Abstract
Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.
Collapse
Affiliation(s)
- Barbara-Anne Battelle
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida
| | - Karen E Kempler
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida
| | - Spencer R Saraf
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida Present address: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY
| | - Catherine E Marten
- Whitney Laboratory for Marine Bioscience, Departments of Neuroscience and Biology, University of Florida Present address: Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Patrick J Minx
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Michael J Montague
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Pamela J Green
- Department of Plant and Soil Sciences, School of Marine Science and Policy, Delaware Biotechnology Institute, University of Delaware
| | - Skye A Schmidt
- Department of Plant and Soil Sciences, School of Marine Science and Policy, Delaware Biotechnology Institute, University of Delaware
| | - Lucinda Fulton
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | - Nipam H Patel
- Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkley
| | - Meredith E Protas
- Department of Molecular Cell Biology, Center for Integrative Genomics, University of California, Berkley Present address: Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis
| | | |
Collapse
|
30
|
Arimoto A, Tagawa K. Hedgehog Expression During Development and Regeneration in the Hemichordate, Ptychodera flava. Zoolog Sci 2016; 32:33-7. [PMID: 25660694 DOI: 10.2108/zs140157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hedgehog is a toolkit gene conserved in metazoans. However, its function differs among taxa, and it shows versatile expression patterns in morphogenesis. We analyzed the expression pattern of hedgehog in the indirect development of the hemichordate, Ptychodera flava, during development and regeneration. Pf-Hh showed distinct enteropneust-specific expression at the anterior tip of the larvae, as well as deuterostome-conserved expression in the pharyngeal endoderm. In contrast, the gene is expressed only in the pharyngeal region during anterior regeneration, but not in the anterior tip of the proboscis. These data suggest that anterior regeneration is driven not only by conserved developmental mechanisms, but also by some regeneration-specific mechanism(s).
Collapse
Affiliation(s)
- Asuka Arimoto
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-00073, Japan
| | | |
Collapse
|
31
|
Grimmel J, Dorresteijn AWC, Fröbius AC. Formation of body appendages during caudal regeneration in Platynereis dumerilii: adaptation of conserved molecular toolsets. EvoDevo 2016; 7:10. [PMID: 27076904 PMCID: PMC4830062 DOI: 10.1186/s13227-016-0046-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/30/2016] [Indexed: 01/13/2023] Open
Abstract
Background Platynereis and other polychaete annelids with homonomous segmentation are regarded to closely resemble ancestral forms of bilateria. The head region comprises the prostomium, the peristomium, a variable number of cephalized body segments and several appendages, like cirri, antennae and palps. The trunk of such polychaetes shows numerous, nearly identical segments. Each segment bears a parapodium with species-specific morphology on either side. The posterior end of the trunk features a segment proliferation zone and a terminal pygidium with the anus and anal cirri. The removal of a substantial part of the posterior trunk is by no means lethal. Cells at the site of injury dedifferentiate and proliferate forming a blastema to regenerate both the pygidium and the proliferation zone. The pygidium forms new anal cirri, and the proliferation zone generates new segments at a rapid pace. The formation of body appendages like the cirri and the segmental parapodia can thus be studied in the caudal regenerate of Platynereis within only a few days. Results The development of body appendages in Platynereis is regulated by a network of genes common to polychaetes but also shared by distant taxa. We isolated DNA sequences from P. dumerilii of five genes known to be involved in appendage formation within other groups: Meis/homothorax, Pbx1/extradenticle, Dlx/Distal-less, decapentaplegic and specificprotein1/buttonhead. Analyses of expression patterns during caudal regeneration by in situ hybridization reveal striking similarities related to expression in arthropods and vertebrates. All genes exhibit transient expression during differentiation and growth of segments. As was shown previously in other phyla Pdu-Meis/hth and Pdu-Pbx1/exd are co-expressed, although the expression is not limited to the proximal part of the parapodia. Pdu-Dll is prominent in parapodia but upregulated in the anal cirri. No direct dependence concerning Pdu-Dll and Pdu-sp/btd expression is observed in Platynereis. Pdu-dpp shows an expression pattern not comparable to its expression in other taxa. Conclusions The expression patterns observed suggest conserved roles of these genes during appendage formation across different clades, but the underlying mechanisms utilizing this toolset might not be identical. Some genes show broad expression along the proximodistal axis indicating a possible role in proximodistal patterning of body appendages. Other genes exhibit expression patterns limited to specific parts and tissues of the growing parapodia, thus presumably being involved in formation of taxon-specific morphological differences. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0046-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Grimmel
- Institut für Allgemeine und Spezielle Zoologie, Abteilung Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Stephanstraße 24, 35390 Gießen, Germany
| | - Adriaan W C Dorresteijn
- Institut für Allgemeine und Spezielle Zoologie, Abteilung Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Stephanstraße 24, 35390 Gießen, Germany
| | - Andreas C Fröbius
- Institut für Allgemeine und Spezielle Zoologie, Abteilung Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Stephanstraße 24, 35390 Gießen, Germany
| |
Collapse
|
32
|
de Jong DM, Seaver EC. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta. PLoS One 2016; 11:e0149724. [PMID: 26894631 PMCID: PMC4764619 DOI: 10.1371/journal.pone.0149724] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids, planarians and acoel flatworms.
Collapse
Affiliation(s)
- Danielle M. de Jong
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| | - Elaine C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
|
34
|
Vöcking O, Kourtesis I, Hausen H. Posterior eyespots in larval chitons have a molecular identity similar to anterior cerebral eyes in other bilaterians. EvoDevo 2015; 6:40. [PMID: 26702352 PMCID: PMC4689004 DOI: 10.1186/s13227-015-0036-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
Background Development of cerebral eyes is generally based on fine-tuned networks and closely intertwined with the formation of brain and head. Consistently and best studied in insects and vertebrates, many signaling pathways relaying the activity of eye developmental factors to positional information in the head region are characterized. Though known from several organisms, photoreceptors developing outside the head region are much less studied and the course of their development, relation to cerebral eyes and evolutionary origin is in most cases unknown. To explore how position influences development of otherwise similar photoreceptors, we analyzed the molecular characteristics of photoreceptors we discovered at the very anterior, the posttrochal mid-body and posterior body region of larval Leptochiton asellus, a representative of the chiton subgroup of mollusks. Results Irrespective of their position, all found photoreceptors exhibit a molecular signature highly similar to cerebral eye photoreceptors of related animals. All photoreceptors employ the same subtype of visual pigments (r-opsin), and the same key elements for phototransduction such as GNAq, trpC and arrestin and intracellular r-opsin transport such as rip11 and myosinV as described from other protostome cerebral eyes. Several transcription factors commonly involved in cerebral eye and brain development such as six1/2, eya, dachshund, lhx2/9 and prox are also expressed by all found photoreceptor cells, only pax6 being restricted to the anterior most cells. Coexpression of pax6 and MITF in photoreceptor-associated shielding pigment cells present at the mid-body position matches the common situation in cerebral eye retinal pigment epithelium specification and differentiation. Notably, all photoreceptors, even the posterior ones, further express clear anterior markers such as foxq2, irx, otx, and six3/6 (only the latter absent in the most posterior photoreceptors), which play important roles in the early patterning of the anterior neurogenic area throughout the animal kingdom. Conclusions Our data suggest that anterior eyes with brain-associated development can indeed be subject to heterotopic replication to developmentally distinct and even posterior body regions. Retention of the transcriptional activity of a broad set of eye developmental factors and common anterior markers suggests a mode of eye development induction, which is largely independent of body regionalization. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0036-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway ; Department of Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Ioannis Kourtesis
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
35
|
Brunet T, Lauri A, Arendt D. Did the notochord evolve from an ancient axial muscle? The axochord hypothesis. Bioessays 2015; 37:836-50. [PMID: 26172338 PMCID: PMC5054868 DOI: 10.1002/bies.201500027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/20/2022]
Abstract
The origin of the notochord is one of the key remaining mysteries of our evolutionary ancestry. Here, we present a multi‐level comparison of the chordate notochord to the axochord, a paired axial muscle spanning the ventral midline of annelid worms and other invertebrates. At the cellular level, comparative molecular profiling in the marine annelids P. dumerilii and C. teleta reveals expression of similar, specific gene sets in presumptive axochordal and notochordal cells. These cells also occupy corresponding positions in a conserved anatomical topology and undergo similar morphogenetic movements. At the organ level, a detailed comparison of bilaterian musculatures reveals that most phyla form axochord‐like muscles, suggesting that such a muscle was already present in urbilaterian ancestors. Integrating comparative evidence at the cell and organ level, we propose that the notochord evolved by modification of a ventromedian muscle followed by the assembly of an axial complex supporting swimming in vertebrate ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
36
|
Meyer NP, Carrillo-Baltodano A, Moore RE, Seaver EC. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta. Front Zool 2015; 12:15. [PMID: 26167198 PMCID: PMC4498530 DOI: 10.1186/s12983-015-0108-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022] Open
Abstract
Background Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. Results We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25–53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95–8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Conclusions Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development. Electronic supplementary material The online version of this article (doi:10.1186/s12983-015-0108-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610 USA
| | | | - Richard E Moore
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-west Road, Honolulu, HI 96822 USA
| | - Elaine C Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, Saint Augustine, FL 32080 USA
| |
Collapse
|
37
|
|
38
|
Martín-Durán JM, Hejnol A. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC Biol 2015; 13:29. [PMID: 25895830 PMCID: PMC4434581 DOI: 10.1186/s12915-015-0139-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Background The digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster. Results In the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut. Conclusions The comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0139-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway.
| |
Collapse
|
39
|
Hiebert LS, Maslakova SA. Hox genes pattern the anterior-posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea). BMC Biol 2015; 13:23. [PMID: 25888821 PMCID: PMC4426647 DOI: 10.1186/s12915-015-0133-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pilidium larva is a novel body plan that arose within a single clade in the phylum Nemertea - the Pilidiophora. While the sister clade of the Pilidiophora and the basal nemerteans develop directly, pilidiophorans have a long-lived planktotrophic larva with a body plan distinctly different from that of the juvenile. Uniquely, the pilidiophoran juvenile develops inside the larva from several discrete rudiments. The orientation of the juvenile with respect to the larval body varies within the Pilidiophora, which suggests that the larval and juvenile anteroposterior (AP) axes are patterned differently. In order to gain insight into the evolutionary origins of the pilidium larva and the mechanisms underlying this implied axial uncoupling, we examined the expression of the Hox genes during development of the pilidiophoran Micrura alaskensis. RESULTS We identified sequences of nine Hox genes and the ParaHox gene caudal through a combination of transcriptome analysis and molecular cloning, and determined their expression pattern during development using in situ hybridization in whole-mounted larvae. We found that Hox genes are first expressed long after the pilidium is fully formed and functional. The Hox genes are expressed in apparently overlapping domains along the AP axis of the developing juvenile in a subset of the rudiments that give rise to the juvenile trunk. Hox genes are not expressed in the larval body at any stage of development. CONCLUSIONS While the Hox genes pattern the juvenile pilidiophoran, the pilidial body, which appears to be an evolutionary novelty, must be patterned by some mechanism other than the Hox genes. Although the pilidiophoran juvenile develops from separate rudiments with no obvious relationship to the embryonic formation of the larva, the Hox genes appear to exhibit canonical expression along the juvenile AP axis. This suggests that the Hox patterning system can maintain conserved function even when widely decoupled from early polarity established in the egg.
Collapse
Affiliation(s)
- Laurel S Hiebert
- Oregon Institute of Marine Biology, University of Oregon, Charleston, OR, USA.
| | | |
Collapse
|
40
|
Starunov VV, Dray N, Belikova EV, Kerner P, Vervoort M, Balavoine G. A metameric origin for the annelid pygidium? BMC Evol Biol 2015; 15:25. [PMID: 25880037 PMCID: PMC4357181 DOI: 10.1186/s12862-015-0299-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Segmented body organizations are widely represented in the animal kingdom. Whether the last common bilaterian ancestor was already segmented is intensely debated. Annelids display broad morphological diversity but many species are among the most homonomous metameric animals. The front end (prostomium) and tail piece (pygidium) of annelids are classically described as non-segmental. However, the pygidium structure and development remain poorly studied. RESULTS Using different methods of microscopy, immunolabelling and a number of molecular markers, we describe the neural and mesodermal structures of the pygidium of Platynereis dumerilii. We establish that the pygidium possesses a complicated nervous system with a nerve ring and a pair of sensory ganglia, a complex intrinsic musculature, a large terminal circular blood sinus and an unusual unpaired torus-shaped coelomic cavity. We also describe some earlier steps of pygidial development and pygidial structure of mature animals after epitokous transformation. CONCLUSIONS We describe a much more complex organization of the pygidium of P. dumerilii than previously suggested. Many of the characteristics are strikingly similar to those found in the trunk segments, opening the debate on whether the pygidium and trunk segments derive from the same ancestral metameric unit. We analyze these scenarios in the context of two classical theories on the origin of segmentation: the cyclomeric/archicoelomate concept and the colonial theory. Both theories provide possible explanations for the partial or complete homology of trunk segments and pygidium.
Collapse
Affiliation(s)
- Viktor V Starunov
- Department of Invertebrate Zoology, Saint-Petersburg State University/ Universitetskaya nab. 7/9, 199034, Saint-Petersburg, Russia.
- Zoological Institute RAS/ Universitetskaya nab. 1, 199034, Saint-Petersburg, Russia.
| | - Nicolas Dray
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| | - Elena V Belikova
- Department of Invertebrate Zoology, Saint-Petersburg State University/ Universitetskaya nab. 7/9, 199034, Saint-Petersburg, Russia.
| | - Pierre Kerner
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| | - Michel Vervoort
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
41
|
Pernet B, Harris LH, Schroeder P. Development and larval feeding in the capitellid annelid Notomastus cf. tenuis. THE BIOLOGICAL BULLETIN 2015; 228:25-38. [PMID: 25745098 DOI: 10.1086/bblv228n1p25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Making inferences about the evolution of larval nutritional mode and feeding mechanisms in annelids requires data on the form and function of the larvae, but such data are lacking for many taxa. Though some capitellid annelids are known or suspected to have planktotrophic larvae, these larvae have not previously been described in sufficient detail to understand how they feed. Here we describe embryos and larvae of the capitellid Notomastus cf. tenuis from San Juan Island, Washington State. Fertilized oocytes average about 58 μm in equivalent spherical diameter. Early embryos undergo spiral cleavage and develop into larvae that feed for about 5 weeks before metamorphosis. Larvae of N. cf. tenuis capture food particles between prototrochal and metatrochal ciliary bands and transport them to the mouth in an intermediate food groove; this arrangement is typical of "opposed band" larval feeding systems. Surprisingly, however, larvae of N. cf. tenuis appeared to have only simple cilia in the prototrochal ciliary band; among planktotrophic larvae of annelids, simple cilia in the prototroch were previously known only from members of Oweniidae. The anteriormost tier of prototrochal cilia in N. cf. tenuis appears to be non-motile; its role in swimming or particle capture is unclear. Like some planktotrophic larvae in the closely related Echiuridae and Opheliidae, larvae of N. cf. tenuis can capture relatively large particles (up to at least 45 μm in diameter), suggesting that they may use an alternative particle capture mechanism in addition to opposed bands of cilia.
Collapse
Affiliation(s)
- Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840;
| | - Leslie H Harris
- Natural History Museum of Los Angeles County, Los Angeles, California 90007; and
| | - Paul Schroeder
- School of Biological Sciences, Washington State University, Pullman, Washington 99164
| |
Collapse
|
42
|
Oberhofer G, Grossmann D, Siemanowski JL, Beissbarth T, Bucher G. Wnt/β-catenin signaling integrates patterning and metabolism of the insect growth zone. Development 2014; 141:4740-50. [PMID: 25395458 PMCID: PMC4299277 DOI: 10.1242/dev.112797] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt/β-catenin and hedgehog (Hh) signaling are essential for transmitting signals across cell membranes in animal embryos. Early patterning of the principal insect model, Drosophila melanogaster, occurs in the syncytial blastoderm, where diffusion of transcription factors obviates the need for signaling pathways. However, in the cellularized growth zone of typical short germ insect embryos, signaling pathways are predicted to play a more fundamental role. Indeed, the Wnt/β-catenin pathway is required for posterior elongation in most arthropods, although which target genes are activated in this context remains elusive. Here, we use the short germ beetle Tribolium castaneum to investigate two Wnt and Hh signaling centers located in the head anlagen and in the growth zone of early embryos. We find that Wnt/β-catenin signaling acts upstream of Hh in the growth zone, whereas the opposite interaction occurs in the head. We determine the target gene sets of the Wnt/β-catenin and Hh pathways and find that the growth zone signaling center activates a much greater number of genes and that the Wnt and Hh target gene sets are essentially non-overlapping. The Wnt pathway activates key genes of all three germ layers, including pair-rule genes, and Tc-caudal and Tc-twist. Furthermore, the Wnt pathway is required for hindgut development and we identify Tc-senseless as a novel hindgut patterning gene required in the early growth zone. At the same time, Wnt acts on growth zone metabolism and cell division, thereby integrating growth with patterning. Posterior Hh signaling activates several genes potentially involved in a proteinase cascade of unknown function.
Collapse
Affiliation(s)
- Georg Oberhofer
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Daniela Grossmann
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Janna L Siemanowski
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, Göttingen D-37073, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Biology, Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Georg-August-University, Justus von Liebig Weg 11, Göttingen D-37077, Germany
| |
Collapse
|
43
|
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 2014; 5:39. [PMID: 25908956 PMCID: PMC4407770 DOI: 10.1186/2041-9139-5-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/17/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. RESULTS The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut. CONCLUSIONS Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that 'gut gene' networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
Collapse
|
44
|
Lauri A, Brunet T, Handberg-Thorsager M, Fischer AHL, Simakov O, Steinmetz PRH, Tomer R, Keller PJ, Arendt D. Development of the annelid axochord: insights into notochord evolution. Science 2014; 345:1365-8. [PMID: 25214631 DOI: 10.1126/science.1253396] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The origin of chordates has been debated for more than a century, with one key issue being the emergence of the notochord. In vertebrates, the notochord develops by convergence and extension of the chordamesoderm, a population of midline cells of unique molecular identity. We identify a population of mesodermal cells in a developing invertebrate, the marine annelid Platynereis dumerilii, that converges and extends toward the midline and expresses a notochord-specific combination of genes. These cells differentiate into a longitudinal muscle, the axochord, that is positioned between central nervous system and axial blood vessel and secretes a strong collagenous extracellular matrix. Ancestral state reconstruction suggests that contractile mesodermal midline cells existed in bilaterian ancestors. We propose that these cells, via vacuolization and stiffening, gave rise to the chordate notochord.
Collapse
Affiliation(s)
- Antonella Lauri
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Thibaut Brunet
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Mette Handberg-Thorsager
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Antje H L Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Oleg Simakov
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Patrick R H Steinmetz
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg
| | - Raju Tomer
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Philipp J Keller
- Janelia Farm Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg. Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
45
|
Miyamoto N, Shinozaki A, Fujiwara Y. Segment Regeneration in the Vestimentiferan Tubeworm, Lamellibrachia satsuma. Zoolog Sci 2014; 31:535-41. [DOI: 10.2108/zs130259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Norio Miyamoto
- institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Ayuta Shinozaki
- institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| | - Yoshihiro Fujiwara
- institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan
| |
Collapse
|
46
|
Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol 2013; 382:224-34. [PMID: 23880430 DOI: 10.1016/j.ydbio.2013.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/12/2013] [Accepted: 07/14/2013] [Indexed: 11/23/2022]
Abstract
The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.
Collapse
|
47
|
Amiel AR, Henry JQ, Seaver EC. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: New insights into cell–cell signaling in Lophotrochozoa. Dev Biol 2013; 379:107-22. [DOI: 10.1016/j.ydbio.2013.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
|
48
|
The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013; 11:e1001488. [PMID: 23483856 PMCID: PMC3586664 DOI: 10.1371/journal.pbio.1001488] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022] Open
Abstract
The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body axis corresponds to the anterior domain of bilaterians. In order to understand the evolutionary origin of head development, we analysed the function of conserved genetic regulators of bilaterian anterior development in the sea anemone Nematostella vectensis. We show that orthologs of the bilaterian anterior developmental genes six3/6, foxQ2, and irx have dynamic expression patterns in the aboral region of Nematostella. Functional analyses reveal that NvSix3/6 acts upstream of NvFoxQ2a as a key regulator of the development of a broad aboral territory in Nematostella. NvSix3/6 initiates an autoregulatory feedback loop involving positive and negative regulators of FGF signalling, which subsequently results in the downregulation of NvSix3/6 and NvFoxQ2a in a small domain at the aboral pole, from which the apical organ develops. We show that signalling by NvFGFa1 is specifically required for the development of the apical organ, whereas NvSix3/6 has an earlier and broader function in the specification of the aboral territory. Our functional and gene expression data suggest that the head-forming region of bilaterians is derived from the aboral domain of the cnidarian-bilaterian ancestor.
Collapse
|
49
|
Chandramouli KH, Sun J, Mok FS, Liu L, Qiu JW, Ravasi T, Qian PY. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. J Proteome Res 2013; 12:1344-58. [PMID: 23294167 DOI: 10.1021/pr3010088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes.
Collapse
Affiliation(s)
- Kondethimmahalli H Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
50
|
Eriksson BJ, Tait NN. Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:483-93. [PMID: 22430148 PMCID: PMC3437555 DOI: 10.1016/j.asd.2012.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/11/2012] [Accepted: 02/29/2012] [Indexed: 05/31/2023]
Abstract
We present here a description of early development in the onychophoran Euperipatoides kanangrensis with emphasis on processes that are ambiguously described in older literature. Special focus has been on the pattern of early cleavage, blastoderm and germinal disc development and gastrulation. The formation of the blastopore, stomodeum and proctodeum is described from sectioned material using light and transmission electron microscopy as well as whole-mount material stained for nuclei and gene expression. The early cleavages were found to be superficial, contrary to earlier descriptions of cleavage in yolky, ovoviviparous onychophorans. Also, contrary to earlier descriptions, the embryonic anterior-posterior axis is not predetermined in the egg. Our data support the view of a blastopore that becomes elongated and slit-like, resembling some of the earliest descriptions. From gene expression data, we concluded that the position of the proctodeum is the most posterior pit in the developing embryo. This description of early development adds to our knowledge of the staging of embryonic development in onychophorans necessary for studies on the role of developmental changes in evolution.
Collapse
Affiliation(s)
- Bo Joakim Eriksson
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, United Kingdom.
| | | |
Collapse
|