1
|
Bhatia P, Tafur J, Amin R, Familiari NE, Yaguchi K, Tran VM, Bond A, Bukulmez O, Woodruff JB. Condensate-forming eIF4ET ensures adequate levels of meiotic proteins to support oocyte storage. Life Sci Alliance 2025; 8:e202503387. [PMID: 40441896 PMCID: PMC12122253 DOI: 10.26508/lsa.202503387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
Animals store oocytes in a dormant state for weeks to decades before ovulation. The homeostatic programs that oocytes use to endure long-term storage are poorly understood. Using female nematodes as a short-lived model, we found that oocyte formation and storage required IFET-1, the conserved eIF4E-transporter protein (eIF4ET). IFET-1 co-assembled with CAR-1 (Lsm14) to form micron-scale condensates in stored oocytes, which dissipated after oocyte activation. Depletion of IFET-1 destabilized the stored oocyte proteome, leading to lower translation, a decline in microtubule maintenance proteins, and errors in microtubule organization and meiotic spindle assembly. Deleting domains within IFET-1 impaired oocyte storage without affecting oocyte formation. Thus, in addition to establishing a healthy oocyte reserve in young mothers, IFET-1 ensures that correct levels of cytoskeletal proteins are maintained as oocytes age. eIF4ET also localized to micron-scale puncta in dormant human oocytes. Our results clarify how eIF4ET maintains the oocyte reserve and further support eIF4ET dysfunction as an upstream cause of embryonic aneuploidy and age-related infertility.
Collapse
Affiliation(s)
- Priyankaa Bhatia
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Judith Tafur
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruchi Amin
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nicole E Familiari
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kan Yaguchi
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Vanna M Tran
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alec Bond
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Orhan Bukulmez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey B Woodruff
- Department of Cell Biology, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
3
|
Yin X, Meng Y, Sun C, Zhao Y, Wang W, Zhao P, Wang M, Ren J, Yao J, Zhang L, Xia X. Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model. Biogerontology 2024; 25:433-445. [PMID: 37572203 DOI: 10.1007/s10522-023-10058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
Collapse
Affiliation(s)
- Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China
| | - Yanqiu Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China.
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
4
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
5
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Davis GM, Hipwell H, Boag PR. Oogenesis in Caenorhabditis elegans. Sex Dev 2023; 17:73-83. [PMID: 37232019 PMCID: PMC10659005 DOI: 10.1159/000531019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The nematode, Caenorhabditis elegans has proven itself as a valuable model for investigating metazoan biology. C. elegans have a transparent body, an invariant cell lineage, and a high level of genetic conservation which makes it a desirable model organism. Although used to elucidate many aspects of somatic biology, a distinct advantage of C. elegans is its well annotated germline which allows all aspects of oogenesis to be observed in real time within a single animal. C. elegans hermaphrodites have two U-shaped gonad arms which produce their own sperm that is later stored to fertilise their own oocytes. These two germlines take up much of the internal space of each animal and germ cells are therefore the most abundant cell present within each animal. This feature and the genetic phenotypes observed for mutant worm gonads have allowed many novel findings that established our early understanding of germ cell dynamics. The mutant phenotypes also allowed key features of meiosis and germ cell maturation to be unveiled. SUMMARY This review will focus on the key aspects that make C. elegans an outstanding model for exploring each feature of oogenesis. This will include the fundamental steps associated with germline function and germ cell maturation and will be of use for those interested in exploring reproductive metazoan biology. KEY MESSAGES Since germ cell biology is highly conserved in animals, much can be gained from study of a simple metazoan like C. elegans. Past findings have enhanced understanding on topics that would be more laborious or challenging in more complex animal models.
Collapse
Affiliation(s)
- Gregory M. Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Hayleigh Hipwell
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
7
|
Das D, Arur S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol Reprod Dev 2022; 89:353-374. [PMID: 35908193 PMCID: PMC9492652 DOI: 10.1002/mrd.23637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Abstract
During oogenesis, oocytes arrest at meiotic prophase I to acquire competencies for resuming meiosis, fertilization, and early embryonic development. Following this arrested period, oocytes resume meiosis in response to species-specific hormones, a process known as oocyte maturation, that precedes ovulation and fertilization. Involvement of endocrine and autocrine/paracrine factors and signaling events during maintenance of prophase I arrest, and resumption of meiosis is an area of active research. Studies in vertebrate and invertebrate model organisms have delineated the molecular determinants and signaling pathways that regulate oocyte maturation. Cell cycle regulators, such as cyclin-dependent kinase (CDK1), polo-like kinase (PLK1), Wee1/Myt1 kinase, and the phosphatase CDC25 play conserved roles during meiotic resumption. Extracellular signal-regulated kinase (ERK), on the other hand, while activated during oocyte maturation in all species, regulates both species-specific, as well as conserved events among different organisms. In this review, we synthesize the general signaling mechanisms and focus on conserved and distinct functions of ERK signaling pathway during oocyte maturation in mammals, non-mammalian vertebrates, and invertebrates such as Drosophila and Caenorhabditis elegans.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Yan VT, Narayanan A, Wiegand T, Jülicher F, Grill SW. A condensate dynamic instability orchestrates actomyosin cortex activation. Nature 2022; 609:597-604. [PMID: 35978196 PMCID: PMC9477739 DOI: 10.1038/s41586-022-05084-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
Collapse
Affiliation(s)
- Victoria Tianjing Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Arjun Narayanan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Biotechnology Center, TU Dresden, Dresden, Germany. .,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany.
| | - Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany.,Center for Systems Biology Dresden (CSBD), Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany. .,Center for Systems Biology Dresden (CSBD), Dresden, Germany. .,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
9
|
Elaswad MT, Watkins BM, Sharp KG, Munderloh C, Schisa JA. Large RNP granules in Caenorhabditis elegans oocytes have distinct phases of RNA-binding proteins. G3 GENES|GENOMES|GENETICS 2022; 12:6639704. [PMID: 35816006 PMCID: PMC9434171 DOI: 10.1093/g3journal/jkac173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022]
Abstract
The germ line provides an excellent in vivo system to study the regulation and function of RNP granules. Germ granules are conserved germ line-specific RNP granules that are positioned in the Caenorhabditis elegans adult gonad to function in RNA maintenance, regulation, and surveillance. In Caenorhabditis elegans, when oogenesis undergoes extended meiotic arrest, germ granule proteins and other RNA-binding proteins assemble into much larger RNP granules whose hypothesized function is to regulate RNA metabolism and maintain oocyte quality. To gain insight into the function of oocyte RNP granules, in this report, we characterize distinct phases for four protein components of RNP granules in arrested oocytes. We find that the RNA-binding protein PGL-1 is dynamic and has liquid-like properties, while the intrinsically disordered protein MEG-3 has gel-like properties, similar to the properties of the two proteins in small germ granules of embryos. We find that MEX-3 exhibits several gel-like properties but is more dynamic than MEG-3, while CGH-1 is dynamic but does not consistently exhibit liquid-like characteristics and may be an intermediate phase within RNP granules. These distinct phases of RNA-binding proteins correspond to, and may underlie, differential responses to stress. Interestingly, in oocyte RNP granules, MEG-3 is not required for the condensation of PGL-1 or other RNA-binding proteins, which differs from the role of MEG-3 in small, embryonic germ granules. Lastly, we show that the PUF-5 translational repressor appears to promote MEX-3 and MEG-3 condensation into large RNP granules; however, this role may be associated with regulation of oogenesis.
Collapse
Affiliation(s)
- Mohamed T Elaswad
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Brooklynne M Watkins
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Katherine G Sharp
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Chloe Munderloh
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| | - Jennifer A Schisa
- Biochemistry, Cell and Molecular Biology Program, Central Michigan University , Mt. Pleasant, MI 48859, USA
- Department of Biology, Central Michigan University , Mt. Pleasant, MI 48859, USA
| |
Collapse
|
10
|
Maremonti E, Eide DM, Oughton DH, Salbu B, Grammes F, Kassaye YA, Guédon R, Lecomte-Pradines C, Brede DA. Gamma radiation induces life stage-dependent reprotoxicity in Caenorhabditis elegans via impairment of spermatogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133835. [PMID: 31425988 DOI: 10.1016/j.scitotenv.2019.133835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The current study investigated life stage, tissue and cell dependent sensitivity to ionizing radiation of the nematode Caenorhabditis elegans. Results showed that irradiation of post mitotic L4 stage larvae induced no significant effects with respect to mortality, morbidity or reproduction at either acute dose ≤6 Gy (1500 mGy·h-1) or chronic exposure ≤15 Gy (≤100 mGy·h-1). In contrast, chronic exposure from the embryo to the L4-young adult stage caused a dose and dose-rate dependent reprotoxicity with 43% reduction in total brood size at 6.7 Gy (108 mGy·h-1). Systematic irradiation of the different developmental stages showed that the most sensitive life stage was L1 to young L4. Exposure during these stages was associated with dose-rate dependent genotoxic effects, resulting in a 1.8 to 2 fold increase in germ cell apoptosis in larvae subjected to 40 or 100 mGy·h-1, respectively. This was accompanied by a dose-rate dependent reduction in the number of spermatids, which was positively correlated to the reprotoxic effect (0.99, PCC). RNAseq analysis of nematodes irradiated from L1 to L4 stage revealed a significant enrichment of differentially expressed genes related to both male and hermaphrodite reproductive processes. Gene network analysis revealed effects related to down-regulation of genes required for spindle formation and sperm meiosis/maturation, including smz-1, smz-2 and htas-1. Furthermore, the expression of a subset of 28 set-17 regulated Major Sperm Proteins (MSP) required for spermatid production was correlated (R2 0.80) to the reduction in reproduction and the number of spermatids. Collectively these observations corroborate the impairment of spermatogenesis as the major cause of gamma radiation induced life-stage dependent reprotoxic effect. Furthermore, the progeny of irradiated nematodes showed significant embryonal DNA damage that was associated with persistent effect on somatic growth. Unexpectedly, these nematodes maintained much of their reproductive capacity in spite of the reduced growth.
Collapse
Affiliation(s)
- Erica Maremonti
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
| | - Dag M Eide
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Norwegian Institute of Public Health, Lovisenberggata 8, 0456 Oslo, Norway
| | - Deborah H Oughton
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Yetneberk A Kassaye
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Rémi Guédon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, Laboratoire d'ECOtoxicologie des radionucléides (LECO), Cadarache, France
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
11
|
Kanaki N, Matsuda A, Dejima K, Murata D, Nomura KH, Ohkura T, Gengyo-Ando K, Yoshina S, Mitani S, Nomura K. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans. Glycobiology 2019; 29:163-178. [PMID: 30445613 DOI: 10.1093/glycob/cwy104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
N-linked glycosylation of proteins is the most common post-translational modification of proteins. The enzyme UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) catalyses the first step of N-glycosylation, and DPAGT1 knockout is embryonic lethal in mice. In this study, we identified the sole orthologue (algn-7) of the human DPAGT1 in the nematode C. elegans. The gene activity was disrupted by RNAi and deletion mutagenesis, which resulted in larval lethality, defects in oogenesis and oocyte-to-embryo transition. Endomitotic oocytes, abnormal fusion of pronuclei, abnormal AB cell rotation, disruption of permeation barriers of eggs, and abnormal expression of chitin and chitin synthase in oocytes and eggs were the typical phenotypes observed. The results indicate that N-glycosylation is indispensable for these processes. We further screened an N-glycosylated protein database of C. elegans, and identified 456 germline-expressed genes coding N-glycosylated proteins. By examining RNAi phenotypes, we identified five germline-expressed genes showing similar phenotypes to the algn-7 (RNAi) animals. They were ribo-1, stt-3, ptc-1, ptc-2, and vha-19. We identified known congenital disorders of glycosylation (CDG) genes (ribo-1 and stt-3) and a recently found CDG gene (vha-19). The results show that phenotype analyses using the nematode could be a powerful tool to detect new CDG candidate genes and their associated gene networks.
Collapse
Affiliation(s)
- Nanako Kanaki
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ayako Matsuda
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Katsufumi Dejima
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Daisuke Murata
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuko H Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ohkura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuya Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Langerak S, Trombley A, Patterson JR, Leroux D, Couch A, Wood MP, Schisa JA. Remodeling of the endoplasmic reticulum in Caenorhabditis elegans oocytes is regulated by CGH-1. Genesis 2018; 57:e23267. [PMID: 30489010 DOI: 10.1002/dvg.23267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/12/2022]
Abstract
A key aspect of development in all metazoans is remodeling at the cellular level. During the development of gametes, remodeling occurs throughout the germ line. When Caenorhabditis elegans hermaphrodites become depleted of sperm after 4 days of adulthood, significant cellular remodeling occurs within the meiotically-arrested oocytes, including the formation of ribonucleoprotein granules. Since major remodeling of the endoplasmic reticulum (ER) occurs in early embryos, we investigated the extent of ER remodeling in meiotically-arrested oocytes. We found, using a combination of fluorescence reporters and transmission electron microscopy, that the ER in arrested oocytes accumulates in patches and sheets that are enriched at the cortex. Our findings suggest this remodeling is not due to simple displacement by large amounts of yolk that accumulate in arrested oocytes, and instead may be genetically regulated. We further identified the Ddx6 RNA helicase, CGH-1, as a key regulator of ER in the germ line. In cgh-1(tn691) oocytes, we detected cortical ER patches as well as aberrant granules of the RNA-binding proteins, PAB-1, MEX-3, and CGH-1. Taken together, our results suggest the possibility that the spatial organization of RNA binding proteins may regulate the translation of mRNAs associated with the ER that in turn, controls the organization of the ER in the adult germ line.
Collapse
Affiliation(s)
- Shaughna Langerak
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Alicia Trombley
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Joseph R Patterson
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Devon Leroux
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Alexandra Couch
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Megan P Wood
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| | - Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan
| |
Collapse
|
13
|
Huelgas-Morales G, Greenstein D. Control of oocyte meiotic maturation in C. elegans. Semin Cell Dev Biol 2018; 84:90-99. [PMID: 29242146 PMCID: PMC6019635 DOI: 10.1016/j.semcdb.2017.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
In virtually all sexually reproducing animals, oocytes arrest in meiotic prophase and resume meiosis in a conserved biological process called meiotic maturation. Meiotic arrest enables oocytes, which are amongst the largest cells in an organism, to grow and accumulate the necessary cellular constituents required to support embryonic development. Oocyte arrest can be maintained for a prolonged period, up to 50 years in humans, and defects in the meiotic maturation process interfere with the faithful segregation of meiotic chromosomes, representing the leading cause of human birth defects and female infertility. Hormonal signaling and interactions with somatic cells of the gonad control the timing of oocyte meiotic maturation. Signaling activates the CDK1/cyclin B kinase, which plays a central role in regulating the nuclear and cytoplasmic events of meiotic maturation. Nuclear maturation encompasses nuclear envelope breakdown, meiotic spindle assembly, and chromosome segregation whereas cytoplasmic maturation involves major changes in oocyte protein translation and cytoplasmic organelles and is less well understood. Classically, meiotic maturation has been studied in organisms with large oocytes to facilitate biochemical analysis. Recently, the nematode Caenorhabditis elegans is emerging as a genetic paradigm for studying the regulation of oocyte meiotic maturation. Studies in this system have revealed conceptual, anatomical, and molecular links to oocytes in all animals including humans. This review focuses on the signaling mechanisms required to control oocyte growth and meiotic maturation in C. elegans and discusses how the downstream regulation of protein translation coordinates the completion of meiosis and the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Gabriela Huelgas-Morales
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, United States of America.
| |
Collapse
|
14
|
Arur S. Signaling-Mediated Regulation of Meiotic Prophase I and Transition During Oogenesis. Results Probl Cell Differ 2017; 59:101-123. [PMID: 28247047 DOI: 10.1007/978-3-319-44820-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Generation of healthy oocytes requires coordinated regulation of multiple cellular events and signaling pathways. Oocytes undergo a unique developmental growth and differentiation pattern interspersed with long periods of arrest. Oocytes from almost all species arrest in prophase I of oogenesis that allows for long period of growth and differentiation essential for normal oocyte development. Depending on species, oocytes that transit from prophase I to meiosis I also arrest at meiosis I for fairly long periods of time and then undergo a second arrest at meiosis II that is completed upon fertilization. While there are species-specific differences in C. elegans, D. melanogaster, and mammalian oocytes in stages of prophase I, meiosis I, or meiosis II arrest, in all cases cell signaling pathways coordinate the developmental events controlling oocyte growth and differentiation to regulate these crucial phases of transition. In particular, the ERK MAP kinase signaling pathway, cyclic AMP second messengers, and the cell cycle regulators CDK1/cyclin B are key signaling pathways that seem evolutionarily conserved in their control of oocyte growth and meiotic maturation across species. Here, I identify the common themes and differences in the regulation of key meiotic events during oocyte growth and maturation.
Collapse
Affiliation(s)
- Swathi Arur
- Department of Genetics, UT M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
15
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Pushpa K, Kumar GA, Subramaniam K. Translational Control of Germ Cell Decisions. Results Probl Cell Differ 2017; 59:175-200. [PMID: 28247049 DOI: 10.1007/978-3-319-44820-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline poses unique challenges to gene expression control at the transcriptional level. While the embryonic germline maintains a global hold on new mRNA transcription, the female adult germline produces transcripts that are not translated into proteins until embryogenesis of subsequent generation. As a consequence, translational control plays a central role in governing various germ cell decisions including the formation of primordial germ cells, self-renewal/differentiation decisions in the adult germline, onset of gametogenesis and oocyte maturation. Mechanistically, several common themes such as asymmetric localization of mRNAs, conserved RNA-binding proteins that control translation by 3' UTR binding, translational activation by the cytoplasmic elongation of the polyA tail and the assembly of mRNA-protein complexes called mRNPs have emerged from the studies on Caenorhabditis elegans, Xenopus and Drosophila. How mRNPs assemble, what influences their dynamics, and how a particular 3' UTR-binding protein turns on the translation of certain mRNAs while turning off other mRNAs at the same time and space are key challenges for future work.
Collapse
Affiliation(s)
- Kumari Pushpa
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Ganga Anil Kumar
- Indian Institute of Technology-Kanpur, Kanpur, India.,Indian Institute of Technology-Madras, Chennai, India
| | | |
Collapse
|
17
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
18
|
RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line. G3-GENES GENOMES GENETICS 2016; 6:2643-54. [PMID: 27317775 PMCID: PMC4978917 DOI: 10.1534/g3.116.031559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.
Collapse
|
19
|
Matsuura R, Ashikawa T, Nozaki Y, Kitagawa D. LIN-41 inactivation leads to delayed centrosome elimination and abnormal chromosome behavior during female meiosis in Caenorhabditis elegans. Mol Biol Cell 2016; 27:799-811. [PMID: 26764090 PMCID: PMC4803306 DOI: 10.1091/mbc.e15-10-0713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/07/2016] [Indexed: 11/11/2022] Open
Abstract
During oogenesis, two successive meiotic cell divisions occur without functional centrosomes because of the inactivation and subsequent elimination of maternal centrosomes during the diplotene stage of meiosis I. Despite being a conserved phenomenon in most metazoans, the means by which this centrosome behavior is controlled during female meiosis remain elusive. Here, we conducted a targeted RNAi screening in the Caenorhabditis elegans gonad to identify novel regulators of centrosome behavior during oogenesis. We screened 513 genes known to be essential for embryo production and directly visualized GFP-γ-tubulin to monitor centrosome behavior at all stages of oogenesis. In the screening, we found that RNAi-mediated inactivation of 33 genes delayed the elimination of GFP-γ-tubulin at centrosomes during oogenesis, whereas inactivation of nine genes accelerated the process. Depletion of the TRIM-NHL protein LIN-41 led to a significant delay in centrosome elimination and to the separation and reactivation of centrosomes during oogenesis. Upon LIN-41 depletion, meiotic chromosomes were abnormally condensed and pulled toward one of the two spindle poles around late pachytene even though the spindle microtubules emanated from both centrosomes. Overall, our work provides new insights into the regulation of centrosome behavior to ensure critical meiotic events and the generation of intact oocytes.
Collapse
Affiliation(s)
- Rieko Matsuura
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomoko Ashikawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Yuka Nozaki
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Daiju Kitagawa
- Division of Centrosome Biology, Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan Department of Genetics, School of Life Science, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
20
|
Burn KM, Shimada Y, Ayers K, Vemuganti S, Lu F, Hudson AM, Cooley L. Somatic insulin signaling regulates a germline starvation response in Drosophila egg chambers. Dev Biol 2015; 398:206-17. [PMID: 25481758 PMCID: PMC4340711 DOI: 10.1016/j.ydbio.2014.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/22/2014] [Indexed: 12/31/2022]
Abstract
Egg chambers from starved Drosophila females contain large aggregates of processing (P) bodies and cortically enriched microtubules. As this response to starvation is rapidly reversed upon re-feeding females or culturing egg chambers with exogenous bovine insulin, we examined the role of endogenous insulin signaling in mediating the starvation response. We found that systemic Drosophila insulin-like peptides (dILPs) activate the insulin pathway in follicle cells, which then regulate both microtubule and P body organization in the underlying germline cells. This organization is modulated by the motor proteins Dynein and Kinesin. Dynein activity is required for microtubule and P body organization during starvation, while Kinesin activity is required during nutrient-rich conditions. Blocking the ability of egg chambers to form P body aggregates in response to starvation correlated with reduced progeny survival. These data suggest a potential mechanism to maximize fecundity even during periods of poor nutrient availability, by mounting a protective response in immature egg chambers.
Collapse
Affiliation(s)
- K Mahala Burn
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yuko Shimada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Seinou-tou D301, Tennoudai 1-1-1, Tsukuba,, Ibaraki 305-8572, Japan
| | - Kathleen Ayers
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Soumya Vemuganti
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Feiyue Lu
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Lynn Cooley
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Prospect Street, New Haven, CT 06510, United States.
| |
Collapse
|
21
|
|
22
|
Spike CA, Coetzee D, Nishi Y, Guven-Ozkan T, Oldenbroek M, Yamamoto I, Lin R, Greenstein D. Translational control of the oogenic program by components of OMA ribonucleoprotein particles in Caenorhabditis elegans. Genetics 2014; 198:1513-33. [PMID: 25261697 PMCID: PMC4256769 DOI: 10.1534/genetics.114.168823] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023] Open
Abstract
The oocytes of most sexually reproducing animals arrest in meiotic prophase I. Oocyte growth, which occurs during this period of arrest, enables oocytes to acquire the cytoplasmic components needed to produce healthy progeny and to gain competence to complete meiosis. In the nematode Caenorhabditis elegans, the major sperm protein hormone promotes meiotic resumption (also called meiotic maturation) and the cytoplasmic flows that drive oocyte growth. Prior work established that two related TIS11 zinc-finger RNA-binding proteins, OMA-1 and OMA-2, are redundantly required for normal oocyte growth and meiotic maturation. We affinity purified OMA-1 and identified associated mRNAs and proteins using genome-wide expression data and mass spectrometry, respectively. As a class, mRNAs enriched in OMA-1 ribonucleoprotein particles (OMA RNPs) have reproductive functions. Several of these mRNAs were tested and found to be targets of OMA-1/2-mediated translational repression, dependent on sequences in their 3'-untranslated regions (3'-UTRs). Consistent with a major role for OMA-1 and OMA-2 in regulating translation, OMA-1-associated proteins include translational repressors and activators, and some of these proteins bind directly to OMA-1 in yeast two-hybrid assays, including OMA-2. We show that the highly conserved TRIM-NHL protein LIN-41 is an OMA-1-associated protein, which also represses the translation of several OMA-1/2 target mRNAs. In the accompanying article in this issue, we show that LIN-41 prevents meiotic maturation and promotes oocyte growth in opposition to OMA-1/2. Taken together, these data support a model in which the conserved regulators of mRNA translation LIN-41 and OMA-1/2 coordinately control oocyte growth and the proper spatial and temporal execution of the meiotic maturation decision.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| | - Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Marieke Oldenbroek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota Minneapolis, Minnesota 55455
| |
Collapse
|
23
|
Spike CA, Coetzee D, Eichten C, Wang X, Hansen D, Greenstein D. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes. Genetics 2014; 198:1535-58. [PMID: 25261698 PMCID: PMC4256770 DOI: 10.1534/genetics.114.168831] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.
Collapse
Affiliation(s)
- Caroline A Spike
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Donna Coetzee
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Carly Eichten
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xin Wang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - David Greenstein
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 2014; 198:1127-53. [PMID: 25195067 PMCID: PMC4224157 DOI: 10.1534/genetics.114.168815] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.
Collapse
|
25
|
Schisa JA. Effects of stress and aging on ribonucleoprotein assembly and function in the germ line. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:231-46. [PMID: 24523207 DOI: 10.1002/wrna.1204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/03/2013] [Accepted: 10/09/2013] [Indexed: 11/08/2022]
Abstract
In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
26
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
27
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|
28
|
Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea. PLoS One 2012; 7:e34447. [PMID: 22496805 PMCID: PMC3319590 DOI: 10.1371/journal.pone.0034447] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species.
Collapse
|
29
|
C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotransposon. PLoS Pathog 2012; 8:e1002591. [PMID: 22479180 PMCID: PMC3315495 DOI: 10.1371/journal.ppat.1002591] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022] Open
Abstract
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15°C and no detectable expression at 25°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology. Retrotransposons and retroviruses pose enormous threats to animal and plants because of their ability to insert into host genes. Retroelements that replicate in germ cells can, if left unchecked, expand exponentially in the host genome. C. elegans has proven to be an exceptional model system for studying many facets of cell and molecular biology, and the genome contains both retrotransposon and retroviral sequences. However, no virus-like particles have been observed in C. elegans germ cells. We show here that Cer1, an endogenous Gypsy/Ty3 class retrotransposon, is expressed at very high levels in C. elegans germ cells, but escaped detection in previous studies because its expression is both temperature and age dependent. These studies reveal new aspects of microtubule regulation in C. elegans that the retroelement appears to exploit to navigate the germ cell cytoplasm, and demonstrate the power of C. elegans for studying host/pathogen interactions in germ cell biology.
Collapse
|
30
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
31
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
32
|
Von Stetina JR, Orr-Weaver TL. Developmental control of oocyte maturation and egg activation in metazoan models. Cold Spring Harb Perspect Biol 2011; 3:a005553. [PMID: 21709181 DOI: 10.1101/cshperspect.a005553] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Production of functional eggs requires meiosis to be coordinated with developmental signals. Oocytes arrest in prophase I to permit oocyte differentiation, and in most animals, a second meiotic arrest links completion of meiosis to fertilization. Comparison of oocyte maturation and egg activation between mammals, Caenorhabditis elegans, and Drosophila reveal conserved signaling pathways and regulatory mechanisms as well as unique adaptations for reproductive strategies. Recent studies in mammals and C. elegans show the role of signaling between surrounding somatic cells and the oocyte in maintaining the prophase I arrest and controlling maturation. Proteins that regulate levels of active Cdk1/cyclin B during prophase I arrest have been identified in Drosophila. Protein kinases play crucial roles in the transition from meiosis in the oocyte to mitotic embryonic divisions in C. elegans and Drosophila. Here we will contrast the regulation of key meiotic events in oocytes.
Collapse
Affiliation(s)
- Jessica R Von Stetina
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
33
|
Shimada Y, Burn KM, Niwa R, Cooley L. Reversible response of protein localization and microtubule organization to nutrient stress during Drosophila early oogenesis. Dev Biol 2011; 355:250-62. [PMID: 21570389 PMCID: PMC3118931 DOI: 10.1016/j.ydbio.2011.04.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/17/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
The maturation of animal oocytes is highly sensitive to nutrient availability. During Drosophila oogenesis, a prominent metabolic checkpoint occurs at the onset of yolk uptake (vitellogenesis): under nutrient stress, egg chambers degenerate by apoptosis. To investigate additional responses to nutrient deprivation, we studied the intercellular transport of cytoplasmic components between nurse cells and the oocyte during previtellogenic stages. Using GFP protein-traps, we showed that Ypsilon Schachtel (Yps), a putative RNA binding protein, moved into the oocyte by both microtubule (MT)-dependent and -independent mechanisms, and was retained in the oocyte in a MT-dependent manner. These data suggest that oocyte enrichment is accomplished by a combination of MT-dependent polarized transport and MT-independent flow coupled with MT-dependent trapping within the oocyte. Under nutrient stress, Yps and other components of the oskar ribonucleoprotein complex accumulated in large processing bodies in nurse cells, accompanied by MT reorganization. This response was detected as early as 2h after starvation, suggesting that young egg chambers rapidly respond to nutrient stress. Moreover, both Yps aggregation and MT reorganization were reversed with re-feeding of females or the addition of exogenous insulin to cultured egg chambers. Our results suggest that egg chambers rapidly mount a stress response by altering intercellular transport upon starvation. This response implies a mechanism for preserving young egg chambers so that egg production can rapidly resume when nutrient availability improves.
Collapse
Affiliation(s)
- Yuko Shimada
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - K. Mahala Burn
- Department of Cell Biology, Yale School of Medicine 333 Cedar Street, New Haven, CT 06520, USA
| | - Ryusuke Niwa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
- Initiative for the Promotion of Young Scientists’ Independent Research, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan
| | - Lynn Cooley
- Department of Genetics, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
- Department of Cell Biology, Yale School of Medicine 333 Cedar Street, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Ave., New Haven, CT 05610, USA
| |
Collapse
|
34
|
Li T, Kelly WG. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line. PLoS Genet 2011; 7:e1001349. [PMID: 21455483 PMCID: PMC3063756 DOI: 10.1371/journal.pgen.1001349] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 02/21/2011] [Indexed: 01/11/2023] Open
Abstract
The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to “epigenetic memory”; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1–dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1–independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance. The germ line transmits both genetic and epigenetic information between and across generations. The germ line uniquely retains developmental totipotency, and this property of germ cells is likely embedded in epigenetic information that is retained throughout the germ line cycle, within and across each generation. The methylation of Histone H3 on Lysine 4 (H3K4me) has been identified as both a mark of active transcription and a potential component of “epigenetic memory.” We show that C. elegans homologs of components of a conserved H3K4 methyltransferase complex, the Set1/MLL complex, are important for normal H3K4 methylation in C. elegans germ cells and early embryos. Interestingly, Set1/MLL component dependent H3K4 methylation can occur independently of transcription in early embryonic germline and somatic blastomeres, and also in adult germline stem cells. A separate H3K4 methylation mechanism that operates independently of Set1/MLL component activities appears more dependent on ongoing transcription. We hypothesize that H3K4 methylation is maintained throughout the germ cell cycle by alternating transcription-dependent and -independent mechanisms that maintain this component of the germline epigenome.
Collapse
Affiliation(s)
- Tengguo Li
- Biology Department, Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - William G. Kelly
- Biology Department, Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Fabritius AS, Ellefson ML, McNally FJ. Nuclear and spindle positioning during oocyte meiosis. Curr Opin Cell Biol 2011; 23:78-84. [PMID: 20708397 PMCID: PMC2994957 DOI: 10.1016/j.ceb.2010.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Female meiosis is unique in that an asymmetrically positioned meiotic spindle expels chromosomes into tiny, non-developing polar bodies. The extrusion of chromosomes into polar bodies is always mediated by meiotic spindles that are attached to the oocyte cortex by one pole. The asymmetric, cortical positioning of the oocyte meiotic spindle preserves the volume and contents of the oocyte. Recent work in C. elegans and mouse has provided mechanistic details of spindle positioning in oocytes.
Collapse
Affiliation(s)
- Amy S. Fabritius
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| | - Marina L. Ellefson
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| | - Francis J. McNally
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| |
Collapse
|
36
|
Parry JM, Singson A. EGG molecules couple the oocyte-to-embryo transition with cell cycle progression. Results Probl Cell Differ 2011; 53:135-51. [PMID: 21630144 PMCID: PMC3275084 DOI: 10.1007/978-3-642-19065-0_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The oocyte-to-embryo transition is a precisely coordinated process in which an oocyte becomes fertilized and transitions to an embryonic program of events. The molecules involved in this process have not been well studied. Recently, a group of interacting molecules in C. elegans have been described as coordinating the oocyte-to-embryo transition with the advancement of the cell cycle. Genes egg-3, egg-4, and egg-5 represent a small class of regulatory molecules known as protein-tyrosine phosphase-like proteins, which can bind phosphorylated substrates and act as scaffolding molecules or inhibitors. These genes are responsible for coupling the movements and activities of regulatory kinase mbk-2 with advancement of the cell cycle during the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Jean M. Parry
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854 USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, Piscataway, New Jersey 08854 USA
| |
Collapse
|
37
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
38
|
Yang Y, Han SM, Miller MA. MSP hormonal control of the oocyte MAP kinase cascade and reactive oxygen species signaling. Dev Biol 2010; 342:96-107. [PMID: 20380830 DOI: 10.1016/j.ydbio.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/12/2010] [Accepted: 03/31/2010] [Indexed: 11/28/2022]
Abstract
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.
Collapse
Affiliation(s)
- Youfeng Yang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
39
|
McNally KL, Martin JL, Ellefson M, McNally FJ. Kinesin-dependent transport results in polarized migration of the nucleus in oocytes and inward movement of yolk granules in meiotic embryos. Dev Biol 2009; 339:126-40. [PMID: 20036653 DOI: 10.1016/j.ydbio.2009.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 01/28/2023]
Abstract
During female meiosis, meiotic spindles are positioned at the oocyte cortex to allow expulsion of chromosomes into polar bodies. In C. elegans, kinesin-dependent translocation of the entire spindle to the cortex precedes dynein-dependent rotation of one spindle pole toward the cortex. To elucidate the role of kinesin-1 in spindle translocation, we examined the localization of kinesin subunits in meiotic embryos. Surprisingly, kinesin-1 was not associated with the spindle and instead was restricted to the cytoplasm in the middle of the embryo. Yolk granules moved on linear tracks, in a kinesin-dependent manner, away from the cortex, resulting in their concentration in the middle of the embryo where the kinesin was concentrated. These results suggest that cytoplasmic microtubules might be arranged with plus ends extending inward, away from the cortex. This microtubule arrangement would not be consistent with direct transport of the meiotic spindle toward the cortex by kinesin-1. In maturing oocytes, the nucleus underwent kinesin-dependent migration to the future site of spindle attachment at the anterior cortex. Thus the spindle translocation defect observed in kinesin-1 mutants may be a result of failed nuclear migration, which places the spindle too far from the cortex for the spindle translocation mechanism to function.
Collapse
Affiliation(s)
- Karen L McNally
- Section of Molecular and Cellular Biology, 149 Briggs Hall, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
40
|
Govindan JA, Nadarajan S, Kim S, Starich TA, Greenstein D. Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans. Development 2009; 136:2211-21. [PMID: 19502483 DOI: 10.1242/dev.034595] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soma-germline interactions control fertility at many levels, including stem cell proliferation, meiosis and gametogenesis, yet the nature of these fundamental signaling mechanisms and their potential evolutionary conservation are incompletely understood. In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and fertilization. Sperm release the major sperm protein (MSP) signal to trigger meiotic resumption (meiotic maturation) and to promote contraction of the follicle-like gonadal sheath cells that surround oocytes. Using genetic mosaic analysis, we show that all known MSP-dependent meiotic maturation events in the germline require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells. We show that the MSP hormone promotes the sustained actomyosin-dependent cytoplasmic streaming that drives oocyte growth. Furthermore, we demonstrate that efficient oocyte production and cytoplasmic streaming require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells, thereby providing a somatic mechanism that coordinates oocyte growth and meiotic maturation with sperm availability. We present genetic evidence that MSP and Galpha(s)-adenylate cyclase signaling regulate oocyte growth and meiotic maturation in part by antagonizing gap-junctional communication between sheath cells and oocytes. In the absence of MSP or Galpha(s)-adenylate cyclase signaling, MSP binding sites are enriched and appear clustered on sheath cells. We discuss these results in the context of a model in which the sheath cells function as the major initial sensor of MSP, potentially via multiple classes of G-protein-coupled receptors. Our findings highlight a remarkable similarity between the regulation of meiotic resumption by soma-germline interactions in C. elegans and mammals.
Collapse
Affiliation(s)
- J Amaranath Govindan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
41
|
Johnson JLF, Lu C, Raharjo E, McNally K, McNally FJ, Mains PE. Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis. Dev Biol 2009; 330:349-57. [PMID: 19361490 PMCID: PMC2720041 DOI: 10.1016/j.ydbio.2009.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/04/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
The MEI-1/MEI-2 microtubule-severing complex, katanin, is required for oocyte meiotic spindle formation and function in C. elegans, but the microtubule-severing activity must be quickly downregulated so that it does not interfere with formation of the first mitotic spindle. Post-meiotic MEI-1 inactivation is accomplished by two parallel protein degradation pathways, one of which requires MEL-26, the substrate-specific adaptor that recruits MEI-1 to a CUL-3 based ubiquitin ligase. Here we address the question of how MEL-26 mediated MEI-1 degradation is triggered only after the completion of MEI-1's meiotic function. We find that MEL-26 is present only at low levels until the completion of meiosis, after which protein levels increase substantially, likely increasing the post-meiotic degradation of MEI-1. During meiosis, MEL-26 levels are kept low by the action of another type of ubiquitin ligase, which contains CUL-2. However, we find that the low levels of meiotic MEL-26 have a subtle function, acting to moderate MEI-1 activity during meiosis. We also show that MEI-1 is the only essential target for MEL-26, and possibly for the E3 ubiquitin ligase CUL-3, but the upstream ubiquitin ligase activating enzyme RFL-1 has additional essential targets.
Collapse
Affiliation(s)
- Jacque-Lynne F.A. Johnson
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Chenggang Lu
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Eko Raharjo
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Karen McNally
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Francis J. McNally
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Paul E. Mains
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, and Department of Medical Genetics, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
42
|
Mendenhall AR, LeBlanc MG, Mohan DP, Padilla PA. Reduction in ovulation or male sex phenotype increases long-term anoxia survival in a daf-16-independent manner in Caenorhabditis elegans. Physiol Genomics 2008; 36:167-78. [PMID: 19050081 DOI: 10.1152/physiolgenomics.90278.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Identifying genotypes and phenotypes that enhance an organism's ability to survive stress is of interest. We used Caenorhabditis elegans mutants, RNA interference (RNAi), and the chemical 5-fluorodeoxyuridine (FUDR) to test the hypothesis that a reduction in progeny would increase oxygen deprivation (anoxia) survival. In the hermaphrodite gonad, germ line processes such as spermatogenesis and oogenesis can be simultaneously as well as independently disrupted by genetic mutations. We analyzed genetic mutants [glp-1(q158), glp-4(bn2ts), plc-1(rx1), ksr-1(ku68), fog-2(q71), fem-3(q20), spe-9(hc52ts), fer-15(hc15ts)] with reduced progeny production due to various reproductive defects. Furthermore, we used RNAi to inhibit the function of gene products in the RTK/Ras/MAPK signaling pathway, which is known to be involved in a variety of developmental processes including gonad function. We determined that reduced progeny production or complete sterility enhanced anoxia survival except in the case of sterile hermaphrodites [spe-9(hc52ts), fer-15(hc15ts)] undergoing oocyte maturation and ovulation as exhibited by the presence of laid unfertilized oocytes. Furthermore, the fog-2(q71) long-term anoxia survival phenotype was suppressed when oocyte maturation and ovulation were induced by mating with males that have functional or nonfunctional sperm. The mutants with a reduced progeny production survive long-term anoxia in a daf-16- and hif-1-independent manner. Finally, we determined that wild-type males were able to survive long-term anoxia in a daf-16-independent manner. Together, these results suggest that the insulin signaling pathway is not the only mechanism to survive oxygen deprivation and that altering gonad function, in particular oocyte maturation and ovulation, leads to a physiological state conducive for oxygen deprivation survival.
Collapse
|
43
|
Campbell BE, Nisbet AJ, Mulvenna J, Loukas A, Gasser RB. Molecular and phylogenetic characterization of cytochromes c from Haemonchus contortus and Trichostrongylus vitrinus (Nematoda: Trichostrongylida). Gene 2008; 424:121-9. [PMID: 18718861 DOI: 10.1016/j.gene.2008.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/11/2008] [Accepted: 07/16/2008] [Indexed: 11/18/2022]
Abstract
Although cytochrome c genes (cyt c) and proteins (CYT C) have been relatively well studied in mammals, very little is known about them in parasitic helminths. In the present study, we investigated this group of molecules in Haemonchus contortus (barber's pole worm) and Trichostrongylus vitrinus (black scour worm), two parasitic nematodes of small ruminants. The cyt c gene (512 bp) of H. contortus had one intron and encoded a transcript of 345 nucleotides, whilst that of T. vitrinus (792 bp) had two introns and encoded a transcript of 360 nucleotides. The transcription of cyt c in T. vitrinus was substantially greater in adult males compared with females, although no such gender-enrichment was evident in adults of H. contortus. These findings were supported at the protein level by immunoblot analyses. The inferred proteins (designated Hc-CYT C and Tv-CYT C, respectively) shared nucleotide and amino acid identities of 78% and 85%, respectively. The alignment of these and other CYT C sequences from nematodes, flatworms, insects and mammals identified conserved motifs associated with CYT C oxidase- and reductase- as well as haem-binding. One residue (histidine-26) was conserved for mammals, whereas this residue was absent from all nematodes; the functional significance of this difference is not yet known. Both phylogenetic analysis and protein modelling revealed that CYT C proteins of nematodes are structurally distinct from those of mammals and other organisms, suggesting their potential as targets for parasite intervention.
Collapse
Affiliation(s)
- B E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria 3030, Australia.
| | | | | | | | | |
Collapse
|
44
|
Müller-Reichert T, Mäntler J, Srayko M, O'Toole E. Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 2008; 230:297-307. [PMID: 18445160 DOI: 10.1111/j.1365-2818.2008.01985.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The early Caenorhabditis elegans embryo is currently a popular model system to study centrosome assembly, kinetochore organization, spindle formation, and cellular polarization. Here, we present and review methods for routine electron microscopy and 3D analysis of the early C. elegans embryo. The first method uses laser-induced chemical fixation to preserve the fine structure of isolated embryos. This approach takes advantage of time-resolved fixation to arrest development at specific stages. The second method uses high-pressure freezing of whole worms followed by freeze-substitution (HPF-FS) for ultrastructural analysis. This technique allows staging of developing early embryos within the worm uterus, and has the advantage of superior sample preservation required for high-resolution 3D reconstruction. The third method uses a correlative approach to stage isolated, single embryos by light microscopy followed by HPF-FS and electron tomography. This procedure combines the advantages of time-resolved fixation and superior ultrastructural preservation by high-pressure freezing and allows a higher throughput electron microscopic analysis. The advantages and disadvantages of these methods for different applications are discussed.
Collapse
Affiliation(s)
- T Müller-Reichert
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
| | | | | | | |
Collapse
|
45
|
Wang B. [Recent advances in the study of spermatogenesis and fertilization in Caenorhabditis elegans]. YI CHUAN = HEREDITAS 2008; 30:677-86. [PMID: 18550488 DOI: 10.3724/sp.j.1005.2008.00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spermatogenesis in Caenorhabditis elegans, mainly consisting of meiosis and spermiogenesis (or sperm activation), is a complicated cell differentiation process. The germ cells develop into matured motile spermatozoa after the expression of specific genes during meiosis and protein posttranslational modification during spermiogenesis. The spermatozoa compete with each other, communicate with and finally fertilize the oocytes such that new individuals are generated. A group of mutants related to spermatogenesis, sperm motility and fertilization are obtained through the sterile screen. Some specific genes in spermatogenesis and fertilization have been cloned and their functions have been studied. C. elegans is an attractive model to dissect the complexities of spermatogenesis and fertilization. The advances in the study of C. elegans may give insights to important targets for the study of male infertility and contraceptives in humans.
Collapse
Affiliation(s)
- Bin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
46
|
Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, Haueter C, Zoghbi A, Harati Y, Kwan J, Miller MA, Bellen HJ. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 2008; 133:963-77. [PMID: 18555774 PMCID: PMC2494862 DOI: 10.1016/j.cell.2008.04.039] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/04/2008] [Accepted: 04/20/2008] [Indexed: 11/22/2022]
Abstract
VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
Collapse
Affiliation(s)
- Hiroshi Tsuda
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Sung Min Han
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Youfeng Yang
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Chao Tong
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Yong Qi Lin
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Kriti Mohan
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Claire Haueter
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Anthony Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
| | - Yadollah Harati
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Justin Kwan
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael A. Miller
- Department of Cell Biology, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, University of Alabama, Birmingham, Alabama
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
47
|
Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA. Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 2008; 318:38-51. [PMID: 18439994 PMCID: PMC2442018 DOI: 10.1016/j.ydbio.2008.02.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/16/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.
Collapse
Affiliation(s)
- Molly C. Jud
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Rachel A. Young
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Jeremy S. Bickel
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Emily L. Petty
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer M. Mason
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Brent A. Little
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Pamela A. Padilla
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Jennifer A. Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
48
|
Cheng H, Govindan JA, Greenstein D. Regulated trafficking of the MSP/Eph receptor during oocyte meiotic maturation in C. elegans. Curr Biol 2008; 18:705-714. [PMID: 18472420 PMCID: PMC2613949 DOI: 10.1016/j.cub.2008.04.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 01/15/2023]
Abstract
BACKGROUND In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and embryo production; sperm release the major sperm protein (MSP) signal to trigger meiotic resumption. Meiotic arrest depends on the parallel function of the oocyte VAB-1 MSP/Eph receptor and somatic G protein signaling. MSP promotes meiotic maturation by antagonizing Eph receptor signaling and counteracting inhibitory inputs from the gonadal sheath cells. RESULTS Here, we present evidence suggesting that in the absence of the MSP ligand, the VAB-1 Eph receptor inhibits meiotic maturation while either in or in transit to the endocytic-recycling compartment. VAB-1::GFP localization to the RAB-11-positive endocytic-recycling compartment is independent of ephrins but is antagonized by MSP signaling. Two negative regulators of oocyte meiotic maturation, DAB-1/Disabled and RAN-1, interact with the VAB-1 receptor and are required for its accumulation in the endocytic-recycling compartment in the absence of MSP or sperm (hereafter referred to as MSP/sperm). Inactivation of the endosomal recycling regulators rme-1 or rab-11.1 causes a vab-1-dependent reduction in the meiotic-maturation rate in the presence of MSP/sperm. Further, we show that Galpha(s) signaling in the gonadal sheath cells, which is required for meiotic maturation in the presence of MSP/sperm, affects VAB-1::GFP trafficking in oocytes. CONCLUSIONS Regulated endocytic trafficking of the VAB-1 MSP/Eph receptor contributes to the control of oocyte meiotic maturation in C. elegans. Eph receptor trafficking in other systems may be influenced by the conserved proteins DAB-1/Disabled and RAN-1 and by crosstalk with G protein signaling in neighboring cells.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - J Amaranath Govindan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455.
| |
Collapse
|
49
|
Abstract
Meiotic maturation and ovulation rates in Caenorhabditis elegans are regulated by a sperm-released gradient of major sperm protein (MSP). Recent work has provided insights into the modulation of the MSP signal by the trafficking of its receptor in oocytes.
Collapse
Affiliation(s)
- Julie S Hang
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Barth D Grant
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | - Andrew Singson
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
50
|
Lee MH, Ohmachi M, Arur S, Nayak S, Francis R, Church D, Lambie E, Schedl T. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 2007; 177:2039-62. [PMID: 18073423 PMCID: PMC2219468 DOI: 10.1534/genetics.107.081356] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022] Open
Abstract
The raison d'etre of the germline is to produce oocytes and sperm that pass genetic material and cytoplasmic constituents to the next generation. To achieve this goal, many developmental processes must be executed and coordinated. ERK, the terminal MAP kinase of a number of signaling pathways, controls many aspects of development. Here we present a comprehensive analysis of MPK-1 ERK in Caenorhabditis elegans germline development. MPK-1 functions in four developmental switches: progression through pachytene, oocyte meiotic maturation/ovulation, male germ cell fate specification, and a nonessential function of promoting the proliferative fate. MPK-1 also regulates multiple aspects of cell biology during oogenesis, including membrane organization and morphogenesis: organization of pachytene cells on the surface of the gonadal tube, oocyte organization and differentiation, oocyte growth control, and oocyte nuclear migration. MPK-1 activation is temporally/spatially dynamic and most processes appear to be controlled through sustained activation. MPK-1 thus may act not only in the control of individual processes but also in the coordination of contemporaneous processes and the integration of sequential processes. Knowledge of the dynamic activation and diverse functions of MPK-1 provides the foundation for identification of upstream signaling cascades responsible for region-specific activation and the downstream substrates that mediate the various processes.
Collapse
Affiliation(s)
- Min-Ho Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|