1
|
Regulation of axonal EphA4 forward signaling is involved in the effect of EphA3 on chicken retinal ganglion cell axon growth during retinotectal mapping. Exp Eye Res 2019; 178:46-60. [DOI: 10.1016/j.exer.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
|
2
|
Secreted frizzled related proteins modulate pathfinding and fasciculation of mouse retina ganglion cell axons by direct and indirect mechanisms. J Neurosci 2015; 35:4729-40. [PMID: 25788689 DOI: 10.1523/jneurosci.3304-13.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retina ganglion cell (RGC) axons grow along a stereotyped pathway undergoing coordinated rounds of fasciculation and defasciculation, which are critical to establishing proper eye-brain connections. How this coordination is achieved is poorly understood, but shedding of guidance cues by metalloproteinases is emerging as a relevant mechanism. Secreted Frizzled Related Proteins (Sfrps) are multifunctional proteins, which, among others, reorient RGC growth cones by regulating intracellular second messengers, and interact with Tolloid and ADAM metalloproteinases, thereby repressing their activity. Here, we show that the combination of these two functions well explain the axon guidance phenotype observed in Sfrp1 and Sfrp2 single and compound mouse mutant embryos, in which RGC axons make subtle but significant mistakes during their intraretinal growth and inappropriately defasciculate along their pathway. The distribution of Sfrp1 and Sfrp2 in the eye is consistent with the idea that Sfrp1/2 normally constrain axon growth into the fiber layer and the optic disc. Disheveled axon growth instead seems linked to Sfrp-mediated modulation of metalloproteinase activity. Indeed, retinal explants from embryos with different Sfrp-null alleles or explants overexpressing ADAM10 extend axons with a disheveled appearance, which is reverted by the addition of Sfrp1 or an ADAM10-specific inhibitor. This mode of growth is associated with an abnormal proteolytic processing of L1 and N-cadherin, two ADAM10 substrates previously implicated in axon guidance. We thus propose that Sfrps contribute to coordinate visual axon growth with a dual mechanism: by directly signaling at the growth cone and by regulating the processing of other relevant cues.
Collapse
|
3
|
Ortalli AL, Fiore L, Di Napoli J, Rapacioli M, Salierno M, Etchenique R, Flores V, Sanchez V, Carri NG, Scicolone G. EphA3 expressed in the chicken tectum stimulates nasal retinal ganglion cell axon growth and is required for retinotectal topographic map formation. PLoS One 2012; 7:e38566. [PMID: 22685584 PMCID: PMC3369860 DOI: 10.1371/journal.pone.0038566] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/07/2012] [Indexed: 11/29/2022] Open
Abstract
Background Retinotopic projection onto the tectum/colliculus constitutes the most studied model of topographic mapping and Eph receptors and their ligands, the ephrins, are the best characterized molecular system involved in this process. Ephrin-As, expressed in an increasing rostro-caudal gradient in the tectum/colliculus, repel temporal retinal ganglion cell (RGC) axons from the caudal tectum and inhibit their branching posterior to their termination zones. However, there are conflicting data regarding the nature of the second force that guides nasal axons to invade and branch only in the caudal tectum/colliculus. The predominant model postulates that this second force is produced by a decreasing rostro-caudal gradient of EphA7 which repels nasal optic fibers and prevents their branching in the rostral tectum/colliculus. However, as optic fibers invade the tectum/colliculus growing throughout this gradient, this model cannot explain how the axons grow throughout this repellent molecule. Methodology/Principal Findings By using chicken retinal cultures we showed that EphA3 ectodomain stimulates nasal RGC axon growth in a concentration dependent way. Moreover, we showed that nasal axons choose growing on EphA3-expressing cells and that EphA3 diminishes the density of interstitial filopodia in nasal RGC axons. Accordingly, in vivo EphA3 ectodomain misexpression directs nasal optic fibers toward the caudal tectum preventing their branching in the rostral tectum. Conclusions We demonstrated in vitro and in vivo that EphA3 ectodomain (which is expressed in a decreasing rostro-caudal gradient in the tectum) is necessary for topographic mapping by stimulating the nasal axon growth toward the caudal tectum and inhibiting their branching in the rostral tectum. Furthermore, the ability of EphA3 of stimulating axon growth allows understanding how optic fibers invade the tectum growing throughout this molecular gradient. Therefore, opposing tectal gradients of repellent ephrin-As and of axon growth stimulating EphA3 complement each other to map optic fibers along the rostro-caudal tectal axis.
Collapse
Affiliation(s)
- Ana Laura Ortalli
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Luciano Fiore
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Jennifer Di Napoli
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Bioestructural Sciences, Favaloro University, Buenos Aires, Argentina
| | - Marcelo Salierno
- Department of Inorganic, Analytical and Physical Chemistry (INQUIMAE), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Roberto Etchenique
- Department of Inorganic, Analytical and Physical Chemistry (INQUIMAE), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Vladimir Flores
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- Interdisciplinary Group in Theoretical Biology, Department of Bioestructural Sciences, Favaloro University, Buenos Aires, Argentina
| | - Viviana Sanchez
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | - Gabriel Scicolone
- Laboratory of Developmental Neurobiology, Institute of Cell Biology and Neurosciences “Prof. E. De Robertis” (UBA-CONICET), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
4
|
Alfano G, Conte I, Caramico T, Avellino R, Arnò B, Pizzo MT, Tanimoto N, Beck SC, Huber G, Dollé P, Seeliger MW, Banfi S. Vax2 regulates retinoic acid distribution and cone opsin expression in the vertebrate eye. Development 2010; 138:261-71. [PMID: 21148184 DOI: 10.1242/dev.051037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2(-/-) mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain- and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
Collapse
Affiliation(s)
- Giovanna Alfano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kobayashi T, Yasuda K, Araki M. Generation of a second eye by embryonic transplantation of the antero-ventral hemicephalon. Dev Growth Differ 2009; 51:723-33. [DOI: 10.1111/j.1440-169x.2009.01132.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Behesti H, Papaioannou VE, Sowden JC. Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Dev Biol 2009; 333:360-72. [PMID: 19576202 DOI: 10.1016/j.ydbio.2009.06.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 01/05/2023]
Abstract
Tbx2 is a T-box transcription factor gene that is dynamically expressed in the presumptive retina during optic vesicle invagination. Several findings implicate Tbx2 in cell cycle regulation, including its overexpression in tumours and regulation of proliferation during heart development. We investigated the role of Tbx2 in optic cup formation by analysing mice with a targeted homozygous mutation in Tbx2. Loss of Tbx2 caused a reduced presumptive retinal volume due to increased apoptosis, and a delay in ventral optic vesicle invagination leading to the formation of small and abnormally shaped optic cups. Tbx2 is essential for maintenance, but not induction of expression of the dorsal retinal determinant, Tbx5, and acts downstream of Bmp4, a dorsally expressed gene implicated in human microphthalmia. The small retina showed a hypocellular ventral region, loss of Fgf15, normally expressed in proliferating central retinal cells, and increased numbers of mitotic cells in the dorsal region, indicating that Tbx2 is required for normal growth and development across the D-V axis. Dorsal expression of potential regulators of retinal growth, Cyp1b1 and Cx43, and the topographic guidance molecule ephrinB2, was increased, and intraretinal axons were disorganised resulting in a failure of optic nerve formation. Our data provide evidence that Tbx2 is required for proper optic cup formation and plays a critical early role in regulating regional retinal growth and the acquisition of shape during optic vesicle invagination.
Collapse
Affiliation(s)
- Hourinaz Behesti
- Developmental Biology Unit, UCL Institute of Child Health, University College London, London, WC1N 1EH, UK
| | | | | |
Collapse
|
7
|
Scicolone G, Ortalli AL, Carri NG. Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res Bull 2009; 79:227-47. [PMID: 19480983 DOI: 10.1016/j.brainresbull.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 02/16/2009] [Accepted: 03/24/2009] [Indexed: 01/06/2023]
Abstract
Cellular and molecular mechanisms involved in the development of topographic ordered connections in the central nervous system (CNS) constitute a key issue in neurobiology because neural connectivities are the base of the CNS normal function. We discuss the roles of the Eph/ephrin system in the establishment of retinotopic projections onto the tectum/colliculus, the most detailed studied model of topographic mapping. The expression patterns of Ephs and ephrins in opposing gradients both in the retina and the tectum/colliculus, label the local addresses on the target and give specific sensitivities to growth cones according to their topographic origin in the retina. We postulate that the highest levels of these gradients could signal both the entry as well as the limiting boundaries of the target. Since Ephs and ephrins are membrane-bound molecules, they may function as both receptors and ligands producing repulsive or attractant responses according to their microenvironment and play central roles in a variety of developmental events such as axon guidance, synapse formation and remodeling. Due to different experimental approaches and the inherent species-specific differences, some results appear contradictory and should be reanalyzed. Nevertheless, these studies about the roles of the Eph/ephrin system in retinotectal/collicular mapping support general principles in order to understand CNS development and could be useful to design regeneration therapies.
Collapse
Affiliation(s)
- Gabriel Scicolone
- Institute of Cell Biology and Neuroscience "Prof. E. De Robertis", School of Medicine, University of Buenos Aires, 1121 Buenos Aires, Argentina.
| | | | | |
Collapse
|
8
|
Abstract
The mid-hindbrain boundary (MHB) harbors an important organizing center for the adjacent brain regions. Here, we present evidence that the receptor protein tyrosine phosphatase lambda (RPTPlambda) is part of the complex molecular network that maintains and shapes the MHB region. RPTPlambda is expressed in a tight band of cells in the caudal midbrain, anterior to the transverse ring of Wnt1 expression. Forced expression of RPTPlambda across the mid-hindbrain region repressed expression of Wnt1, whereas RNA interference-mediated knock-down of RPTPlambda resulted in expansion and distortion of the Wnt1 domain. When ectopically expressed in the mesencephalon, RPTPlambda specifically inhibited the induction of Wnt1 expression after subsequent stimulation with Fgf8. Reduced Wnt1 expression after RPTPlambda transfection correlated with a decrease in Ras- mitogen-activated protein kinase activity at the MHB. We further show that in the embryonic midbrain, RPTPlambda can bind to beta-catenin, a central component of the canonical Wnt signaling pathway. Overexpression of RPTPlambda suppressed the activity of a beta-catenin responsive promoter in the midbrain and reduced progenitor cell proliferation. Cotransfection of Wnt1 or of a stabilized form of beta-catenin together with RPTPlambda partially rescued the RPTPlambda-mediated proliferation defect. Together, these data suggest that RPTPlambda may play a dual role in the control of midbrain development: as a negative modulator of Fgf8-induced Wnt1 expression at the MHB, which may help to confine the Wnt1 domain to it characteristic tight ring at the MHB; and as an inhibitor of canonical Wnt signaling through interaction with and presumably sequestration of beta-catenin.
Collapse
|
9
|
Regulation of RALDH‐1, RALDH‐3 and CYP26A1 by transcription factors cVax/Vax2 and Tbx5 in the embryonic chick retina. Int J Dev Neurosci 2008; 26:435-45. [DOI: 10.1016/j.ijdevneu.2008.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 12/22/2022] Open
|
10
|
Schulte D, Bumsted-O'Brien KM. Molecular mechanisms of vertebrate retina development: Implications for ganglion cell and photoreceptor patterning. Brain Res 2008; 1192:151-64. [PMID: 17553468 DOI: 10.1016/j.brainres.2007.04.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/05/2007] [Accepted: 04/20/2007] [Indexed: 12/20/2022]
Abstract
Although the neural retina appears as a relatively uniform tissue when viewed from its surface, it is in fact highly patterned along its anterior-posterior and dorso-ventral axes. The question of how and when such patterns arise has been the subject of intensive investigations over several decades. Most studies aimed at understanding retinal pattern formation have used the retinotectal map, the ordered projections of retinal ganglion cells to the brain, as a functional readout of the pattern. However, other cell types are also topographically organized in the retina. The most commonly recognized example of such a topographic cellular organization is the differential distribution of photoreceptor types across the retina. Photoreceptor patterns are highly species-specific and may represent an important adaptation to the visual niche a given species occupies. Nevertheless, few studies have addressed this functional readout of pattern to date and our understanding of its development has remained superficial. Here, we review recent advances in understanding the molecular cascades that control regionalization of the eye anlage, relate these findings to the development of photoreceptor patterns and discuss common and unique strategies involved in both aspects of retinal pattern formation.
Collapse
Affiliation(s)
- Dorothea Schulte
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Deutschordenst. 46, D-60218 Frankfurt, Germany.
| | | |
Collapse
|
11
|
Bao ZZ. Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation. Brain Res 2007; 1192:165-77. [PMID: 17320832 PMCID: PMC2267003 DOI: 10.1016/j.brainres.2007.01.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/19/2023]
Abstract
The initial step of retinal ganglion cell (RGC) axon pathfinding involves directed growth of RGC axons toward the center of the retina, the optic disc, a process termed "intraretinal guidance". Due to the accessibility of the system, and with various embryological, molecular and genetic approaches, significant progress has been made in recent years toward understanding the mechanisms involved in the precise guidance of the RGC axons. As axons are extending from RGCs located throughout the retina, a multitude of factors expressed along with the differentiation wave are important for the guidance of the RGC axons. To ensure that the RGC axons are oriented correctly, restricted to the optic fiber layer (OFL) of the retina, and exit the eye properly, different sets of positive and negative factors cooperate in the process. Fasciculation mediated by a number of cell adhesion molecules (CAMs) and modulation of axonal response to guidance factors provide additional mechanisms to ensure proper guidance of the RGC axons. The intraretinal axon guidance thus serves as an excellent model system for studying how different signals are regulated, modulated and integrated for guiding a large number of axons in three-dimensional space.
Collapse
Affiliation(s)
- Zheng-Zheng Bao
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|