1
|
Wang J, Xie A, Fang W, Zhu H, Ye C, Peng J. Zebrafish leg1a and leg1b double null mutant accumulates lipids in the liver. Biochem Biophys Res Commun 2025; 751:151418. [PMID: 39922057 DOI: 10.1016/j.bbrc.2025.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
Zebrafish Leg1a and Leg1b are two homologous proteins sharing high sequence homology. Previous studies have revealed that leg1a and leg1b genes are important for early liver development and Leg1a and Leg1b are liver-produced serum proteins, however, whether they play a physiological role in the zebrafish liver remains unknown. Here, we carry out an analysis of the bulk RNA sequencing (RNA-seq) data and find that lipid metabolic pathways are the most prominently affected biological processes in the leg1a-/-leg1b-/- double mutant larvae. Oil-Red-O staining shows a significant accumulation of lipids in the leg1a-/-leg1b-/- double mutant larvae and adult livers. Lipidomics analysis reveals that the increased lipids are mainly diacylglycerol (DAG) in the adult liver. Our findings identify the essential role of Leg1 in maintaining the lipid metabolic homeostasis in zebrafish.
Collapse
Affiliation(s)
- Jinyang Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Haozhe Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cunqi Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Hu Y, Luo Z, Wang M, Wu Z, Liu Y, Cheng Z, Sun Y, Xiong JW, Tong X, Zhu Z, Zhang B. Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish. J Genet Genomics 2025; 52:66-77. [PMID: 39343095 DOI: 10.1016/j.jgg.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Luo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meiwen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunxing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhan Sun
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Jin Q, Hu Y, Gao Y, Zheng J, Chen J, Gao C, Peng J. Hhex and Prox1a synergistically dictate the hepatoblast to hepatocyte differentiation in zebrafish. Biochem Biophys Res Commun 2023; 686:149182. [PMID: 37922575 DOI: 10.1016/j.bbrc.2023.149182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The specification of endoderm cells to prospective hepatoblasts is the starting point for hepatogenesis. However, how a prospective hepatoblast gains the hepatic fate remains elusive. Previous studies have shown that loss-of-function of either hhex or prox1a alone causes a small liver phenotype but without abolishing the hepatocyte differentiation, suggesting that absence of either Hhex or Prox1a alone is not sufficient to block the hepatoblast differentiation. Here, via genetic studies of the zebrafish two single (hhex-/- and prox1a-/-) and one double (hhex-/-prox1a-/-) mutants, we show that simultaneous loss-of-function of the hhex and prox1a two genes does not block the endoderm cells to gain the hepatoblast potency but abolishes the hepatic differentiation from the prospective hepatoblast. Consequently, the hhex-/-prox1a-/- double mutant displays a liverless phenotype that cannot be rescued by the injection of bmp2a mRNA. Taken together, we provide strong evidences showing that Hhex teams with Prox1a to act as a master control of the differentiation of the prospective hepatoblasts towards hepatocytes.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqing Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiayi Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
4
|
da Silva Nunes Barreto R, da Silva Júnior LN, Henrique Doná Rodrigues Almeida G, de Oliveira Horvath-Pereira B, da Silva TS, Garcia JM, Smith LC, Carreira ACO, Miglino MA. Placental scaffolds as a potential biological platform for embryonic stem cells differentiation into hepatic-like cells lineage: A pilot study. Tissue Cell 2023; 84:102181. [PMID: 37515966 DOI: 10.1016/j.tice.2023.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
Hepatic microenvironment plays an essential role in liver regeneration, providing the necessary conditions for cell proliferation, differentiation and tissue rearrangement. One of the key factors for hepatic tissue reconstruction is the extracellular matrix (ECM), which through collagenous and non-collagenous proteins provide a three-dimensional structure that confers support for cell adhesion and assists on their survival and maintenance. In this scenario, placental ECM may be eligible for hepatic tissue reconstruction, once these scaffolds hold the major components required for cell support. Therefore, this preliminary study aimed to access the possibility of mouse embryonic stem cells differentiation into hepatocyte-like cells on placental scaffolds in a three-dimensional dynamic system using a Rotary Cell Culture System. Following a four-phase differentiation protocol that simulates liver embryonic development events, the preliminary results showed that a significant quantity of cells adhered and interacted with the scaffold through outer and inner surfaces. Positive immunolabelling for alpha fetus protein and CK7 suggest presence of hepatoblast phenotype cells, and CK18 and Albumin positive immunolabelling suggest the presence of hepatocyte-like phenotype cells, demonstrating the presence of a heterogeneous population into the recellularized scaffolds. Periodic Acid Schiff-Diastase staining confirmed the presence of glycogen storage, indicating that differentiate cells acquired a hepatic-like phenotype. In conclusion, these preliminary results suggested that mouse placental scaffolds might be used as a biological platform for stem cells differentiation into hepatic-like cells and their establishment, which may be a promissing biomaterial for hepatic tissue reconstruction.
Collapse
Affiliation(s)
| | | | | | | | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Joaquim Mansano Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, Faculty of Agricultural and Veterinary Sciences, State University of São Paulo, Jaboticabal, SP, Brazil
| | - Lawrence Charles Smith
- Centre de Recherche en Reproduction et Fertilité, University of Montreal, Montreal, QC, Canada
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; Centre of Human and Natural Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Xie A, Ma Z, Wang J, Zhang Y, Chen Y, Yang C, Chen J, Peng J. Upf3a but not Upf1 mediates the genetic compensation response induced by leg1 deleterious mutations in an H3K4me3-independent manner. Cell Discov 2023; 9:63. [PMID: 37369707 DOI: 10.1038/s41421-023-00550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/29/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic compensation responses (GCRs) can be induced by deleterious mutations in living organisms in order to maintain genetic robustness. One type of GCRs, homology-dependent GCR (HDGCR), involves transcriptional activation of one or more homologous genes related to the mutated gene. In zebrafish, ~80% of the genetic mutants produced by gene editing technology failed to show obvious phenotypes. The HDGCR has been proposed to be one of the main reasons for this phenomenon. It is triggered by mutant mRNA bearing a premature termination codon and has been suggested to depend on components of both the nonsense mRNA-mediated degradation (NMD) pathway and the complex of proteins associated with Set1 (COMPASS). However, exactly which specific NMD factor is required for HDGCR remains disputed. Here, zebrafish leg1 deleterious mutants are adopted as a model to distinguish the role of the NMD factors Upf1 and Upf3a in HDGCR. Four single mutant lines and three double mutant lines were produced. The RNA-seq data from 71 samples and the ULI-NChIP-seq data from 8 samples were then analyzed to study the HDGCR in leg1 mutants. Our results provide strong evidence that Upf3a, but not Upf1, is essential for the HDGCR induced by nonsense mutations in leg1 genes where H3K4me3 enrichment appears not to be a prerequisite. We also show that Upf3a is responsible for correcting the expression of hundreds of genes that would otherwise be dysregulated in the leg1 deleterious mutant.
Collapse
Affiliation(s)
- Aixuan Xie
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhipeng Ma
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jinyang Wang
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuxi Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yayue Chen
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Jinrong Peng
- 1MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Stress resilience is established during development and is regulated by complement factors. Cell Rep 2023; 42:111973. [PMID: 36640352 DOI: 10.1016/j.celrep.2022.111973] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Individuals in a population respond differently to stressful situations. While resilient individuals recover efficiently, others are susceptible to the same stressors. However, it remains challenging to determine if resilience is established as a trait during development or acquired later in life. Using a behavioral paradigm in zebrafish larvae, we show that resilience is a stable and heritable trait, which is determined and exhibited early in life. Resilient larvae show unique stress-induced transcriptional response, and larvae with mutations in resilience-associated genes, such as neuropeptide Y and miR218, are less resilient. Transcriptome analysis shows that resilient larvae downregulate multiple factors of the innate immune complement cascade in response to stress. Perturbation of critical complement factors leads to an increase in resilience. We conclude that resilience is established as a stable trait early during development and that neuropeptides and the complement pathway play positive and negative roles in determining resilience, respectively.
Collapse
|
7
|
New Insights into the Identity of the DFNA58 Gene. Genes (Basel) 2022; 13:genes13122274. [PMID: 36553541 PMCID: PMC9777997 DOI: 10.3390/genes13122274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is the most common sensory deficit, affecting 466 million people worldwide. The vast and diverse genes involved reflect the complexity of auditory physiology, which requires the use of animal models in order to gain a fuller understanding. Among the loci with a yet-to-be validated gene is the DFNA58, in which ~200 Kb genomic duplication, including three protein-coding genes (PLEK, CNRIP1, and PPP3R1's exon1), was found to segregate with autosomal dominant hearing loss. Through whole genome sequencing, the duplication was found to be in tandem and inserted in an intergenic region, without the disruption of the topological domains. Reanalysis of transcriptomes data studies (zebrafish and mouse), and RT-qPCR analysis of adult zebrafish target organs, in order to access their orthologues expression, highlighted promising results with Cnrip1a, corroborated by zebrafish in situ hybridization and immunofluorescence. Mouse data also suggested Cnrip1 as the best candidate for a relevant role in auditory physiology, and its importance in hearing seems to have remained conserved but the cell type exerting its function might have changed, from hair cells to spiral ganglion neurons.
Collapse
|
8
|
Jiang L, Wang X, Ma F, Wang X, Shi M, Yan Q, Liu M, Chen J, Shi C, Guan XY. PITX2C increases the stemness features of hepatocellular carcinoma cells by up-regulating key developmental factors in liver progenitor. J Exp Clin Cancer Res 2022; 41:211. [PMID: 35765089 PMCID: PMC9238105 DOI: 10.1186/s13046-022-02424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor cells exhibited phenotypic and molecular characteristics similar to their lineage progenitor cells. Liver developmental signaling pathways are showed to be associated with HCC development and oncogenesis. The similarities of expression profiling between liver progenitors (LPs) and HCC suggest that understanding the molecular mechanism during liver development could provide insights into HCC.
Methods
To profile the dynamic gene expression during liver development, cells from an in vitro liver differentiation model and two paired hepatocellular carcinoma (HCC) samples were analyzed using deep RNA sequencing. The expression levels of selected genes were analyzed by qRT-PCR. Moreover, the role of a key transcription factor, pituitary homeobox 2 (PITX2), was characterized via in vitro and vivo functional assays. Furthermore, molecular mechanism studies were performed to unveil how PITX2C regulate the key developmental factors in LPs, thereby increasing the stemness of HCC.
Results
PITX2 was found to exhibit a similar expression pattern to specific markers of LPs. PITX2 consists of three isoforms (PITX2A/B/C). The expression of PITX2 is associated with tumor size and overall survival rate, whereas only PITX2C expression is associated with AFP and differentiation in clinical patients. PITX2A/B/C has distinct functions in HCC tumorigenicity. PITX2C promotes HCC metastasis, self-renewal and chemoresistance. Molecular mechanism studies showed that PITX2C could up-regulate RALYL which could enhance HCC stemness via the TGF-β pathway. Furthermore, ChIP assays confirmed the role of PITX2C in regulating key developmental factors in LP.
Conclusion
PITX2C is a newly discovered transcription factor involved in hepatic differentiation and could increase HCC stemness by upregulating key transcriptional factors related to liver development.
Collapse
|
9
|
Jin Q, Gao Y, Shuai S, Chen Y, Wang K, Chen J, Peng J, Gao C. Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. J Genet Genomics 2022; 49:1101-1113. [PMID: 36460297 DOI: 10.1016/j.jgg.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
In mammals, the expression of the homeobox family member Cdx2/CDX2 is restricted within the intestine. Conditional ablation of the mouse Cdx2 in the endodermal cells causes a homeotic transformation of the intestine towards the esophagus or gastric fate. In this report, we show that null mutants of zebrafish cdx1b, encoding the counterpart of mammalian CDX2, could survive more than 10 days post fertilization, a stage when the zebrafish digestive system has been well developed. Through RNA sequencing (RNA-seq) and single-cell sequencing (scRNA-seq) of the dissected intestine from the mutant embryos, we demonstrate that the loss-of-function of the zebrafish cdx1b yields hepatocyte-like intestinal cells, a phenotype never observed in the mouse model. Further RNA-seq data analysis, and genetic double mutants and signaling inhibitor studies reveal that Cdx1b functions to guard the intestinal fate by repressing, directly or indirectly, a range of transcriptional factors and signaling pathways for liver specification. Finally, we demonstrate that heat shock-induced overexpression of cdx1b in a transgenic fish abolishes the liver formation. Therefore, we demonstrate that Cdx1b is a key repressor of hepatic fate during the intestine specification in zebrafish.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shimin Shuai
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yayue Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Gao Y, Jin Q, Gao C, Chen Y, Sun Z, Guo G, Peng J. Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells 2022; 11:3290. [PMID: 36291156 PMCID: PMC9600436 DOI: 10.3390/cells11203290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2023] Open
Abstract
The zebrafish intestine and liver, as in other vertebrates, are derived from the endoderm. Great effort has been devoted to deciphering the molecular mechanisms controlling the specification and development of the zebrafish intestine and liver; however, genome-wide comparison of the transcriptomes between these two organs at the larval stage remains unexplored. There is a lack of extensive identification of feature genes marking specific cell types in the zebrafish intestine and liver at 5 days post-fertilization, when the larval fish starts food intake. In this report, through RNA sequencing and single-cell RNA sequencing of intestines and livers separately dissected from wild-type zebrafish larvae at 5 days post-fertilization, together with the experimental validation of 47 genes through RNA whole-mount in situ hybridization, we identified not only distinctive transcriptomes for the larval intestine and liver, but also a considerable number of feature genes for marking the intestinal bulb, mid-intestine and hindgut, and for marking hepatocytes and cholangiocytes. Meanwhile, we identified 135 intestine- and 97 liver-enriched transcription factor genes in zebrafish larvae at 5 days post-fertilization. Our findings provide rich molecular and cellular resources for studying cell patterning and specification during the early development of the zebrafish intestine and liver.
Collapse
Affiliation(s)
- Yuqi Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingxia Jin
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yayue Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoxiang Sun
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guoji Guo
- School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Yoon B, Yeung P, Santistevan N, Bluhm LE, Kawasaki K, Kueper J, Dubielzig R, VanOudenhove J, Cotney J, Liao EC, Grinblat Y. Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biol Open 2022; 11:bio059189. [PMID: 35142342 PMCID: PMC9167625 DOI: 10.1242/bio.059189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.
Collapse
Affiliation(s)
- Baul Yoon
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Pan Yeung
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Nicholas Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren E. Bluhm
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Janina Kueper
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
- Institute of Human Genetics, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
12
|
Mcm5 Represses Endodermal Migration through Cxcr4a-itgb1b Cascade Instead of Cell Cycle Control. Biomolecules 2022; 12:biom12020286. [PMID: 35204787 PMCID: PMC8961633 DOI: 10.3390/biom12020286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Minichromosome maintenance protein 5 (MCM5) is a critical cell cycle regulator; its role in DNA replication is well known, but whether it is involved in the regulation of organogenesis in a cell cycle-independent way, is far from clear. In this study, we found that a loss of mcm5 function resulted in a mildly smaller liver, but that mcm5 overexpression led to liver bifida. Further, the data showed that mcm5 overexpression delayed endodermal migration in the ventral–dorsal axis and induced the liver bifida. Cell cycle analysis showed that a loss of mcm5 function, but not overexpression, resulted in cell cycle delay and increased cell apoptosis during gastrulation, implying that liver bifida was not the result of a cell cycle defect. In terms of its mechanism, our data proves that mcm5 represses the expression of cxcr4a, which sequentially causes a decrease in the expression of itgb1b during gastrulation. The downregulation of the cxcr4a-itgb1b cascade leads to an endodermal migration delay during gastrulation, as well as to the subsequent liver bifida during liver morphogenesis. In conclusion, our results suggest that in a cell cycle-independent way, mcm5 works as a gene expression regulator, either partially and directly, or indirectly repressing the expression of cxcr4a and the downstream gene itgb1b, to coordinate endodermal migration during gastrulation and liver location during liver organogenesis.
Collapse
|
13
|
Wang J, Bai Y, Xie A, Huang H, Hu M, Peng J. Difference in an intermolecular disulfide-bond between two highly homologous serum proteins Leg1a and Leg1b implicates their functional differentiation. Biochem Biophys Res Commun 2021; 579:81-88. [PMID: 34592574 DOI: 10.1016/j.bbrc.2021.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022]
Abstract
Zebrafish Liver-enriched gene 1a (Leg1a) and Leg1b are liver-produced serum proteins encoded by two adjacently linked homologous genes leg1a and leg1b, respectively. We previously showed that maternal-zygotic (MZ) leg1a null mutant developed a small liver at 3.5 days post-fertilization (dpf) during winter-time or under UV-treatment and displayed an abnormal stature at its adulthood. It is puzzling why Leg1b, which shares 89.3% identity with Leg1a and co-expressed with Leg1a, cannot fully compensate for the loss-of-function of Leg1a in the leg1azju1 MZ mutant. Here we report that Leg1a and Leg1b share eight cysteine residues but differ in amino acid residue 358, which is a serine in Leg1a but cysteine (C358) in Leg1b. We find that Leg1b forms an intermolecular disulfide bond through C358. Mutating C358 to Methionine (M358) does not affect Leg1b secretion whereas mutating other conserved cysteine residues do. We propose that the intermolecular disulfide bond in Leg1b might establish a rigid structure that makes it functionally different from Leg1a under certain oxidative conditions.
Collapse
Affiliation(s)
- Jinyang Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Aixuan Xie
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heping Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
15
|
Postlethwait JH, Massaquoi MS, Farnsworth DR, Yan YL, Guillemin K, Miller AC. The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biol Open 2021; 10:bio058172. [PMID: 33757938 PMCID: PMC8015242 DOI: 10.1242/bio.058172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with coronavirus SARS-CoV-2, which causes COVID-19. Hypertension and respiratory inflammation are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure via Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, counteracting its chronic effects, and serves as the SARS-CoV-2 receptor. Ace, the coronavirus, and COVID-19 comorbidities all regulate Ace2, but we do not yet understand how. To exploit zebrafish (Danio rerio) to help understand the relationship of the RAAS to COVID-19, we must identify zebrafish orthologs and co-orthologs of human RAAS genes and understand their expression patterns. To achieve these goals, we conducted genomic and phylogenetic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have one or more zebrafish orthologs or co-orthologs. Results identified a specific type of enterocyte as the specific site of expression of zebrafish orthologs of key RAAS components, including Ace, Ace2, Slc6a19 (SARS-CoV-2 co-receptor), and the Angiotensin-related peptide cleaving enzymes Anpep (receptor for the common cold coronavirus HCoV-229E), and Dpp4 (receptor for the Middle East Respiratory Syndrome virus, MERS-CoV). Results identified specific vascular cell subtypes expressing Ang II receptors, apelin, and apelin receptor genes. These results identify genes and cell types to exploit zebrafish as a disease model for understanding mechanisms of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
16
|
Wang GT, Pan HY, Lang WH, Yu YD, Hsieh CH, Kuan YS. Three-dimensional multi-gene expression maps reveal cell fate changes associated with laterality reversal of zebrafish habenula. J Neurosci Res 2021; 99:1632-1645. [PMID: 33638209 DOI: 10.1002/jnr.24806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/09/2022]
Abstract
The conserved bilateral habenular nuclei (HA) in vertebrate diencephalon develop into compartmentalized structures containing neurons derived from different cell lineages. Despite extensive studies demonstrated that zebrafish larval HA display distinct left-right (L-R) asymmetry in gene expression and connectivity, the spatial gene expression domains were mainly obtained from two-dimensional (2D) snapshots of colorimetric RNA in situ hybridization staining which could not properly reflect different HA neuronal lineages constructed in three-dimension (3D). Combing the tyramide-based fluorescent mRNA in situ hybridization, confocal microscopy and customized imaging processing procedures, we have created spatial distribution maps of four genes for 4-day-old zebrafish and in sibling fish whose L-R asymmetry was spontaneously reversed. 3D volumetric analyses showed that ratios of cpd2, lov, ron, and nrp1a expression in L-R reversed HA were reversed according to the parapineal positions. However, the quantitative changes of gene expression in reversed larval brains do not mirror the gene expression level in the obverse larval brains. There were a total 87.78% increase in lov+ nrp1a+ and a total 12.45% decrease in lov+ ron+ double-positive neurons when the L-R asymmetry of HA was reversed. Thus, our volumetric analyses of the 3D maps indicate that changes of HA neuronal cell fates are associated with the reversal of HA laterality. These changes likely account for the behavior changes associated with HA laterality alterations.
Collapse
Affiliation(s)
- Guo-Tzau Wang
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - He-Yen Pan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Wei-Han Lang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C
| | - Yuan-Ding Yu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C
| | - Chang-Huain Hsieh
- National Center for High-Performance Computing, Hsinchu, Taiwan R.O.C
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan R.O.C.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan R.O.C.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan R.O.C.,Neuroscience Program, Academia Sinica, Taipei, Taiwan R.O.C
| |
Collapse
|
17
|
Postlethwait JH, Farnsworth DR, Miller AC. An intestinal cell type in zebrafish is the nexus for the SARS-CoV-2 receptor and the Renin-Angiotensin-Aldosterone System that contributes to COVID-19 comorbidities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908984 DOI: 10.1101/2020.09.01.278366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with the coronavirus SARS-CoV-2. These COVID-19 comorbidities are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure or dehydration via the peptide Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, thus counteracting its chronic effects. Ace2 is also the SARS-CoV-2 receptor. Ace , the coronavirus, and COVID-19 comorbidities all regulate Ace2 , but we don't yet understand how. To exploit zebrafish ( Danio rerio ) as a disease model to understand mechanisms regulating the RAAS and its relationship to COVID-19 comorbidities, we must first identify zebrafish orthologs and co-orthologs of human RAAS genes, and second, understand where and when these genes are expressed in specific cells in zebrafish development. To achieve these goals, we conducted genomic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have an ortholog in zebrafish and some have two or more co-orthologs. Results further identified a specific intestinal cell type in zebrafish larvae as the site of expression for key RAAS components, including Ace, Ace2, the coronavirus co-receptor Slc6a19, and the Angiotensin-related peptide cleaving enzymes Anpep and Enpep. Results also identified specific vascular cell subtypes as expressing Ang II receptors, apelin , and apelin receptor genes. These results identify specific genes and cell types to exploit zebrafish as a disease model for understanding the mechanisms leading to COVID-19 comorbidities. SUMMARY STATEMENT Genomic analyses identify zebrafish orthologs of the Renin-Angiotensin-Aldosterone System that contribute to COVID-19 comorbidities and single-cell transcriptomics show that they act in a specialized intestinal cell type.
Collapse
|
18
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
19
|
Yip E, Giousoh A, Fung C, Wilding B, Prakash MD, Williams C, Verkade H, Bryson-Richardson RJ, Bird PI. A transgenic zebrafish model of hepatocyte function in human Z α1-antitrypsin deficiency. Biol Chem 2020; 400:1603-1616. [PMID: 31091192 DOI: 10.1515/hsz-2018-0391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
In human α1-antitrypsin deficiency, homozygous carriers of the Z (E324K) mutation in the gene SERPINA1 have insufficient circulating α1-antitrypsin and are predisposed to emphysema. Misfolding and accumulation of the mutant protein in hepatocytes also causes endoplasmic reticulum stress and underpins long-term liver damage. Here, we describe transgenic zebrafish (Danio rerio) expressing the wildtype or the Z mutant form of human α1-antitrypsin in hepatocytes. As observed in afflicted humans, and in rodent models, about 80% less α1-antitrypsin is evident in the circulation of zebrafish expressing the Z mutant. Although these zebrafish also show signs of liver stress, they do not accumulate α1-antitrypsin in hepatocytes. This new zebrafish model will provide useful insights into understanding and treatment of α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Evelyn Yip
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Aminah Giousoh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Monica D Prakash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Caitlin Williams
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia
| | - Heather Verkade
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | | | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
20
|
Dang Y, Wang JY, Liu C, Zhang K, Jinrong P, He J. Evolutionary and Molecular Characterization of liver-enriched gene 1. Sci Rep 2020; 10:4262. [PMID: 32144352 PMCID: PMC7060313 DOI: 10.1038/s41598-020-61208-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
Liver-enriched gene 1 (Leg1) is a newly identified gene with little available functional information. To evolutionarily and molecularly characterize Leg1 genes, a phylogenetic study was first conducted, which indicated that Leg1 is a conserved gene that exists from bacteria to mammals. During the evolution of mammals, Leg1s underwent tandem duplications, which gave rise to Leg1a, Leg1b, and Leg1c clades. Analysis of the pig genome showed the presence of all three paralogs of pig Leg1 genes (pLeg1s), whereas only Leg1a could be found in the human (hLeg1a) or mouse (mLeg1a) genomes. Purifying force acts on the evolution of Leg1 genes, likely subjecting them to functional constraint. Molecularly, pLeg1a and its coded protein, pig LEG1a (pLEG1a), displayed high similarities to its human and mouse homologs in terms of gene organization, expression patterns, and structures. Hence, pLeg1a, hLeg1a, and mLeg1a might preserve similar functions. Additionally, expression analysis of the three Leg1as suggested that eutherian Leg1as might have different functions from those of zebrafish and platypus due to subfunctionalization. Therefore, pLeg1a might provide essential information about eutherian Leg1a. Moreover, a preliminary functional study using RNA-seq suggested that pLeg1a is involved in the lipid homeostasis. In conclusion, our study provides some basic information on the aspects of evolution and molecular function, which could be applied for further validation of Leg1 using pig models.
Collapse
Affiliation(s)
- Yanna Dang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jin-Yang Wang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Chen Liu
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Kun Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Peng Jinrong
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jin He
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
21
|
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e340. [PMID: 30924280 DOI: 10.1002/wdev.340] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Tissue regeneration is a process by which the remaining cells of an injured organ regrow to offset the missed cells. This field is relatively a new discipline that has been a focus of intense research by clinicians, surgeons, and scientists for decades. It constitutes the cornerstone of tissue engineering, creation of artificial organs, and generation and utilization of therapeutic stem cells to undergo transformation to different types of mature cells. Many medical experts, scientists, biologists, and bioengineers have dedicated their efforts to deeply comprehend the process of liver regeneration, striving for harnessing it to invent new therapies for liver failure. Liver regeneration after partial hepatectomy in rodents has been extensively studied by researchers for many years. It is divided into three important distinctive phases including (a) Initiation or priming phase which includes an overexpression of specific genes to prepare the liver cells for replication, (b) Proliferation phase in which the liver cells undergo a series of cycles of cell division and expansion and finally, (c) termination phase which acts as brake to stop the regenerative process and prevent the liver tissue overgrowth. These events are well controlled by cytokines, growth factors, and signaling pathways. In this review, we describe the function, embryology, and anatomy of human liver, discuss the molecular basis of liver regeneration, elucidate the hepatocyte and cholangiocyte lineages mediating this process, explain the role of hepatic progenitor cells and elaborate the developmental signaling pathways and regulatory molecules required to procure a complete restoration of hepatic lobule. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Signaling Pathways > Global Signaling Mechanisms Gene Expression and Transcriptional Hierarchies > Cellular Differentiation.
Collapse
Affiliation(s)
- Anan Abu Rmilah
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Erek Nelson
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Li Lin
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- Department of Surgery, Division of Transplant Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
22
|
Regulation of the Pancreatic Exocrine Differentiation Program and Morphogenesis by Onecut 1/Hnf6. Cell Mol Gastroenterol Hepatol 2019; 7:841-856. [PMID: 30831323 PMCID: PMC6476890 DOI: 10.1016/j.jcmgh.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS The Onecut 1 transcription factor (Oc1, a.k.a. HNF6) promotes differentiation of endocrine and duct cells of the pancreas; however, it has no known role in acinar cell differentiation. We sought to better understand the role of Oc1 in exocrine pancreas development and to identify its direct transcriptional targets. METHODS Pancreata from Oc1Δpanc (Oc1fl/fl;Pdx1-Cre) mouse embryos and neonates were analyzed morphologically. High-throughput RNA-sequencing was performed on control and Oc1-deficient pancreas; chromatin immunoprecipitation sequencing was performed on wild-type embryonic mouse pancreata to identify direct Oc1 transcriptional targets. Immunofluorescence labeling was used to confirm the RNA-sequencing /chromatin immunoprecipitation sequencing results and to further investigate the effects of Oc1 loss on acinar cells. RESULTS Loss of Oc1 from the developing pancreatic epithelium resulted in disrupted duct and acinar cell development. RNA-sequencing revealed decreased expression of acinar cell regulatory factors (Nr5a2, Ptf1a, Gata4, Mist1) and functional genes (Amylase, Cpa1, Prss1, Spink1) at embryonic day (e) 18.5 in Oc1Δpanc samples. Approximately 1000 of the altered genes were also identified as direct Oc1 targets by chromatin immunoprecipitation sequencing, including most of the previously noted genes. By immunolabeling, we confirmed that Amylase, Mist1, and GATA4 protein levels are significantly decreased by P2, and Spink1 protein levels were significantly reduced and mislocalized. The pancreatic duct regulatory factors Hnf1β and FoxA2 were also identified as direct Oc1 targets. CONCLUSIONS These findings confirm that Oc1 is an important regulator of both duct and acinar cell development in the embryonic pancreas. Novel transcriptional targets of Oc1 have now been identified and provide clarity into the mechanisms of Oc1 transcriptional regulation in the developing exocrine pancreas. Oc1 can now be included in the gene-regulatory network of acinar cell regulatory genes. Oc1 regulates other acinar cell regulatory factors and acinar cell functional genes directly, and it can also regulate some acinar cell regulatory factors (eg, Mist1) indirectly. Oc1 therefore plays an important role in acinar cell development.
Collapse
|
23
|
Bai J, Jiang X, He M, Chan BCB, Wong AOL. Novel Mechanisms for IGF-I Regulation by Glucagon in Carp Hepatocytes: Up-Regulation of HNF1α and CREB Expression via Signaling Crosstalk for IGF-I Gene Transcription. Front Endocrinol (Lausanne) 2019; 10:605. [PMID: 31551932 PMCID: PMC6734168 DOI: 10.3389/fendo.2019.00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Glucagon, a key hormone for glucose homeostasis, can exert functional crosstalk with somatotropic axis via modification of IGF-I expression. However, its effect on IGF-I regulation is highly variable in different studies and the mechanisms involved are largely unknown. Using grass carp as a model, the signal transduction and transcriptional mechanisms for IGF-I regulation by glucagon were examined in Cyprinid species. As a first step, the carp HNF1α, a liver-enriched transcription factor, was cloned and confirmed to be a single-copy gene expressed in the liver. In grass carp hepatocytes, glucagon treatment could elevate IGF-I, HNF1α, and CREB mRNA levels, induce CREB phosphorylation, and up-regulate HNF1α and CREB protein expression. The effects on IGF-I, HNF1α, and CREB gene expression were mediated by cAMP/PKA and PLC/IP3/PKC pathways with differential coupling with the MAPK and PI3K/Akt cascades. During the process, protein:protein interaction between HNF1α and CREB and recruitment of RNA Pol-II to IGF-I promoter also occurred with a rise in IGF-I primary transcript level. In parallel study to examine grass carp IGF-I promoter activity expressed in αT3 cells, similar pathways for post-receptor signaling were also confirmed in glucagon-induced IGF-I promoter activation and the trans-activating effect by glucagon was mediated by the binding sites for HNF1α and CREB located in the proximal region of IGF-I promoter. Our findings, as a whole, shed light on a previously undescribed mechanism for glucagon-induced IGF-I gene expression by increasing HNF1α and CREB production via functional crosstalk of post-receptor signaling. Probably, by protein:protein interaction between the two transcription factors and subsequent transactivation via their respective cis-acting elements in the IGF-I promoter, IGF-I gene transcription can be initiated by glucagon at the hepatic level.
Collapse
|
24
|
Zhang Y, Li Q, Wang F, Xing C. A zebrafish (danio rerio) model for high-throughput screening food and drugs with uric acid-lowering activity. Biochem Biophys Res Commun 2019; 508:494-498. [DOI: 10.1016/j.bbrc.2018.11.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
|
25
|
Liu H, Wu Q, Chu T, Mo Y, Cai S, Chen M, Zhu G. High-dose acute exposure of paraquat induces injuries of swim bladder, gastrointestinal tract and liver via neutrophil-mediated ROS in zebrafish and their relevance for human health risk assessment. CHEMOSPHERE 2018; 205:662-673. [PMID: 29723724 DOI: 10.1016/j.chemosphere.2018.04.151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The exact toxicological mechanisms of paraquat (PQ) poisoning are not entirely clear, especially on the high-level acute exposure. To assess the health risk of PQ, especially to suicidal individuals, accidental ingestion eaters, occupational groups, and special multitude, firstly we explored the acute toxic effect and the possible mechanisms of high-level exposure of PQ using zebrafish. The mainly target organs of PQ were swim bladder which is the homolog of the mammalian lung, followed by gastrointestinal tract and liver. Morphological malformations which were further defined by histopathologic examination include smaller size, fibrosis and inflammatory cell invasion for swim bladder; irregularly arranged or dissolved epithelial folds, loss of villous architecture, and ecclasis of mucosal cells in a smaller lumen for gastrointestinal tract; as well as smaller size, degeneration, fibrous proliferation, atrophy for liver. In addition, PQ enhanced leukocyte recruitment (neutrophil migrated first, followed by macrophage) into swim bladder and induced ROS which can be scavenged by glutathione. Moreover, qRT-PCR results showed that PQ increased the expression level of genes involved in the inflammatory response, such as L-1β, IL-6, IL-8, TNF-α, TNF-β, IFN-1, TGF-β, and NF-kB. For the first time, our results demonstrated that acute exposure of PQ induced pulmonary toxicity which was followed by gastrointestinal and hepatic toxicity via neutrophil-mediated ROS in zebrafish. In summary, these findings generated here will contribute to our better understanding of characteristics of PQ acute poisoning and can provide valuable information on better PQ poisoning treatments, occupational disease prevention, and providing theoretical foundation for risk management measures.
Collapse
Affiliation(s)
- Hongcui Liu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yinyuan Mo
- Department of Pharmacology/Toxicology and Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - Shuyang Cai
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Quinlivan VH, Farber SA. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish. Front Endocrinol (Lausanne) 2017; 8:319. [PMID: 29209275 PMCID: PMC5701920 DOI: 10.3389/fendo.2017.00319] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
The developing zebrafish is a well-established model system for studies of energy metabolism, and is amenable to genetic, physiological, and biochemical approaches. For the first 5 days of life, nutrients are absorbed from its endogenous maternally deposited yolk. At 5 days post-fertilization, the yolk is exhausted and the larva has a functional digestive system including intestine, liver, gallbladder, pancreas, and intestinal microbiota. The transparency of the larval zebrafish, and the genetic and physiological similarity of its digestive system to that of mammals make it a promising system in which to address questions of energy homeostasis relevant to human health. For example, apolipoprotein expression and function is similar in zebrafish and mammals, and transgenic animals may be used to examine both the transport of lipid from yolk to body in the embryo, and the trafficking of dietary lipids in the larva. Additionally, despite the identification of many fatty acid and lipid transport proteins expressed by vertebrates, the cell biological processes that mediate the transport of dietary lipids from the intestinal lumen to the interior of enterocytes remain to be elucidated. Genetic tractability and amenability to live imaging and a range of biochemical methods make the larval zebrafish an ideal model in which to address open questions in the field of lipid transport, energy homeostasis, and nutrient metabolism.
Collapse
Affiliation(s)
- Vanessa H. Quinlivan
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
| | - Steven A. Farber
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
27
|
Baldwin WS, Boswell WT, Ginjupalli G, Litoff EJ. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus. NUCLEAR RECEPTOR RESEARCH 2017; 4. [PMID: 28804711 DOI: 10.11131/2017/101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The nuclear receptors (NRs) are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish) nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B), Rev-erb (NR1D), ROR (NR1F), COUPTF (NR2F), ERR (NR3B), RXR (NR2B), and to a lesser extent the NGF (NR4A), and NR3C steroid receptors (GR/AR). Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.
Collapse
Affiliation(s)
- William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634.,Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | | - Gautam Ginjupalli
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | | |
Collapse
|
28
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Phenotypically anchored transcriptome profiling of developmental exposure to the antimicrobial agent, triclosan, reveals hepatotoxicity in embryonic zebrafish. Toxicol Appl Pharmacol 2016; 308:32-45. [PMID: 27538710 DOI: 10.1016/j.taap.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 02/08/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent commonly found in a variety of personal care products and cosmetics. TCS readily enters the environment through wastewater and is detected in human plasma, urine, and breast milk due to its widespread use. Studies have implicated TCS as a disruptor of thyroid and estrogen signaling; therefore, research examining the developmental effects of TCS is warranted. In this study, we used embryonic zebrafish to investigate the developmental toxicity and potential mechanism of action of TCS. Embryos were exposed to graded concentrations of TCS from 6 to 120hours post-fertilization (hpf) and the concentration where 80% of the animals had mortality or morbidity at 120hpf (EC80) was calculated. Transcriptomic profiling was conducted on embryos exposed to the EC80 (7.37μM). We identified a total of 922 significant differentially expressed transcripts (FDR adjusted P-value≤0.05; fold change ≥2). Pathway and gene ontology enrichment analyses identified biological networks and transcriptional hubs involving normal liver functioning, suggesting TCS may be hepatotoxic in zebrafish. Tissue-specific gene enrichment analysis further supported the role of the liver as a target organ for TCS toxicity. We also examined the in vitro bioactivity profile of TCS reported by the ToxCast screening program. TCS had a diverse bioactivity profile and was a hit in 217 of the 385 assay endpoints we identified. We observed similarities in gene expression and hepatic steatosis assays; however, hit data for TCS were more concordant with the hypothesized CAR/PXR activity of TCS from rodent and human in vitro studies.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Office of Science Coordination and Policy (OSCP), Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
29
|
Osborne OJ, Mukaigasa K, Nakajima H, Stolpe B, Romer I, Philips U, Lynch I, Mourabit S, Hirose S, Lead JR, Kobayashi M, Kudoh T, Tyler CR. Sensory systems and ionocytes are targets for silver nanoparticle effects in fish. Nanotoxicology 2016; 10:1276-86. [DOI: 10.1080/17435390.2016.1206147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Olivia J. Osborne
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK,
| | - Katsuki Mukaigasa
- Faculty of Medicine, Molecular and Developmental Biology, University of Tsukuba, Tsukuba, Japan,
| | - Hitomi Nakajima
- Faculty of Medicine, Molecular and Developmental Biology, University of Tsukuba, Tsukuba, Japan,
| | - Bjorn Stolpe
- Department of Earth and Environmental Sciences, School of Geography, University of Birmingham, Birmingham, UK, and
| | - Isabella Romer
- Department of Earth and Environmental Sciences, School of Geography, University of Birmingham, Birmingham, UK, and
| | - Uzoma Philips
- Department of Earth and Environmental Sciences, School of Geography, University of Birmingham, Birmingham, UK, and
| | - Iseult Lynch
- Department of Earth and Environmental Sciences, School of Geography, University of Birmingham, Birmingham, UK, and
| | - Sulayman Mourabit
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK,
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Jamie R. Lead
- Department of Earth and Environmental Sciences, School of Geography, University of Birmingham, Birmingham, UK, and
| | - Makoto Kobayashi
- Faculty of Medicine, Molecular and Developmental Biology, University of Tsukuba, Tsukuba, Japan,
| | - Tetsuhiro Kudoh
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK,
| | - Charles R. Tyler
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK,
| |
Collapse
|
30
|
Martí-Solans J, Belyaeva OV, Torres-Aguila NP, Kedishvili NY, Albalat R, Cañestro C. Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate. Mol Biol Evol 2016; 33:2401-16. [PMID: 27406791 DOI: 10.1093/molbev/msw118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bloom of genomics is revealing gene loss as a pervasive evolutionary force generating genetic diversity that shapes the evolution of species. Outside bacteria and yeast, however, the understanding of the process of gene loss remains elusive, especially in the evolution of animal species. Here, using the dismantling of the retinoic acid metabolic gene network (RA-MGN) in the chordate Oikopleura dioica as a case study, we combine approaches of comparative genomics, phylogenetics, biochemistry, and developmental biology to investigate the mutational robustness associated to biased patterns of gene loss. We demonstrate the absence of alternative pathways for RA-synthesis in O. dioica, which suggests that gene losses of RA-MGN were not compensated by mutational robustness, but occurred in a scenario of regressive evolution. In addition, the lack of drastic phenotypic changes associated to the loss of RA-signaling provides an example of the inverse paradox of Evo-Devo. This work illustrates how the identification of patterns of gene coelimination-in our case five losses (Rdh10, Rdh16, Bco1, Aldh1a, and Cyp26)-is a useful strategy to recognize gene network modules associated to distinct functions. Our work also illustrates how the identification of survival genes helps to recognize neofunctionalization events and ancestral functions. Thus, the survival and extensive duplication of Cco and RdhE2 in O. dioica correlated with the acquisition of complex compartmentalization of expression domains in the digestive system and a process of enzymatic neofunctionalization of the Cco, while the surviving Aldh8 could be related to its ancestral housekeeping role against toxic aldehydes.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Nuria P Torres-Aguila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Sun Y, Zhang G, He Z, Wang Y, Cui J, Li Y. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae. Int J Nanomedicine 2016; 11:905-18. [PMID: 27022258 PMCID: PMC4788362 DOI: 10.2147/ijn.s100350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Copper oxide nanoparticles (CuO NPs) are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Gong Zhang
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Zizi He
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yajie Wang
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Jianlin Cui
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| | - Yuhao Li
- Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People's Republic of China
| |
Collapse
|
32
|
Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, Peng J. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet 2016; 12:e1005881. [PMID: 26901320 PMCID: PMC4764323 DOI: 10.1371/journal.pgen.1005881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/28/2016] [Indexed: 01/19/2023] Open
Abstract
Unlike mammals and birds, teleost fish undergo external embryogenesis, and therefore their embryos are constantly challenged by stresses from their living environment. These stresses, when becoming too harsh, will cause arrest of cell proliferation, abnormal cell death or senescence. Such organisms have to evolve a sophisticated anti-stress mechanism to protect the process of embryogenesis/organogenesis. However, very few signaling molecule(s) mediating such activity have been identified. liver-enriched gene 1 (leg1) is an uncharacterized gene that encodes a novel secretory protein containing a single domain DUF781 (domain of unknown function 781) that is well conserved in vertebrates. In the zebrafish genome, there are two copies of leg1, namely leg1a and leg1b. leg1a and leg1b are closely linked on chromosome 20 and share high homology, but are differentially expressed. In this report, we generated two leg1a mutant alleles using the TALEN technique, then characterized liver development in the mutants. We show that a leg1a mutant exhibits a stress-dependent small liver phenotype that can be prevented by chemicals blocking the production of reactive oxygen species. Further studies reveal that Leg1a binds to FGFR3 and mediates a novel anti-stress pathway to protect liver development through enhancing Erk activity. More importantly, we show that the binding of Leg1a to FGFR relies on the glycosylation at the 70th asparagine (Asn70 or N70), and mutating the Asn70 to Ala70 compromised Leg1’s function in liver development. Therefore, Leg1 plays a unique role in protecting liver development under different stress conditions by serving as a secreted signaling molecule/modulator. Although being challenged by stresses from their living environment during embryogenesis, teleost fish harbor a robust genetic program dictating liver development as long as any environmental change, including temperature or natural UV irradiation, is not detrimental. It is therefore of interest to explore the mechanism(s) behind this phenomenon. We showed that Liver-enriched gene 1 (Leg1) plays a unique role in protecting liver development under different stress conditions by serving as a secretory signaling molecule/modulator that binds to FGF receptor and activates the Erk signaling pathway. This finding may explain the adaption of teleost fish in coping with environmental changes.
Collapse
Affiliation(s)
- Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunxia Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| |
Collapse
|
33
|
Fraher D, Sanigorski A, Mellett N, Meikle P, Sinclair A, Gibert Y. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep 2016; 14:1317-1329. [DOI: 10.1016/j.celrep.2016.01.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/20/2015] [Accepted: 01/02/2016] [Indexed: 01/21/2023] Open
|
34
|
Lee HC, Lo HC, Lo DM, Su MY, Hu JR, Wu CC, Chang SN, Dai MS, Tsai C, Tsai HJ. Amiodarone Induces Overexpression of Similar to Versican b to Repress the EGFR/Gsk3b/Snail Signaling Axis during Cardiac Valve Formation of Zebrafish Embryos. PLoS One 2015; 10:e0144751. [PMID: 26650936 PMCID: PMC4674151 DOI: 10.1371/journal.pone.0144751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023] Open
Abstract
Although Amiodarone, a class III antiarrhythmic drug, inhibits zebrafish cardiac valve formation, the detailed molecular pathway is still unclear. Here, we proved that Amiodarone acts as an upstream regulator, stimulating similar to versican b (s-vcanb) overexpression at zebrafish embryonic heart and promoting cdh-5 overexpression by inhibiting snail1b at atrioventricular canal (AVC), thus blocking invagination of endocardial cells and, as a result, preventing the formation of cardiac valves. A closer investigation showed that an intricate set of signaling events ultimately caused the up-regulation of cdh5. In particular, we investigated the role of EGFR signaling and the activity of Gsk3b. It was found that knockdown of EGFR signaling resulted in phenotypes similar to those of Amiodarone-treated embryos. Since the reduced phosphorylation of EGFR was rescued by knockdown of s-vcanb, it was concluded that the inhibition of EGFR activity by Amiodarone is s-vcanb-dependent. Moreover, the activity of Gsk3b, a downstream effector of EGFR, was greatly increased in both Amiodarone-treated embryos and EGFR-inhibited embryos. Therefore, it was concluded that reduced EGFR signaling induced by Amiodarone treatment results in the inhibition of Snail functions through increased Gsk3b activity, which, in turn, reduces snail1b expression, leading to the up-regulation the cdh5 at the AVC, finally resulting in defective formation of valves. This signaling cascade implicates the EGFR/Gsk3b/Snail axis as the molecular basis for the inhibition of cardiac valve formation by Amiodarone.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Hao-Chan Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Dao-Ming Lo
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Mai-Yan Su
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Jia-Rung Hu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chin-Chieh Wu
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Sheng-Nan Chang
- Cardiovascular Center, National Taiwan University Hospital Yun Lin Branch, Yun Lin, Taiwan
| | - Ming-Shen Dai
- Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Chia‐Ti Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
- * E-mail: (H-JT); (C-TT)
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail: (H-JT); (C-TT)
| |
Collapse
|
35
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
36
|
Marandel L, Seiliez I, Véron V, Skiba-Cassy S, Panserat S. New insights into the nutritional regulation of gluconeogenesis in carnivorous rainbow trout (Oncorhynchus mykiss): a gene duplication trail. Physiol Genomics 2015; 47:253-63. [PMID: 25901068 DOI: 10.1152/physiolgenomics.00026.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 11/22/2022] Open
Abstract
The rainbow trout (Oncorhynchus mykiss) is considered to be a strictly carnivorous fish species that is metabolically adapted for high catabolism of proteins and low utilization of dietary carbohydrates. This species consequently has a "glucose-intolerant" phenotype manifested by persistent hyperglycemia when fed a high-carbohydrate diet. Gluconeogenesis in adult fish is also poorly, if ever, regulated by carbohydrates, suggesting that this metabolic pathway is involved in this specific phenotype. In this study, we hypothesized that the fate of duplicated genes after the salmonid-specific 4th whole genome duplication (Ss4R) may have led to adaptive innovation and that their study might provide new elements to enhance our understanding of gluconeogenesis and poor dietary carbohydrate use in this species. Our evolutionary analysis of gluconeogenic genes revealed that pck1, pck2, fbp1a, and g6pca were retained as singletons after Ss4r, while g6pcb1, g6pcb2, and fbp1b ohnolog pairs were maintained. For all genes, duplication may have led to sub- or neofunctionalization. Expression profiles suggest that the gluconeogenesis pathway remained active in trout fed a no-carbohydrate diet. When trout were fed a high-carbohydrate diet (30%), most of the gluconeogenic genes were non- or downregulated, except for g6pbc2 ohnologs, whose RNA levels were surprisingly increased. This study demonstrates that Ss4R in trout involved adaptive innovation via gene duplication and via the outcome of the resulting ohnologs. Indeed, maintenance of ohnologous g6pcb2 pair may contribute in a significant way to the glucose-intolerant phenotype of trout and may partially explain its poor use of dietary carbohydrates.
Collapse
Affiliation(s)
- Lucie Marandel
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique (INRA), Nutrition, Metabolism and Aquaculture Unit (UR1067), Saint-Pée-sur-Nivelle, France
| |
Collapse
|
37
|
Cox AG, Goessling W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 2015; 32:153-61. [PMID: 25863341 DOI: 10.1016/j.gde.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
The liver is an essential organ that plays a pivotal role in metabolism, digestion and nutrient storage. Major efforts have been made to develop zebrafish (Danio rerio) as a model system to study the pathways regulating hepatic growth during liver development and regeneration. Zebrafish offer unique advantages over other vertebrates including in vivo imaging at cellular resolution and the capacity for large-scale chemical and genetic screens. Here, we review the cellular and molecular mechanisms that regulate hepatic growth during liver development in zebrafish. We also highlight emerging evidence that developmental pathways are reactivated following liver injury to facilitate regeneration. Finally, we discuss how zebrafish have transformed drug discovery efforts and enabled the identification of drugs that stimulate hepatic growth and provide hepatoprotection in pre-clinical models of liver injury, with the ultimate goal of identifying novel therapeutic approaches to treat liver disease.
Collapse
Affiliation(s)
- Andrew G Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
38
|
Wang Y, Li WH, Li Z, Liu W, Zhou L, Gui JF. BMP and RA signaling cooperate to regulate Apolipoprotein C1 expression during embryonic development. Gene 2015; 554:196-204. [DOI: 10.1016/j.gene.2014.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
|
39
|
The C. elegans HGF/plasminogen-like protein SVH-1 has protease-dependent and -independent functions. Cell Rep 2014; 9:1628-1634. [PMID: 25464847 DOI: 10.1016/j.celrep.2014.10.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/14/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023] Open
Abstract
Hepatocyte growth factor (HGF) and fibrinolytic serine protease plasminogen may have evolved from a common ancestor in vertebrates. This has been hard to ascertain, as no ancestral form has been identified in other lineages. In Caenorhabditis elegans, an HGF/plasminogen-like protein SVH-1 regulates axon regeneration via the HGF receptor homolog SVH-2. In this study, we report that both the svh-1 and svh-2 genes are conserved in many invertebrates. We also show that SVH-1 has an additional function, independent of SVH-2, which controls larval growth. SVH-1 protease activity is essential for larval growth, but not for axon regeneration. Deletion of svh-1 causes abnormal accumulation of FBL-1 protein, an extracellular matrix (ECM) component fibulin, around the pharynx, and this growth defect is partially suppressed by FBL-1 depletion. These results suggest that SVH-1 acts as both a growth factor and a protease, and they also provide insights into the evolution of HGF/plasminogen in animals.
Collapse
|
40
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|
41
|
Abstract
The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
42
|
Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol 2013; 137:165-73. [PMID: 23376612 DOI: 10.1016/j.jsbmb.2013.01.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 01/23/2023]
Abstract
Zebrafish, Danio rerio, has long been used as a model organism in developmental biology. Nowadays, due to their advantages compared to other model animals, the fish gain popularity and are also increasingly used in endocrinology. This review focuses on an important aspect of endocrinology in zebrafish by summarizing the progress in steroid hormone related research. We present the state of the art of research on steroidogenesis, the action of steroid hormones, and steroid catabolism and cover the incremental usage of zebrafish as a test animal in endocrine disruption research. By this approach, we demonstrate that some aspects of steroid hormone research are well characterized (e.g., expression patterns of the genes involved), while other aspects such as functional analyses of enzymes, steroid hormone elimination, or the impact of steroid hormones on embryonic development or sex differentiation have not been extensively studied and are poorly understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Janina Tokarz
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
43
|
Wang Y, Xu S, Su Y, Ye B, Hua Z. Molecular characterization and expression analysis of complement component C9 gene in the whitespotted bambooshark, Chiloscyllium plagiosum. FISH & SHELLFISH IMMUNOLOGY 2013; 35:599-606. [PMID: 23684808 DOI: 10.1016/j.fsi.2013.04.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/10/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Complement system is known as highly sophisticated immune defense mechanism for antigen recognition as well as effector functions. Activation of the terminal pathway of the complement system leads to the assembly of terminal complement complexes (C5b-9), which induces the characteristic complement-mediated cytolysis. The lytic activity of shark complement involves functional analogues of mammalian C8 and C9. In this article, a full-length cDNA of C9 (CpC9) is identified from cartilaginous species, the whitespotted bambooshark, Chiloscyllium plagiosum by RACE. The CpC9 cDNA is 2263 bp in length, encoding a protein of 603 amino acids, which shares 42% and 43% identity with human and Xenopus C9 respectively. Through sequence alignment and comparative analysis, the CpC9 protein was found well conserved, with the typical modular architecture in TCCs and nearly unanimous cysteine composition from fish to mammal. Phylogenetic analysis places it in a clade with C9 orthologs in higher vertebrate and as a sister taxa to the Xenopus. Expression analysis revealed that CpC9 is constitutively highly expressed in shark liver, with much less or even undetectable expression in other tissues; demonstrating liver is the primary tissue for C9synthesis. To sum up, the structural conservation and distinctive phylogenetics might indicate the potentially vital role of CpC9 in shark immune response, though it remains to be confirmed by further study.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, No. 22 Hankou Rd, Gulou District, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
44
|
Tao T, Shi H, Huang D, Peng J. Def functions as a cell autonomous factor in organogenesis of digestive organs in zebrafish. PLoS One 2013; 8:e58858. [PMID: 23593122 PMCID: PMC3625206 DOI: 10.1371/journal.pone.0058858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/08/2013] [Indexed: 01/29/2023] Open
Abstract
Digestive organs originate from the endoderm. Morphogenesis of the digestive system is precisely controlled by multiple factors that dictate the cell fate and behavior so that the specific digestive organs are timely formed in the right place and develop into right size and structure. We showed previously that digestive organ expansion factor (def) is a gene whose expression is enriched in the liver, pancreas and intestine. Loss-of-function of def in the defhi429 mutant confers hypoplastic digestive organs partly due to alteration of expression of genes related to the p53 pathway. However, the molecular mechanism for the involvement of Def in the organogenesis of digestive organs is still largely unknown. For example, it is not known whether Def regulates specific pathways in a specific organ. To address this question, we generated four independent Tg(fabp10a:def) transgenic fish lines which over-expressed Def specifically in the liver. We characterized Tg-I, one of the transgenic lines, in detail with genetic, molecular and histological approaches. We found that Tg-I restored the liver but not exocrine pancreas and intestine development in the defhi429 mutant. However, Tg-I adult fish in the wild type (WT) background exhibits reduced liver-to-body ratio and all four transgenic lines conferred abnormal intrahepatic structure. Microarray data analysis showed that certain specific functional pathways were affected in the liver of Tg-I. These results demonstrate that Def functions in a cell autonomous manner during early liver development and aberrant Def protein expression might lead to disruption of the structural integrity of a normal adult liver.
Collapse
Affiliation(s)
- Ting Tao
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Shi
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Delai Huang
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
45
|
Zheng W, Xu H, Lam SH, Luo H, Karuturi RKM, Gong Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS One 2013; 8:e53562. [PMID: 23349717 PMCID: PMC3547925 DOI: 10.1371/journal.pone.0053562] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/29/2012] [Indexed: 01/02/2023] Open
Abstract
The liver is one of the most sex-dimorphic organs in both oviparous and viviparous animals. In order to understand the molecular basis of the difference between male and female livers, high-throughput RNA-SAGE (serial analysis of gene expression) sequencing was performed for zebrafish livers of both sexes and their transcriptomes were compared. Both sexes had abundantly expressed genes involved in translation, coagulation and lipid metabolism, consistent with the general function of the liver. For sex-biased transcripts, from in addition to the high enrichment of vitellogenin transcripts in spawning female livers, which constituted nearly 80% of total mRNA, it is apparent that the female-biased genes were mostly involved in ribosome/translation, estrogen pathway, lipid transport, etc, while the male-biased genes were enriched for oxidation reduction, carbohydrate metabolism, coagulation, protein transport and localization, etc. Sexual dimorphism on xenobiotic metabolism and anti-oxidation was also noted and it is likely that retinol x receptor (RXR) and liver x receptor (LXR) play central roles in regulating the sexual differences of lipid and cholesterol metabolisms. Consistent with high ribosomal/translational activities in the female liver, female-biased genes were significantly regulated by two important transcription factors, Myc and Mycn. In contrast, Male livers showed activation of transcription factors Ppargc1b, Hnf4a, and Stat4, which regulate lipid and glucose metabolisms and various cellular activities. The transcriptomic responses to sex hormones, 17β-estradiol (E2) or 11-keto testosterone (KT11), were also investigated in both male and female livers and we found that female livers were relatively insensitive to sex hormone disturbance, while the male livers were readily affected. E2 feminized male liver by up-regulating female-biased transcripts and down-regulating male-biased transcripts. The information obtained in this study provides comprehensive insights into the sexual dimorphism of zebrafish liver transcriptome and will facilitate further development of the zebrafish as a human liver disease model.
Collapse
Affiliation(s)
- Weiling Zheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Huaien Luo
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
46
|
Lin CH, Su CH, Tseng DY, Ding FC, Hwang PP. Action of vitamin D and the receptor, VDRa, in calcium handling in zebrafish (Danio rerio). PLoS One 2012; 7:e45650. [PMID: 23029160 PMCID: PMC3446910 DOI: 10.1371/journal.pone.0045650] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/20/2012] [Indexed: 12/19/2022] Open
Abstract
The purpose of the present study was to use zebrafish as a model to investigate how vitamin D and its receptors interact to control Ca2+ uptake function. Low-Ca2+ fresh water stimulated Ca2+ influx and expressions of epithelial calcium channel (ecac), vitamin D-25-hydroxylase (cyp2r1), vitamin D receptor a (vdra), and vdrb in zebrafish. Exogenous vitamin D increased Ca2+ influx and expressions of ecac and 25-hydroxyvitamin D3-24-hydroxylase (cyp24a1), but downregulated 1α-OHase (cyp27b1) with no effects on other Ca2+ transporters. Morpholino oligonucleotide knockdown of VDRa, but not VDRb, was found as a consequence of calcium uptake inhibition by knockdown of ecac, and ossification of vertebrae is impaired. Taken together, vitamin D-VDRa signaling may stimulate Ca2+ uptake by upregulating ECaC in zebrafish, thereby clarifying the Ca2+-handling function of only a VDR in teleosts. Zebrafish may be useful as a model to explore the function of vitamin D-VDR signaling in Ca2+ homeostasis and the related physiological processes in vertebrates.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
47
|
Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish. J Genet Genomics 2012; 39:451-62. [PMID: 23021545 DOI: 10.1016/j.jgg.2012.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
Abstract
Ribosome biogenesis in the nucleolus requires numerous nucleolar proteins and small non-coding RNAs. Among them is ribosome biogenesis factor Bms1, which is highly conserved from yeast to human. In yeast, Bms1 initiates ribosome biogenesis through recruiting Rcl1 to pre-ribosomes. However, little is known about the biological function of Bms1 in vertebrates. Here we report that Bms1 plays an essential role in zebrafish liver development. We identified a zebrafish bms1l(sq163) mutant which carries a T to A mutation in the gene bms1-like (bms1l). This mutation results in L(152) to Q(152) substitution in a GTPase motif in Bms1l. Surprisingly, bms1l(sq163) mutation confers hypoplasia specifically in the liver, exocrine pancreas and intestine after 3 days post-fertilization (dpf). Consistent with the bms1l(sq163) mutant phenotypes, whole-mount in situ hybridization (WISH) on wild type embryos showed that bms1l transcripts are abundant in the entire digestive tract and its accessory organs. Immunostaining for phospho-Histone 3 (P-H3) and TUNEL assay revealed that impairment of hepatoblast proliferation rather than cell apoptosis is one of the consequences of bms1l(sq163) giving rise to an under-developed liver. Therefore, our findings demonstrate that Bms1l is necessary for zebrafish liver development.
Collapse
|
48
|
Xu L, Yin W, Xia J, Peng M, Li S, Lin S, Pei D, Shu X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology 2012; 55:1985-93. [PMID: 22213104 DOI: 10.1002/hep.25560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 12/29/2022]
Abstract
UNLABELLED Sorting nexin (SNX) family proteins are best characterized for their abilities to regulate protein trafficking during processes such as endocytosis of membrane receptors, endosomal sorting, and protein degradation, but their in vivo functions remain largely unknown. We started to investigate the biological functions of SNXs using the zebrafish model. In this study, we demonstrated that SNX7 was essential for embryonic liver development. Hepatoblasts were specified normally, and the proliferation of these cells was not affected when SNX7 was knocked down by gene-specific morpholinos; however, they underwent massive apoptosis during the early budding stage. SNX7 mainly regulated the survival of cells in the embryonic liver and did not affect the viability of cells in other endoderm-derived organs. We further demonstrated that down-regulation of SNX7 by short interfering RNAs induced apoptosis in cell culture. At the molecular level, the cellular FLICE-like inhibitory protein (c-FLIP)/caspase 8 pathway was activated when SNX7 was down-regulated. Furthermore, overexpression of c-FLIP(S) was able to rescue the SNX7 knockdown-induced liver defect. CONCLUSION SNX7 is a liver-enriched antiapoptotic protein that is indispensable for the survival of hepatoblasts during zebrafish early embryogenesis.
Collapse
Affiliation(s)
- Liangliang Xu
- Laboratory of Stem Cell Biology, Department of Biological Sciences and Biotechnology, Institute of Biomedicine, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Niu X, Gao C, Jan Lo L, Luo Y, Meng C, Hong J, Hong W, Peng J. Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish. Dev Biol 2012; 367:197-207. [PMID: 22609279 DOI: 10.1016/j.ydbio.2012.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 04/12/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The Sec13-Sec31 heterotetramer serves as the outer coat in the COPII complex, which mediates protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Although it has been studied in depth in yeast and cultured cells, the role of COPII in organogenesis in a multicellular organism has not. We report here that a zebrafish sec13(sq198) mutant, which exhibits a phenotype of hypoplastic digestive organs, has a mutation in the sec13 gene. The mutant gene encodes a carboxyl-terminus-truncated Sec13 that loses its affinity to Sec31a, which leads to disintegration of the ER structure in various differentiated cells in sec13(sq198), including chondrocytes, intestinal epithelial cells and hepatocytes. Disruption of the ER structure activates an unfolded protein response that eventually causes the cells to undergo cell-cycle arrest and cell apoptosis, which arrest the growth of developing digestive organs in the mutant. Our data provide the first direct genetic evidence that COPII function is essential for the organogenesis of the digestive system.
Collapse
Affiliation(s)
- Xubo Niu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zebrafish: a model for the study of addiction genetics. Hum Genet 2011; 131:977-1008. [PMID: 22207143 DOI: 10.1007/s00439-011-1128-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/11/2011] [Indexed: 12/20/2022]
Abstract
Drug abuse and dependence are multifaceted disorders with complex genetic underpinnings. Identifying specific genetic correlates is challenging and may be more readily accomplished by defining endophenotypes specific for addictive disorders. Symptoms and syndromes, including acute drug response, consumption, preference, and withdrawal, are potential endophenotypes characterizing addiction that have been investigated using model organisms. We present a review of major genes involved in serotonergic, dopaminergic, GABAergic, and adrenoreceptor signaling that are considered to be directly involved in nicotine, opioid, cannabinoid, and ethanol use and dependence. The zebrafish genome encodes likely homologs of the vast majority of these loci. We also review the known expression patterns of these genes in zebrafish. The information presented in this review provides support for the use of zebrafish as a viable model for studying genetic factors related to drug addiction. Expansion of investigations into drug response using model organisms holds the potential to advance our understanding of drug response and addiction in humans.
Collapse
|