1
|
Yu Y, Hua X, Chen H, Wang Z, Han Y, Chen X, Yang Y, Xiang M. Glutamatergic transmission associated with locomotion-related neurotoxicity to lindane over generations in Caenorhabditis elegans. CHEMOSPHERE 2022; 290:133360. [PMID: 34929275 DOI: 10.1016/j.chemosphere.2021.133360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Organochlorine pesticide lindane in the environment and biota results in the potential risks on ecosystem and human health. Lindane can adversely affect the locomotion and nervous system, yet the potential neurotoxicity of lindane over generations remains uncertain. In this study, the neurotoxicity and underlying mechanisms in Caenorhabditis elegans (C. elegans) were investigated after parental (P0) exposure to lindane at environmentally relevant concentrations over generations. Exposure to lindane at concentrations of 10-100 ng/L significantly decreased body bends and head thrashes in P0 generation. Significant decrease of fluorescence labeled different neurotransmitters, and clear morphological changes by exposure to lindane at 10-100 ng/L suggested that lindane could induce the neuronal damage in C. elegans. During the transgenerational process, decreased locomotive behaviors were also observed in F1-F3 generations, and head thrashes returned to normal levels in F4 generation. Moreover, lindane exposure down-regulated the expression of dat-1, dop-1, glr-1 and mod-1genes, while up-regulated unc-30 gene in P0 generation, which recovered to normal levels in F4 generation. Interestingly, eat-4 continued to be regulated from inhibition to stimulation in P0-F4 generations, suggesting that glutamatergic transmission may more contribute to the neurotoxicity of lindane over generations.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Zhengdong Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
2
|
Ali ES, Girard D, Petrovsky N. Impaired Ca 2+ signaling due to hepatic steatosis mediates hepatic insulin resistance in Alström syndrome mice that is reversed by GLP-1 analog treatment. Am J Physiol Cell Physiol 2021; 321:C187-C198. [PMID: 34106786 DOI: 10.1152/ajpcell.00020.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ca2+ signaling plays a critical role in the regulation of hepatic metabolism by hormones including insulin. Changes in cytoplasmic Ca2+ regulate synthesis and posttranslational modification of key signaling proteins in the insulin pathways. Emerging evidence suggests that hepatocyte intracellular Ca2+ signaling is altered in lipid-loaded liver cells isolated from obese rodent models. The mechanisms of altered Ca2+-insulin and insulin-Ca2+ signaling pathways in obesity remain poorly understood. Here, we show that the kinetics of insulin-initiated intracellular (initial) Ca2+ release from endoplasmic reticulum is significantly impaired in steatotic hepatocytes from obese Alström syndrome mice. Furthermore, exenatide, a glucagon-like peptide-1 (GLP-1) analog, reversed lipid-induced inhibition of intracellular Ca2+ release kinetics in steatotic hepatocytes, without affecting the total content of intracellular Ca2+ released. Exenatide reversed the lipid-induced inhibition of intracellular Ca2+ release, at least partially, via lipid reduction in hepatocytes, which then restored hormone-regulated cytoplasmic Ca2+ signaling and insulin sensitivity. This data provides additional evidence for the important role of Ca2+ signaling pathways in obesity-associated impaired hepatic lipid homeostasis and insulin signaling. It also highlights a potential advantage of GLP-1 analogs when used to treat type 2 diabetes associated with hepatic steatosis.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Vaxine Pty Ltd, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Cao X, Wang X, Chen H, Li H, Tariq M, Wang C, Zhou Y, Liu Y. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:947-957. [PMID: 30469289 DOI: 10.1016/j.envpol.2018.09.140] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 05/27/2023]
Abstract
The present study was performed to evaluate the neurobehavioural deficit induced by nonylphenol (NP), a well-known xenobiotic chemical. The neurotoxic mechanism from oxidative stress and serotonin-related progress was also investigated. Caenorhabditis elegans was exposed at different levels of NP ranging from 0 to 200 μg L-1 for 10 days. The results revealed that from a relatively low concentration (i.e., 10 μg L-1), significant effects including decreased head thrashes, body bends and forging behaviour could be observed, along with impaired learning and memory behaviour plasticity. The level of reactive oxygen species (ROS) in head was significantly elevated with the increase of NP concentrations from 10 to 200 μg L-1. Through antioxidant experiment, the oxidative damage caused by NP restored to some extent. At a NP concentration of 200 μg L-1, the significant increased expression of stress-related genes, including sod-1, sod-3, ctl-2, ctl-3 and cyp-35A2 gene, was observed from integrated gene expression profiles. In addition, in comparison with wild-type N2 worms, the ROS accumulation was increased significantly with the mutation of sod-3. Tryptophan hydroxylase (TPH) in ADF and NSM neurons sharply decreased at the concentrations of 10-200 μg L-1. The transcription of TPH synthesis-related genes and serotonin-related genes were both suppressed, including tph-1, cat-1, cat-4, ser-1, and mod-5. Overall, these results indicated that NP could induce neurotoxicity on Caenorhabditis elegans through excessive induction of ROS and disturbance synthesis of serotonin. The conducted research opened up new avenues for more effective exploration of neurotoxicity caused by NP.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Wang S, Chu Z, Zhang K, Miao G. Cadmium-induced serotonergic neuron and reproduction damages conferred lethality in the nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 213:11-18. [PMID: 30205271 DOI: 10.1016/j.chemosphere.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/19/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cadmium is a ubiquitous environmental toxicant. The use of Caenorhabditis elegans as a model for monitoring cadmium exposure has revealed several conserved signaling pathways. However, little is known about the killing process during lethality assay. In the present study, we investigated the effects serotonergic neuronal and reproductive damages on cadmium exposure in C. elegans. We found that sterile hermaphrodites, males and worms that passed reproduction span presented high cadmium resistance compared to those of young adults. The results demonstrated that reproduction process other than reproduction capacity conferred cadmium sensitivity. Cadmium exposure resulted in high ratio bagging phenotype, which was a severe reproductive deficit with embryos hatched internally that could cause worms to die early. The mechanism of bagging formation was ascribed to cadmium-induced egg laying deficiency that led embryos to retain and hatch in uterus. The addition of serotonin and imipramine promoted egg laying and thereby increased cadmium resistance. The results demonstrated that vulval muscles responsible for egg laying were still functional, while the serotonergic hermaphrodite specific neurons might be dysfunctional under cadmium exposure. Cadmium exposure resulted in shrinkage of serotonergic neuronal body and reduced expressions of tryptophan hydroxylase, the key enzyme for serotonin synthesis. The protection of serotonergic neuron through transient thermal preconditioning improved survival rate. In conclusion, our study demonstrated that damages of serotonergic neurons and reproduction conferred to cadmium-induced lethality.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China.
| | - Zhaoxia Chu
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| | - Guopeng Miao
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
5
|
Ponesakki V, Paul S, Mani DKS, Rajendiran V, Kanniah P, Sivasubramaniam S. Annotation of nerve cord transcriptome in earthworm Eisenia fetida. GENOMICS DATA 2017; 14:91-105. [PMID: 29204349 PMCID: PMC5688751 DOI: 10.1016/j.gdata.2017.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/02/2017] [Accepted: 10/07/2017] [Indexed: 11/26/2022]
Abstract
In annelid worms, the nerve cord serves as a crucial organ to control the sensory and behavioral physiology. The inadequate genome resource of earthworms has prioritized the comprehensive analysis of their transcriptome dataset to monitor the genes express in the nerve cord and predict their role in the neurotransmission and sensory perception of the species. The present study focuses on identifying the potential transcripts and predicting their functional features by annotating the transcriptome dataset of nerve cord tissues prepared by Gong et al., 2010 from the earthworm Eisenia fetida. Totally 9762 transcripts were successfully annotated against the NCBI nr database using the BLASTX algorithm and among them 7680 transcripts were assigned to a total of 44,354 GO terms. The conserve domain analysis indicated the over representation of P-loop NTPase domain and calcium binding EF-hand domain. The COG functional annotation classified 5860 transcript sequences into 25 functional categories. Further, 4502 contig sequences were found to map with 124 KEGG pathways. The annotated contig dataset exhibited 22 crucial neuropeptides having considerable matches to the marine annelid Platynereis dumerilii, suggesting their possible role in neurotransmission and neuromodulation. In addition, 108 human stem cell marker homologs were identified including the crucial epigenetic regulators, transcriptional repressors and cell cycle regulators, which may contribute to the neuronal and segmental regeneration. The complete functional annotation of this nerve cord transcriptome can be further utilized to interpret genetic and molecular mechanisms associated with neuronal development, nervous system regeneration and nerve cord function.
Collapse
Affiliation(s)
| | | | | | | | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu 627012, India
| |
Collapse
|
6
|
Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in Caenorhabditis elegans. J Neurosci 2017; 37:7811-7823. [PMID: 28698386 DOI: 10.1523/jneurosci.2636-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 07/01/2017] [Indexed: 11/21/2022] Open
Abstract
Biogenic amines are conserved signaling molecules that link food cues to behavior and metabolism in a wide variety of organisms. In the nematode Caenorhabditis elegans, the biogenic amines serotonin (5-HT) and octopamine regulate a number of food-related behaviors. Using a novel method for long-term quantitative behavioral imaging, we show that 5-HT and octopamine jointly influence locomotor activity and quiescence in feeding and fasting hermaphrodites, and we define the neural circuits through which this modulation occurs. We show that 5-HT produced by the ADF neurons acts via the SER-5 receptor in muscles and neurons to suppress quiescent behavior and promote roaming in fasting worms, whereas 5-HT produced by the NSM neurons acts on the MOD-1 receptor in AIY neurons to promote low-amplitude locomotor behavior characteristic of well fed animals. Octopamine, produced by the RIC neurons, acts via SER-3 and SER-6 receptors in SIA neurons to promote roaming behaviors characteristic of fasting animals. We find that 5-HT signaling is required for animals to assume food-appropriate behavior, whereas octopamine signaling is required for animals to assume fasting-appropriate behavior. The requirement for both neurotransmitters in both the feeding and fasting states enables increased behavioral adaptability. Our results define the molecular and neural pathways through which parallel biogenic amine signaling tunes behavior appropriately to nutrient conditions.SIGNIFICANCE STATEMENT Animals adjust behavior in response to environmental changes, such as fluctuations in food abundance, to maximize survival and reproduction. Biogenic amines, such as like serotonin, are conserved neurotransmitters that regulate behavior and metabolism in relation to energy status. Disruptions of biogenic amine signaling contribute to human neurological diseases of mood, appetite, and movement. In this study, we investigated the roles of the biogenic amines serotonin and octopamine in regulating locomotion behaviors associated with feeding and fasting in the roundworm Caenorhabditis elegans We identified neural circuits through which these signals work to govern behavior. Understanding the molecular pathways through which biogenic amines function in model organisms may improve our understanding of dysfunctions of appetite and behavior found in mammals, including humans.
Collapse
|
7
|
Pereira MDC, Morais S, Sequeiros J, Alonso I. Large-Scale Functional RNAi Screen in C. elegans Identifies TGF-β and Notch Signaling Pathways as Modifiers of CACNA1A. ASN Neuro 2016; 8:8/2/1759091416637025. [PMID: 27005779 PMCID: PMC4811018 DOI: 10.1177/1759091416637025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/31/2016] [Indexed: 01/02/2023] Open
Abstract
Variants in CACNA1A that encodes the pore-forming α1-subunit of human voltage-gated Cav2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1, episodic ataxia type 2, and spinocerebellar ataxia type 6. To identify modifiers of incoordination in movement disorders, we performed a large-scale functional RNAi screen, using the Caenorhabditis elegans strain CB55, which carries a truncating mutation in the unc-2 gene, the worm ortholog for the human CACNA1A. The screen was carried out by the feeding method in 96-well liquid culture format, using the ORFeome v1.1 feeding library, and time-lapse imaging of worms in liquid culture was used to assess changes in thrashing behavior. We looked for genes that, when silenced, either ameliorated the slow and uncoordinated phenotype of unc-2, or interacted to produce a more severe phenotype. Of the 350 putative hits from the primary screen, 37 genes consistently showed reproducible results. At least 75% of these are specifically expressed in the C. elegans neurons. Functional network analysis and gene ontology revealed overrepresentation of genes involved in development, growth, locomotion, signal transduction, and vesicle-mediated transport. We have expanded the functional network of genes involved in neurodegeneration leading to cerebellar ataxia related to unc-2/CACNA1A, further confirming the involvement of the transforming growth factor β pathway and adding a novel signaling cascade, the Notch pathway.
Collapse
Affiliation(s)
- Maria da Conceição Pereira
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Sara Morais
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal CGPP, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal
| | - Isabel Alonso
- UnIGENe, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, Portugal CGPP, Institute for Molecular and Cell Biology (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Portugal
| |
Collapse
|
8
|
Anderson A, McMullan R. From head to tail it's a 2 way street for neuro-immune communication. WORM 2014; 3:e959425. [PMID: 26430547 PMCID: PMC4588538 DOI: 10.4161/21624046.2014.959425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022]
Abstract
Animals need to be able to rapidly and effectively respond to changes in their external and internal environment. To achieve this the nervous and immune systems need to coordinate their responses, integrating multiple cues including presence of potential pathogens, and availability of food. In our recent study (1) we demonstrate that signaling by sensory neurons in the head using the classical neurotransmitter serotonin can negatively regulate the rectal epithelial immune response upon infection of C. elegans with the naturally occurring bacterial pathogen Microbacterium nematophilum (M. nematophilum). The complicated nature of the mammalian brain and immune system has made it difficult to identify the molecular mechanisms mediating these interactions. With its simple, well described, nervous system and a rapidly growing understanding of its immune system, C. elegans has emerged as an excellent model to study the mechanisms by which animals recognize pathogens and coordinate behavioral and cellular immune responses to infection.
Collapse
Affiliation(s)
- A Anderson
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| | - R McMullan
- Department of Life Sciences; Imperial College London; South Kensington Campus ; London, UK
| |
Collapse
|
9
|
Dwyer DS, Aamodt E, Cohen B, Buttner EA. Drug elucidation: invertebrate genetics sheds new light on the molecular targets of CNS drugs. Front Pharmacol 2014; 5:177. [PMID: 25120487 PMCID: PMC4112795 DOI: 10.3389/fphar.2014.00177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/09/2014] [Indexed: 02/02/2023] Open
Abstract
Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents, and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.
Collapse
Affiliation(s)
- Donard S. Dwyer
- Department of Psychiatry–Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Eric Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center-ShreveportShreveport, LA, USA
| | - Bruce Cohen
- Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA
- Mailman Research Center, McLean HospitalBelmont, MA, USA
| | - Edgar A. Buttner
- Mailman Research Center, McLean HospitalBelmont, MA, USA
- Department of Neurology–Department of Psychiatry, McLean Hospital, Harvard Medical SchoolBelmont, MA, USA
| |
Collapse
|
10
|
Dwyer DS, Weeks K, Aamodt EJ. Drug discovery based on genetic and metabolic findings in schizophrenia. Expert Rev Clin Pharmacol 2014; 1:773-89. [PMID: 24410607 DOI: 10.1586/17512433.1.6.773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.
Collapse
Affiliation(s)
- Donard S Dwyer
- Professor and Director of Basic Research, Departments of Psychiatry and Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
11
|
Anderson A, McMullan R. From head to tail it's a two way street for neuro-immune communication. WORM 2014. [DOI: 10.4161/worm.29735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Lee H, Crane MM, Zhang Y, Lu H. Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm. Integr Biol (Camb) 2013; 5:372-80. [PMID: 23168494 DOI: 10.1039/c2ib20078c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Forward genetic screening via mutagenesis is a powerful method for identifying regulatory factors in target pathways in model organisms such as the soil-dwelling free-living nematode Caenorhabditis elegans (C. elegans). Currently manual microscopy is the standard technique for conducting such screens; however, it is labor-intensive and time-consuming because screening requires imaging thousands of animals. Recently microfluidic chips have been developed to increase the throughput of some of such experiments; nonetheless, most of these chips are multilayer devices and complicated to fabricate and therefore prone to failure during fabrication and operation. In addition, most sorting decisions are made manually and the criteria used for sorting are subjective. To overcome these limitations, we developed a simple single-layer microfluidic device and an adaptive algorithm to make sorting decisions. The one-layer device greatly improves the reliability, while quantitative analysis with the adaptive algorithm allows for the identification of mutations that generate subtle changes in expression, which would have been hard to detect by eye. The screening criterion is set based on the mutagenized population, not separate control populations measured prior to actual screening experiments, to account for stochasticity and day-to-day variations of gene expression in mutagenized worms. Moreover, during each experiment, the threshold is constantly updated to reflect the balance between maximizing sorting rate and minimizing false-positive rate. Using this system, we screened for mutants that have altered expression levels of tryptophan hydroxylase, a key enzyme for serotonin synthesis in a CaMKII gain-of-function background. We found several putative mutants in this screen. Furthermore, this microfluidic system and quantitative analysis can be easily adapted to study other pathways in C. elegans.
Collapse
Affiliation(s)
- Hyewon Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr NW, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
13
|
A neuronal signaling pathway of CaMKII and Gqα regulates experience-dependent transcription of tph-1. J Neurosci 2013; 33:925-35. [PMID: 23325232 DOI: 10.1523/jneurosci.2355-12.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dynamic serotonin biosynthesis is important for serotonin function; however, the mechanisms that underlie experience-dependent transcriptional regulation of the rate-limiting serotonin biosynthetic enzyme tryptophan hydroxylase (TPH) are poorly understood. Here, we characterize the molecular and cellular mechanisms that regulate increased transcription of Caenorhabditis elegans tph-1 in a pair of serotonergic neurons ADF during an aversive experience with pathogenic bacteria, a common environmental peril for worms. Training with pathogenic bacteria induces a learned aversion to the smell of the pathogen, a behavioral plasticity that depends on the serotonin signal from ADF neurons. We demonstrate that pathogen training increases ADF neuronal activity. While activating ADF increases tph-1 transcription, inhibiting ADF activity abolishes the training effect on tph-1, demonstrating the dependence of tph-1 transcriptional regulation on ADF neural activity. At the molecular level, the C. elegans homolog of CaMKII, UNC-43, functions cell-autonomously in ADF neurons to generate training-dependent enhancement in neuronal activity and tph-1 transcription, and this cell-autonomous function of UNC-43 is required for learning. Furthermore, selective expression of an activated form of UNC-43 in ADF neurons is sufficient to increase ADF activity and tph-1 transcription, mimicking the training effect. Upstream of ADF, the Gqα protein EGL-30 facilitates training-dependent induction of tph-1 by functional regulation of olfactory sensory neurons, which underscores the importance of sensory experience. Together, our work elucidates the molecular and cellular mechanisms whereby experience modulates tph-1 transcription.
Collapse
|
14
|
Menon R, Gasser RB, Mitreva M, Ranganathan S. An analysis of the transcriptome of Teladorsagia circumcincta: its biological and biotechnological implications. BMC Genomics 2012; 13 Suppl 7:S10. [PMID: 23282110 PMCID: PMC3521389 DOI: 10.1186/1471-2164-13-s7-s10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Teladorsagia circumcincta (order Strongylida) is an economically important parasitic nematode of small ruminants (including sheep and goats) in temperate climatic regions of the world. Improved insights into the molecular biology of this parasite could underpin alternative methods required to control this and related parasites, in order to circumvent major problems associated with anthelmintic resistance. The aims of the present study were to define the transcriptome of the adult stage of T. circumcincta and to infer the main pathways linked to molecules known to be expressed in this nematode. Since sheep develop acquired immunity against T. circumcincta, there is some potential for the development of a vaccine against this parasite. Hence, we infer excretory/secretory molecules for T. circumcincta as possible immunogens and vaccine candidates. RESULTS A total of 407,357 ESTs were assembled yielding 39,852 putative gene sequences. Conceptual translation predicted 24,013 proteins, which were then subjected to detailed annotation which included pathway mapping of predicted proteins (including 112 excreted/secreted [ES] and 226 transmembrane peptides), domain analysis and GO annotation was carried out using InterProScan along with BLAST2GO. Further analysis was carried out for secretory signal peptides using SignalP and non-classical sec pathway using SecretomeP tools. For ES proteins, key pathways, including Fc epsilon RI, T cell receptor, and chemokine signalling as well as leukocyte transendothelial migration were inferred to be linked to immune responses, along with other pathways related to neurodegenerative diseases and infectious diseases, which warrant detailed future studies. KAAS could identify new and updated pathways like phagosome and protein processing in endoplasmic reticulum. Domain analysis for the assembled dataset revealed families of serine, cysteine and proteinase inhibitors which might represent targets for parasite intervention. InterProScan could identify GO terms pertaining to the extracellular region. Some of the important domain families identified included the SCP-like extracellular proteins which belong to the pathogenesis-related proteins (PRPs) superfamily along with C-type lectin, saposin-like proteins. The 'extracellular region' that corresponds to allergen V5/Tpx-1 related, considered important in parasite-host interactions, was also identified. Six cysteine motif (SXC1) proteins, transthyretin proteins, C-type lectins, activation-associated secreted proteins (ASPs), which could represent potential candidates for developing novel anthelmintics or vaccines were few other important findings. Of these, SXC1, protein kinase domain-containing protein, trypsin family protein, trypsin-like protease family member (TRY-1), putative major allergen and putative lipid binding protein were identified which have not been reported in the published T. circumcincta proteomics analysis. Detailed analysis of 6,058 raw EST sequences from dbEST revealed 315 putatively secreted proteins. Amongst them, C-type single domain activation associated secreted protein ASP3 precursor, activation-associated secreted proteins (ASP-like protein), cathepsin B-like cysteine protease, cathepsin L cysteine protease, cysteine protease, TransThyretin-Related and Venom-Allergen-like proteins were the key findings. CONCLUSIONS We have annotated a large dataset ESTs of T. circumcincta and undertaken detailed comparative bioinformatics analyses. The results provide a comprehensive insight into the molecular biology of this parasite and disease manifestation which provides potential focal point for future research. We identified a number of pathways responsible for immune response. This type of large-scale computational scanning could be coupled with proteomic and metabolomic studies of this parasite leading to novel therapeutic intervention and disease control strategies. We have also successfully affirmed the use of bioinformatics tools, for the study of ESTs, which could now serve as a benchmark for the development of new computational EST analysis pipelines.
Collapse
Affiliation(s)
- Ranjeeta Menon
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
15
|
Abstract
This review will summarize recent findings concerning the biological regulation of starvation as it relates to anorexia nervosa (AN), a serious eating disorder that mainly affects female adolescents and young adults. AN is generally viewed as a psychosomatic disorder mediated by obsessive concerns about weight, perfectionism and an overwhelming desire to be thin. By contrast, the thesis that will be developed here is that, AN is primarily a metabolic disorder caused by defective regulation of the starvation response, which leads to ambivalence towards food, decreased food consumption and characteristic psychopathology. We will trace the starvation response from yeast to man and describe the central role of insulin (and insulin-like growth factor-1 (IGF-1))/Akt/ F-box transcription factor (FOXO) signaling in this response. Akt is a serine/threonine kinase downstream of the insulin and IGF-1 receptors, whereas FOXO refers to the subfamily of Forkhead box O transcription factors, which are regulated by Akt. We will also discuss how initial bouts of caloric restriction may alter the production of neurotransmitters that regulate appetite and food-seeking behavior and thus, set in motion a vicious cycle. Finally, an integrated approach to treatment will be outlined that addresses the biological aspects of AN.
Collapse
|
16
|
Weeks KR, Dwyer DS, Aamodt EJ. Antipsychotic drugs activate the C. elegans akt pathway via the DAF-2 insulin/IGF-1 receptor. ACS Chem Neurosci 2010; 1:463-73. [PMID: 22778838 DOI: 10.1021/cn100010p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/15/2010] [Indexed: 01/23/2023] Open
Abstract
The molecular modes of action of antipsychotic drugs are poorly understood beyond their effects at the dopamine D2 receptor. Previous studies have placed Akt signaling downstream of D2 dopamine receptors, and recent data have suggested an association between psychotic illnesses and defective Akt signaling. To characterize the effect of antipsychotic drugs on the Akt pathway, we used the model organism C. elegans, a simple system where the Akt/forkhead box O transcription factor (FOXO) pathway has been well characterized. All major classes of antipsychotic drugs increased signaling through the insulin/Akt/FOXO pathway, whereas four other drugs that are known to affect the central nervous system did not. The antipsychotic drugs inhibited dauer formation, dauer recovery, and shortened lifespan, three biological processes affected by Akt signaling. Genetic analysis showed that AKT-1 and the insulin and insulin-like growth factor receptor, DAF-2, were required for the antipsychotic drugs to increase signaling. Serotonin synthesis was partially involved, whereas the mitogen activated protein kinase (MAPK), SEK-1 is a MAP kinase kinase (MAPKK), and calcineurin were not involved. This is the first example of a common but specific molecular effect produced by all presently known antipsychotic drugs in any biological system. Because untreated schizophrenics have been reported to have low levels of Akt signaling, increased Akt signaling might contribute to the therapeutic actions of antipsychotic drugs.
Collapse
Affiliation(s)
- Kathrine R. Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| | - Donard S. Dwyer
- Department of Psychiatry and Department of Pharmacology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, Louisiana 71130-3932
| |
Collapse
|
17
|
Massively parallel sequencing and analysis of the Necator americanus transcriptome. PLoS Negl Trop Dis 2010; 4:e684. [PMID: 20485481 PMCID: PMC2867931 DOI: 10.1371/journal.pntd.0000684] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022] Open
Abstract
Background The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. Methodology/Principal Findings A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). Conclusions This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A. duodenale, for both fundamental and applied purposes, including the prevalidation of anti-hookworm drug targets. The blood-feeding hookworm Necator americanus infects hundreds of millions of people. To elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of adult Necator americanus was studied using next-generation sequencing and in silico analyses. Contigs (n = 19,997) were assembled from the sequence data; 6,771 of them had known orthologues in the free-living nematode Caenorhabditis elegans, and most encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%). Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. Essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have human homologues. These candidate targets were inferred to be linked to mitochondrial metabolism or amino acid synthesis. This investigation provides detailed insights into the transcriptome of the adult stage of N. americanus.
Collapse
|
18
|
Cantacessi C, Campbell BE, Young ND, Jex AR, Hall RS, Presidente PJA, Zawadzki JL, Zhong W, Aleman-Meza B, Loukas A, Sternberg PW, Gasser RB. Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. BMC Genomics 2010; 11:266. [PMID: 20420710 PMCID: PMC2880303 DOI: 10.1186/1471-2164-11-266] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. RESULTS Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. CONCLUSION The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Jodi L Zawadzki
- Department of Primary Industries, Attwood, Victoria, Australia
| | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | | | - Alex Loukas
- James Cook University, Cairns, Queensland, Australia
| | - Paul W Sternberg
- Biology Division, California Institute of Technology, Pasadena, California, USA
| | - Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
19
|
Moussaif M, Sze JY. Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. J Neurosci 2009; 29:4065-75. [PMID: 19339602 PMCID: PMC2710879 DOI: 10.1523/jneurosci.0044-09.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 01/21/2023] Open
Abstract
Intraflagellar transport in cilia has been proposed as a crucial mediator of Hedgehog signal transduction during embryonic pattern formation in both vertebrates and invertebrates. Here, we show that the Hh receptor Patched-related factor DAF-6 and intraflagellar transport modulate serotonin production in Caenorhabditis elegans animals, by remodeling the architecture of dendritic cilia of a pair of ADF serotonergic chemosensory neurons. Wild-type animals under aversive environment drastically reduce DAF-6 expression in glia-like cells surrounding the cilia of chemosensory neurons, resulting in cilium structural remodeling and upregulation of the serotonin-biosynthesis enzyme tryptophan hydroxylase tph-1 in the ADF neurons. These cellular and molecular modifications are reversed when the environment improves. Mutants of daf-6 or intraflagellar transport constitutively upregulate tph-1 expression. Epistasis analyses indicate that DAF-6/intraflagellar transport and the OCR-2/OSM-9 TRPV channel act in concert, regulating two layers of activation of tph-1 in the ADF neurons. The TRPV signaling turns on tph-1 expression under favorable and aversive conditions, whereas inactivation of DAF-6 by stress results in further upregulation of tph-1 independently of OCR-2/OSM-9 activity. Behavioral analyses suggest that serotonin facilitates larval animals resuming development when the environment improves. Our study revealed the cilium structure of serotonergic neurons as a trigger of regulated serotonin production, and demonstrated that a Hedgehog-related signaling component is dynamically regulated by environment and underscores neuroplasticity of serotonergic neurons in C. elegans under stress and stress recovery.
Collapse
Affiliation(s)
- Mustapha Moussaif
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
20
|
Zubenko GS, Jones ML, Estevez AO, Hughes HB, Estevez M. Identification of a CREB-dependent serotonergic pathway and neuronal circuit regulating foraging behavior in Caenorhabditis elegans: a useful model for mental disorders and their treatments? Am J Med Genet B Neuropsychiatr Genet 2009; 150B:12-23. [PMID: 19035344 PMCID: PMC3234207 DOI: 10.1002/ajmg.b.30891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cAMP-response element binding protein (CREB)-mediated cell signaling pathway is conserved through evolution and participates in a broad range of complex behaviors of divergent species including man. This study describes the integration of genetic, pharmacologic, and anatomic methods to elucidate a serotonergic signaling pathway by which the CREB homolog CRH-1 controls foraging rate (FR) in the model organism Caenorhabditis elegans, along with the complete neuronal circuit through which this pathway operates. In the anterior afferent arm of the circuit, CRH-1 controls FR by regulating the expression of tph-1, the sole structural gene for tryptophan hydroxylase, in serotonergic sensory (ADF) neurons whose post-synaptic effects are mediated through 5HT(2)-like SER-1 receptors. The posterior afferent limb of the circuit includes an interneuron (RIH) that does not express tph-1 and whose serotonergic phenotype is dependent on the contribution of this neurotransmitter from another source, probably the ADF neurons. The postsynaptic effects of the RIH interneuron are mediated through 5HT(1)-like SER-4 receptors. This model has potential utility for the study of clinical disorders and experimental therapeutics. Furthermore, the discovery of serotonergic neurons that depend on other sources for their neurotransmitter phenotype could provide a mechanism for rapidly altering the number and distribution of serotonergic pathways in developing and adult nervous systems, providing a dimension of functional complexity that has been previously unrecognized.
Collapse
Affiliation(s)
- George S. Zubenko
- Department of Psychiatry University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Biological Sciences, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA
| | - Michelle L. Jones
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Annette O. Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Hugh B. Hughes
- Department of Psychiatry University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Miguel Estevez
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Veteran's Affairs Medical Center, Pittsburgh, PA
| |
Collapse
|
21
|
Gao X, Frank D, Hawdon JM. Molecular cloning and DNA binding characterization of DAF-16 orthologs from Ancylostoma hookworms. Int J Parasitol 2008; 39:407-15. [PMID: 18930062 DOI: 10.1016/j.ijpara.2008.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/19/2008] [Accepted: 09/20/2008] [Indexed: 11/30/2022]
Abstract
Infective hookworm L3s encounter a host-specific signal during infection that re-initiates a suspended developmental pathway, resulting in development to the adult stage. This resumption of development in the host is analogous to recovery of developmentally arrested Caenorhabditis elegans dauer larvae in response to favorable environmental signals. Dauer recovery in C. elegans dauers and hookworm L3s is mediated by insulin-like signaling (ILS). A key output of ILS in C. elegans is the forkhead transcription factor DAF-16, which controls the expression of genes required for maintenance of the dauer stage. The similarity between recovery pathways of L3s and dauers suggests that DAF-16 functions similarly in hookworm L3 activation. To test this, orthologs of Ce-DAF-16 were isolated from the hookworms Ancylostoma caninum and Ancylostoma ceylanicum. The protein sequences of hookworm DAF-16 DNA binding domains were identical, and shared 94% identity with the b and c isoforms of Ce-DAF-16. Ac-DAF-16 expressed in HEK293 kidney cells bound strongly to the conserved DAF family binding element (DBE), but not to a random DNA sequence. Ac-DAF-16 was able to drive transcription of a reporter gene located downstream of six copies of the DBE in NIH3T3 cells under starved conditions. Addition of serum caused a decrease in reporter gene expression, indicating that DAF-16 is negatively regulated by growth factor stimulation. These data confirm the presence of DAF-16 orthologs in hookworms, and demonstrate that Ac-DAF-16 binds to and drives transcription from a conserved DAF-16 family DNA binding element.
Collapse
Affiliation(s)
- Xin Gao
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
22
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
23
|
Regulation of serotonin biosynthesis by the G proteins Galphao and Galphaq controls serotonin signaling in Caenorhabditis elegans. Genetics 2008; 178:157-69. [PMID: 18202365 DOI: 10.1534/genetics.107.079780] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To analyze mechanisms that modulate serotonin signaling, we investigated how Caenorhabditis elegans regulates the function of serotonergic motor neurons that stimulate egg-laying behavior. Egg laying is inhibited by the G protein Galphao and activated by the G protein Galphaq. We found that Galphao and Galphaq act directly in the serotonergic HSN motor neurons to control egg laying. There, the G proteins had opposing effects on transcription of the tryptophan hydroxylase gene tph-1, which encodes the rate-limiting enzyme for serotonin biosynthesis. Antiserotonin staining confirmed that Galphao and Galphaq antagonistically affect serotonin levels. Altering tph-1 gene dosage showed that small changes in tph-1 expression were sufficient to affect egg-laying behavior. Epistasis experiments showed that signaling through the G proteins has additional tph-1-independent effects. Our results indicate that (1) serotonin signaling is regulated by modulating serotonin biosynthesis and (2) Galphao and Galphaq act in the same neurons to have opposing effects on behavior, in part, by antagonistically regulating transcription of specific genes. Galphao and Galphaq have opposing effects on many behaviors in addition to egg laying and may generally act, as they do in the egg-laying system, to integrate multiple signals and consequently set levels of transcription of genes that affect neurotransmitter release.
Collapse
|
24
|
Abstract
Much attention is rightly focused on how microbes cause disease, but they can also affect other aspects of host physiology, including behaviour. Indeed, pathogen avoidance behaviours are seen across animal taxa and are probably of major importance in nature. Here, we review what is known about the molecular genetics underlying pathogen avoidance in the nematode Caenorhabditis elegans. In its natural environment, the soil, this animal feeds on microbes and is continuously exposed to a diverse mix of microorganisms. Nematodes that develop efficient behavioural responses that enhance their attraction to sources of food and avoidance of pathogens will have an evolutionary advantage. C. elegans can specifically detect natural products of bacteria, including surfactants (such as serrawettin) and acylated homoserine lactone autoinducers, and it can learn to avoid pathogenic species. To date, several distinct mechanisms have been shown to be involved in pathogen avoidance. They are based on G protein-like, insulin-like and neuronal serotonin signalling. We discuss recent findings on the mechanisms of pathogen recognition in C. elegans, the relationship between alternative behavioural defences and also between these and other life-history traits. We propose that the selective pressure associated with avoidance behaviours influence both pathogen and host evolution.
Collapse
Affiliation(s)
- Hinrich Schulenburg
- Department of Animal Evolutionary Ecology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | | |
Collapse
|
25
|
Hu YO, Sun Y, Ye BP, Wang DY. Computational analysis of genetic loci required for amphid structure and functions and their possibly corresponding microRNAs in C. elegans. Neurosci Bull 2007; 23:9-20. [PMID: 17592520 PMCID: PMC5500771 DOI: 10.1007/s12264-007-0002-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To examine the important roles of microRNAs (miRNAs) in regulating amphid structure and function, we performed a computational analysis for the genetic loci required for the sensory perception and their possibly corresponding miRNAs in C. elegans. METHODS Total 55 genetic loci required for the amphid structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. RESULTS Total 30 genes among the 55 genetic loci selected have their possible corresponding regulatory miRNA (s), and identified genes participate in the regulation of almost all aspects of amphid structure and function. In addition, our data suggest that both the amphid structure and the amphid functions might be regulated by a series of network signaling pathways. Moreover, the distribution of miRNAs along the 3' untranslated region (UTR) of these 30 genes exhibits different patterns. CONCLUSION We present the possible miRNA-mediated signaling pathways involved in the regulation of chemosensation and thermosensation by controlling the corresponding sensory neuron and interneuron functions. Our work will be useful for better understanding of the miRNA-mediated control of the chemotaxis and thermotaxis in C. elegans.
Collapse
Affiliation(s)
- Ya-Ou Hu
- Department of Genetics and Developmental Biology, Southeast University, Nanjing, 210009 China
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Nanjing, 210009 China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Yang Sun
- Department of Genetics and Developmental Biology, Southeast University, Nanjing, 210009 China
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Nanjing, 210009 China
| | - Bo-Ping Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009 China
| | - Da-Yong Wang
- Department of Genetics and Developmental Biology, Southeast University, Nanjing, 210009 China
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Nanjing, 210009 China
| |
Collapse
|
26
|
Hasshoff M, Böhnisch C, Tonn D, Hasert B, Schulenburg H. The role ofCaenorhabditis elegansinsulin‐like signaling in the behavioral avoidance of pathogenicBacillus thuringiensis. FASEB J 2007; 21:1801-12. [PMID: 17314144 DOI: 10.1096/fj.06-6551com] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogens cause damage, and their elimination requires activation of the costly immune response. A highly economic defense strategy should thus be the behavioral avoidance of pathogens, as manifested in humans by all aspects of hygiene or revulsion at pathogen-rich material. Despite its potential importance, behavioral defenses have as yet received only little attention in biomedical research--in stark contrast to the physiological immune system. In the present study, the genetics of such behavioral defenses are elucidated in a simple model organism, the nematode Caenorhabditis elegans. We show for the first time that mutations in the insulin-like receptor (ILR) pathway lead to two distinct behavioral responses against pathogenic strains of the gram-positive bacterium Bacillus thuringiensis (BT), including the physical evasion of pathogens and their reduced oral uptake. Since this pathway also contributes to nematode stress resistance, the results surprisingly reveal a genetic link between physiological and behavioral defenses. Considering that many signaling pathways have conserved their functions across evolution, including the ILR pathway, this signaling cascade may represent an interesting candidate regulator for behavioral defenses in more complex organisms, including humans.
Collapse
Affiliation(s)
- Martin Hasshoff
- Institute for Animal Evolution and Ecology, Westfälische Wilhelms-University, Münster, Germany
| | | | | | | | | |
Collapse
|
27
|
Abstract
Neurotransmitters relay signals within the brain and to peripheral tissues, allowing communication between nerve cells. New work from in this issue of Cell Metabolism reveals that, in C. elegans, serotonin functions during conditions of stress through the well-characterized insulin/IGF-1 signaling pathway, suggesting a mechanism for the stress response.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Aaron Lazare Research Building Suite 615, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
28
|
Liang B, Moussaif M, Kuan CJ, Gargus JJ, Sze JY. Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 2006; 4:429-40. [PMID: 17141627 DOI: 10.1016/j.cmet.2006.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/10/2006] [Accepted: 11/09/2006] [Indexed: 11/26/2022]
Abstract
Stress response is a fundamental form of behavioral and physiological plasticity. Here we describe how serotonin (5HT) governs stress behavior by regulating DAF-2 insulin/IGF-1 receptor signaling to the DAF-16/FOXO transcription factor at the nexus of development, metabolism, immunity, and stress responses in C. elegans. Serotonin-deficient tph-1 mutants, like daf-2 mutants, exhibit DAF-16 nuclear accumulation and constitutive physiological stress states. Exogenous 5HT and fluoxetine (Prozac) prevented DAF-16 nuclear accumulation in wild-type animals under stresses. Genetic analyses imply that DAF-2 is a downstream target of 5HT signaling and that distinct serotonergic neurons act through distinct 5HT receptors to influence distinct DAF-16-mediated stress responses. We suggest that modulation of FOXO by 5HT represents an ancient feature of stress physiology and that the C. elegans is a genetically tractable model that can be used to delineate the molecular mechanisms and drug actions linking 5HT, neuroendocrine signaling, immunity, and mitochondrial function.
Collapse
Affiliation(s)
- Bin Liang
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|