1
|
Di Maggio LS, Fischer K, Rosa BA, Yates D, Cho BK, Lukowski J, Zamacona Calderon A, Son M, Goo YA, Opoku NO, Weil GJ, Mitreva M, Fischer PU. Spatial proteomics of Onchocerca volvulus with pleomorphic neoplasms shows local and systemic dysregulation of protein expression. PLoS Negl Trop Dis 2025; 19:e0012929. [PMID: 40163807 PMCID: PMC11981190 DOI: 10.1371/journal.pntd.0012929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 04/09/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Onchocerca volvulus is the agent of onchocerciasis (river blindness) and targeted by WHO for elimination though mass drug administration with ivermectin. A small percentage of adult female worms develop pleomorphic neoplasms (PN) which occur more frequently after ivermectin treatment. Worms with PN have a lower life expectancy and improved understanding of proteins expressed in PN and their impact on different tissues could help elucidate the mechanisms of macrofilaricidal activity of ivermectin. Within paraffin embedded nodules removed after ivermectin treatment, we detected 24 (5.6%) O. volvulus females with PN. To assess the protein inventory of the PN and identify proteins potentially linked with tumor development, we used laser capture microdissection and highly sensitive mass spectrometry analysis. Three female worms were used to compare the protein profiles of three tissue types (body wall, uterus, and intestine) to the PN, and then to healthy female worms without PN. The healthy females showed all normal embryogenesis. In PN worms, 151 proteins were detected in the body wall, 215 proteins in the intestine, 47 proteins in the uterus and 1,577 proteins in the PN. Only the uterus of one PN female with some stretched intrauterine microfilariae had an elevated number of proteins (601) detectable, while in the uteri of the healthy females 1,710 proteins were detected. Even in tissues that were not directly affected by PN (intestine, body wall), fewer proteins were detected compared to the corresponding tissue of the healthy controls. Immunolocalization of calcium binding protein OvDig-1 (OVOC8391), which was identified through mass spectrometry as one of the proteins with the highest spectral counts in the PN tissue triplicates, allowed us to confirm the results using an independent method. In conclusion we identified proteins that are potentially linked to the development of PN, and systemic dysregulation of protein expression may contribute to worm mortality.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Devyn Yates
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica Lukowski
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Antonia Zamacona Calderon
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas O. Opoku
- Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gary J. Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
2
|
Di Maggio LS, Fischer K, Rosa BA, Yates D, Cho BK, Lukowski J, Calderon AZ, Son M, Goo YA, Opoku NO, Weil GJ, Mitreva M, Fischer PU. Spatial proteomics of Onchocerca volvulus with pleomorphic neoplasms shows local and systemic dysregulation of protein expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618383. [PMID: 39463952 PMCID: PMC11507698 DOI: 10.1101/2024.10.15.618383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Onchocerca volvulus is the agent of onchocerciasis (river blindness) and targeted by WHO for elimination though mass drug administration with ivermectin. A small percentage of adult worms develop pleomorphic neoplasms (PN) that are positively associated with the frequency of ivermectin treatment. Worms with PN have a lower life expectancy and a better understanding about the proteins expressed in PN, and how PN affect protein expression in different tissues could help to elucidate the mechanisms of macrofilaricidal activity of ivermectin. Within a clinical trial of drug combinations that included ivermectin, we detected 24 (5.6%) O. volvulus females with PN by histology of paraffin embedded nodules. To assess the protein inventory of the neoplasms and to identify proteins that may be associated with tumor development, we used laser capture microdissection and highly sensitive mass spectrometry analysis. Neoplasm tissue from three female worms was analyzed, and compared to normal tissues from the body wall, uterus and intestine from the same worms, and to tissues from three females without PN. The healthy females showed all intact embryogenesis. In PN worms, 151 proteins were detected in the body wall, 215 proteins in the intestine, 47 proteins in the uterus and 1,577 proteins in the neoplasms. Only the uterus of one PN female with some stretched intrauterine microfilariae had an elevated number of proteins (601) detectable, while in the uteri of the healthy females 1,710 proteins were detected. Even in tissues that were not directly affected by PN (intestine, body wall), fewer proteins were detected compared to the corresponding tissue of the healthy controls. Immunolocalization of the calcium binding protein OvDig-1 (OVOC8391) confirmed the detection in PN by mass spectrometry. In conclusion we identified proteins that are potentially linked to the development of PN, and systemic dysregulation of protein expression may contribute to worm mortality.
Collapse
Affiliation(s)
- Lucia S. Di Maggio
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerstin Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devyn Yates
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Jessica Lukowski
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Antonia Zamacona Calderon
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute, Washington University School of Medicine, St. Louis MO 63110
| | - Nicholas O. Opoku
- Fred Newton Binka School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Gary J. Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Heiman MG, Bülow HE. Dendrite morphogenesis in Caenorhabditis elegans. Genetics 2024; 227:iyae056. [PMID: 38785371 PMCID: PMC11151937 DOI: 10.1093/genetics/iyae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Garg P, Tan CH, Sternberg PW. DiI staining of sensory neurons in the entomopathogenic nematode Steinernema hermaphroditum. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000516. [PMID: 35224464 PMCID: PMC8874337 DOI: 10.17912/micropub.biology.000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/06/2022]
Abstract
Steinernema hermaphroditum entomopathogenic nematodes (EPN) and their Xenorhabdus griffiniae symbiotic bacteria have recently been shown to be a genetically tractable system for the study of both parasitic and mutualistic symbiosis. In their infective juvenile (IJ) stage, EPNs search for insect hosts to invade and quickly kill them with the help of the symbiotic bacteria they contain. The mechanisms behind these behaviors have not been well characterized, including how the nematodes sense their insect hosts. In the well-studied free‑living soil nematode Caenorhabditis elegans, ciliated amphid neurons enable the worms to sense their environment, including chemosensation. Some of these neurons have also been shown to control the decision to develop as a stress-resistant dauer larva, analogous to the infective juveniles of EPNs, or to exit from dauer and resume larval development. In C. elegans and other nematodes, dye-filling with DiI is an easy and efficient method to label these neurons. We developed a protocol for DiI staining of S. hermaphroditum sensory neurons. Using this method, we could identify neurons positionally analogous to the C. elegans amphid neurons ASI, ADL, ASK, ASJ, as well as inner labial neurons IL1 and IL2. Similar to findings in other EPNs, we also found that the IJs of S. hermaphroditum are dye-filling resistant.
Collapse
Affiliation(s)
- Pranjal Garg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA,
Current Address: All India Institutes of Medical Sciences, Rishikesh, Virbhadra Road, Rishikesh, Uttarakhand 249203, India
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA,
Correspondence to: Paul W. Sternberg ()
| |
Collapse
|
5
|
Loss of the Extracellular Matrix Protein DIG-1 Causes Glial Fragmentation, Dendrite Breakage, and Dendrite Extension Defects. J Dev Biol 2021; 9:jdb9040042. [PMID: 34698211 PMCID: PMC8544517 DOI: 10.3390/jdb9040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
The extracellular matrix (ECM) guides and constrains the shape of the nervous system. In C. elegans, DIG-1 is a giant ECM component that is required for fasciculation of sensory dendrites during development and for maintenance of axon positions throughout life. We identified four novel alleles of dig-1 in three independent screens for mutants affecting disparate aspects of neuronal and glial morphogenesis. First, we find that disruption of DIG-1 causes fragmentation of the amphid sheath glial cell in larvae and young adults. Second, it causes severing of the BAG sensory dendrite from its terminus at the nose tip, apparently due to breakage of the dendrite as animals reach adulthood. Third, it causes embryonic defects in dendrite fasciculation in inner labial (IL2) sensory neurons, as previously reported, as well as rare defects in IL2 dendrite extension that are enhanced by loss of the apical ECM component DYF-7, suggesting that apical and basolateral ECM contribute separately to dendrite extension. Our results highlight novel roles for DIG-1 in maintaining the cellular integrity of neurons and glia, possibly by creating a barrier between structures in the nervous system.
Collapse
|
6
|
Gallrein C, Iburg M, Michelberger T, Koçak A, Puchkov D, Liu F, Ayala Mariscal SM, Nayak T, Kaminski Schierle GS, Kirstein J. Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Prog Neurobiol 2020; 198:101907. [PMID: 32926945 DOI: 10.1016/j.pneurobio.2020.101907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aβ1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aβ is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aβ1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aβ1-42. Expression of Aβ1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aβ to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aβ aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aβ in these IL2 neurons systemically delays Aβ aggregation and pathology.
Collapse
Affiliation(s)
- Christian Gallrein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Manuel Iburg
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tim Michelberger
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Alen Koçak
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Dmytro Puchkov
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Fan Liu
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Sara Maria Ayala Mariscal
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany
| | - Tanmoyita Nayak
- University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany
| | - Gabriele S Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Janine Kirstein
- Leibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V., R.-Roessle-Strasse 10, Berlin, 13125, Germany; University of Bremen, Faculty 2, Cell Biology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
7
|
Yip ZC, Heiman MG. Ordered arrangement of dendrites within a C. elegans sensory nerve bundle. eLife 2018; 7:e35825. [PMID: 30117807 PMCID: PMC6133548 DOI: 10.7554/elife.35825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Biological systems are organized into well-ordered structures and can evolve new patterns when perturbed. To identify principles underlying biological order, we turned to C. elegans for its simple anatomy and powerful genetics. We developed a method to quantify the arrangement of three dendrites in the main sensory nerve bundle, and found that they exhibit a stereotyped arrangement throughout larval growth. Dendrite order does not require prominent features including sensory cilia and glial junctions. In contrast, loss of the cell adhesion molecule (CAM) CDH-4/Fat-like cadherin causes dendrites to be ordered randomly, despite remaining bundled. Loss of the CAMs PTP-3/LAR or SAX-7/L1CAM causes dendrites to adopt an altered order, which becomes increasingly random as animals grow. Misexpression of SAX-7 leads to subtle but reproducible changes in dendrite order. Our results suggest that combinations of CAMs allow dendrites to self-organize into a stereotyped arrangement and can produce altered patterns when perturbed.
Collapse
Affiliation(s)
- Zhiqi Candice Yip
- Division of Genetics and GenomicsBoston Children’s HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| | - Maxwell G Heiman
- Division of Genetics and GenomicsBoston Children’s HospitalBostonUnited States
- Department of GeneticsHarvard Medical SchoolBostonUnited States
| |
Collapse
|
8
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
9
|
Ethanol Stimulates Locomotion via a G αs-Signaling Pathway in IL2 Neurons in Caenorhabditis elegans. Genetics 2017; 207:1023-1039. [PMID: 28951527 PMCID: PMC5676223 DOI: 10.1534/genetics.117.300119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/21/2023] Open
Abstract
Alcohol abuse is among the top causes of preventable death, generating considerable financial, health, and societal burdens. Paradoxically, alcohol... Alcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative. The exact molecular mechanisms for the acute effects of ethanol on neurons, as either a stimulant or a sedative, however remain unclear. We investigated the role that the heat shock transcription factor HSF-1 played in determining a stimulatory phenotype of Caenorhabditis elegans in response to physiologically relevant concentrations of ethanol (17 mM; 0.1% v/v). Using genetic techniques, we demonstrate that either RNA interference of hsf-1 or use of an hsf-1(sy441) mutant lacked the enhancement of locomotion in response to acute ethanol exposure evident in wild-type animals. We identify that the requirement for HSF-1 in this phenotype was IL2 neuron-specific and required the downstream expression of the α-crystallin ortholog HSP-16.48. Using a combination of pharmacology, optogenetics, and phenotypic analyses we determine that ethanol activates a Gαs-cAMP-protein kinase A signaling pathway in IL2 neurons to stimulate nematode locomotion. We further implicate the phosphorylation of a specific serine residue (Ser322) on the synaptic protein UNC-18 as an end point for the Gαs-dependent signaling pathway. These findings establish and characterize a distinct neurosensory cell signaling pathway that determines the stimulatory action of ethanol and identifies HSP-16.48 and HSF-1 as novel regulators of this pathway.
Collapse
|
10
|
Armstrong SD, Xia D, Bah GS, Krishna R, Ngangyung HF, LaCourse EJ, McSorley HJ, Kengne-Ouafo JA, Chounna-Ndongmo PW, Wanji S, Enyong PA, Taylor DW, Blaxter ML, Wastling JM, Tanya VN, Makepeace BL. Stage-specific Proteomes from Onchocerca ochengi, Sister Species of the Human River Blindness Parasite, Uncover Adaptations to a Nodular Lifestyle. Mol Cell Proteomics 2016; 15:2554-75. [PMID: 27226403 PMCID: PMC4974336 DOI: 10.1074/mcp.m115.055640] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/30/2016] [Indexed: 12/13/2022] Open
Abstract
Despite 40 years of control efforts, onchocerciasis (river blindness) remains one of the most important neglected tropical diseases, with 17 million people affected. The etiological agent, Onchocerca volvulus, is a filarial nematode with a complex lifecycle involving several distinct stages in the definitive host and blackfly vector. The challenges of obtaining sufficient material have prevented high-throughput studies and the development of novel strategies for disease control and diagnosis. Here, we utilize the closest relative of O. volvulus, the bovine parasite Onchocerca ochengi, to compare stage-specific proteomes and host-parasite interactions within the secretome. We identified a total of 4260 unique O. ochengi proteins from adult males and females, infective larvae, intrauterine microfilariae, and fluid from intradermal nodules. In addition, 135 proteins were detected from the obligate Wolbachia symbiont. Observed protein families that were enriched in all whole body extracts relative to the complete search database included immunoglobulin-domain proteins, whereas redox and detoxification enzymes and proteins involved in intracellular transport displayed stage-specific overrepresentation. Unexpectedly, the larval stages exhibited enrichment for several mitochondrial-related protein families, including members of peptidase family M16 and proteins which mediate mitochondrial fission and fusion. Quantification of proteins across the lifecycle using the Hi-3 approach supported these qualitative analyses. In nodule fluid, we identified 94 O. ochengi secreted proteins, including homologs of transforming growth factor-β and a second member of a novel 6-ShK toxin domain family, which was originally described from a model filarial nematode (Litomosoides sigmodontis). Strikingly, the 498 bovine proteins identified in nodule fluid were strongly dominated by antimicrobial proteins, especially cathelicidins. This first high-throughput analysis of an Onchocerca spp. proteome across the lifecycle highlights its profound complexity and emphasizes the extremely close relationship between O. ochengi and O. volvulus The insights presented here provide new candidates for vaccine development, drug targeting and diagnostic biomarkers.
Collapse
Affiliation(s)
- Stuart D Armstrong
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Dong Xia
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Germanus S Bah
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Ritesh Krishna
- ¶Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Henrietta F Ngangyung
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - E James LaCourse
- ‖Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Henry J McSorley
- **The Queens Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4JT
| | - Jonas A Kengne-Ouafo
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | | | - Samuel Wanji
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon
| | - Peter A Enyong
- ‡‡Research Foundation for Tropical Diseases and Environment, PO Box 474 Buea, Cameroon; §§Tropical Medicine Research Station, Kumba, Cameroon
| | - David W Taylor
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ¶¶Division of Pathway Medicine, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- ‖‖Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Jonathan M Wastling
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK; ‡‡‡The National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L3 5RF, UK
| | - Vincent N Tanya
- §Institut de Recherche Agricole pour le Développement, Regional Centre of Wakwa, BP65 Ngaoundéré, Cameroon
| | - Benjamin L Makepeace
- From the ‡Institute of Infection & Global Health, University of Liverpool, Liverpool L3 5RF, UK;
| |
Collapse
|
11
|
Hall BA, Jackson E, Hajnal A, Fisher J. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis. J R Soc Interface 2014; 11:20140245. [PMID: 24966232 DOI: 10.1098/rsif.2014.0245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data.
Collapse
Affiliation(s)
| | - Ethan Jackson
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Jasmin Fisher
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
12
|
Díaz-Balzac CA, Lázaro-Peña MI, Tecle E, Gomez N, Bülow HE. Complex cooperative functions of heparan sulfate proteoglycans shape nervous system development in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1859-70. [PMID: 25098771 PMCID: PMC4199693 DOI: 10.1534/g3.114.012591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell adhesion molecule mutant in Kallmann syndrome, in Caenorhabditis elegans causes a highly penetrant, heparan sulfate-dependent axonal branching phenotype in AIY interneurons. In an extended forward genetic screen for modifiers of this phenotype, we identified alleles in new as well as previously identified genes involved in HS biosynthesis and modification, namely the xylosyltransferase sqv-6, the HS-6-O-sulfotransferase hst-6, and the HS-3-O-sulfotransferase hst-3.2. Cell-specific rescue experiments showed that different HS biosynthetic and modification enzymes can be provided cell-nonautonomously by different tissues to allow kal-1-dependent branching of AIY. In addition, we show that heparan sulfate proteoglycan core proteins that carry the heparan sulfate chains act genetically in a highly redundant fashion to mediate kal-1-dependent branching in AIY neurons. Specifically, lon-2/glypican and unc-52/perlecan act in parallel genetic pathways and display synergistic interactions with sdn-1/syndecan to mediate kal-1 function. Because all of these heparan sulfate core proteins have been shown to act in different tissues, these studies indicate that KAL-1/anosmin-1 requires heparan sulfate with distinct modification patterns of different cellular origin for function. Our results support a model in which a three-dimensional scaffold of heparan sulfate mediates KAL-1/anosmin-1 and intercellular communication through complex and cooperative interactions. In addition, the genes we have identified could contribute to the etiology of Kallmann syndrome in humans.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Eillen Tecle
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Nathali Gomez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, 10461 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| |
Collapse
|
13
|
Kagias K, Nehammer C, Pocock R. Neuronal responses to physiological stress. Front Genet 2012; 3:222. [PMID: 23112806 PMCID: PMC3481051 DOI: 10.3389/fgene.2012.00222] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 12/15/2022] Open
Abstract
Physiological stress can be defined as any external or internal condition that challenges the homeostasis of a cell or an organism. It can be divided into three different aspects: environmental stress, intrinsic developmental stress, and aging. Throughout life all living organisms are challenged by changes in the environment. Fluctuations in oxygen levels, temperature, and redox state for example, trigger molecular events that enable an organism to adapt, survive, and reproduce. In addition to external stressors, organisms experience stress associated with morphogenesis and changes in inner chemistry during normal development. For example, conditions such as intrinsic hypoxia and oxidative stress, due to an increase in tissue mass, have to be confronted by developing embryos in order to complete their development. Finally, organisms face the challenge of stochastic accumulation of molecular damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review the responses of neurons to various physiological stressors at the molecular and cellular level.
Collapse
Affiliation(s)
- Konstantinos Kagias
- Biotech Research and Innovation Centre, University of Copenhagen Copenhagen, Denmark
| | | | | |
Collapse
|
14
|
Neural maintenance roles for the matrix receptor dystroglycan and the nuclear anchorage complex in Caenorhabditis elegans. Genetics 2012; 190:1365-77. [PMID: 22298703 DOI: 10.1534/genetics.111.136184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar neurons during late embryonic and larval development. In the absence of DGN-1 the cell bodies of multiple lumbar neuron classes are frequently displaced anterior of their normal positions. Early but not later embryonic panneural expression of DGN-1 rescues positional maintenance, suggesting that dystroglycan is required for establishment of a critical maintenance pathway that persists throughout later developmental stages. Lumbar neural maintenance requires only a membrane-tethered N-terminal domain of DGN-1 and may involve a novel extracellular partner for dystroglycan. A genetic screen for similar lumbar maintenance mutants revealed a role for the nesprin/SYNE family protein ANC-1 as well as for the extracellular protein DIG-1, previously implicated in lumbar neuron maintenance. The involvement of ANC-1 reveals a previously unknown role for nucleus-cytoskeleton interactions in neural maintenance. Genetic analysis indicates that lumbar neuron position is maintained in late embryos by parallel DGN-1/DIG-1 and ANC-1-dependent pathways, and in larvae by separate DGN-1 and ANC-1 pathways. The effect of muscle paralysis on late embryonic- or larval-stage maintenance defects in mutants indicates that lumbar neurons are subject to both muscle contraction-dependent and contraction-independent displacement stresses, and that different maintenance pathways may protect against specific types of displacement stress.
Collapse
|
15
|
Abstract
Laser killing of cell nuclei has long been a powerful means of examining the roles of individual cells in C. elegans. Advances in genetics, laser technology, and imaging have further expanded the capabilities and usefulness of laser surgery. Here, we review the implementation and application of currently used methods for target edoptical disruption in C. elegans.
Collapse
|
16
|
Abstract
In animals, RFX transcription factors govern ciliogenesis by binding to an X-box motif in the promoters of ciliogenic genes. In Caenorhabditis elegans, the sole RFX transcription factor (TF) daf-19 null mutant lacks all sensory cilia, fails to express many ciliogenic genes, and is defective in many sensory behaviors, including male mating. The daf-19c isoform is expressed in all ciliated sensory neurons and is necessary and sufficient for activating X-box containing ciliogenesis genes. Here, we describe the daf-19(n4132) mutant that is defective in expression of the sensory polycystic kidney disease (PKD) gene battery and male mating behavior, without affecting expression of ciliogenic genes or ciliogenesis. daf-19(n4132) disrupts expression of a new isoform, daf-19m (for function in male mating). daf-19m is expressed in male-specific PKD and core IL2 neurons via internal promoters and remote enhancer elements located in introns of the daf-19 genomic locus. daf-19m genetically programs the sensory functions of a subset of ciliated neurons, independent of daf-19c. In the male-specific HOB neuron, DAF-19(M) acts downstream of the zinc finger TF EGL-46, indicating that a TF cascade controls the PKD gene battery in this cell-type specific context. We conclude that the RFX TF DAF-19 regulates ciliogenesis via X-box containing ciliogenic genes and controls ciliary specialization by regulating non-X-box containing sensory genes. This study reveals a more extensive role for RFX TFs in generating fully functional cilia.
Collapse
|
17
|
Genetics of extracellular matrix remodeling during organ growth using the Caenorhabditis elegans pharynx model. Genetics 2010; 186:969-82. [PMID: 20805556 DOI: 10.1534/genetics.110.120519] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organs of animal embryos are typically covered with an extracellular matrix (ECM) that must be carefully remodeled as these organs enlarge during post-embryonic growth; otherwise, their shape and functions may be compromised. We previously described the twisting of the Caenorhabditis elegans pharynx (here called the Twp phenotype) as a quantitative mutant phenotype that worsens as that organ enlarges during growth. Mutations previously known to cause pharyngeal twist affect membrane proteins with large extracellular domains (DIG-1 and SAX-7), as well as a C. elegans septin (UNC-61). Here we show that two novel alleles of the C. elegans papilin gene, mig-6(et4) and mig-6(sa580), can also cause the Twp phenotype. We also show that overexpression of the ADAMTS protease gene mig-17 can suppress the pharyngeal twist in mig-6 mutants and identify several alleles of other ECM-related genes that can cause or influence the Twp phenotype, including alleles of fibulin (fbl-1), perlecan (unc-52), collagens (cle-1, dpy-7), laminins (lam-1, lam-3), one ADAM protease (sup-17), and one ADAMTS protease (adt-1). The Twp phenotype in C. elegans is easily monitored using light microscopy, is quantitative via measurements of the torsion angle, and reveals that ECM components, metalloproteinases, and ECM attachment molecules are important for this organ to retain its correct shape during post-embryonic growth. The Twp phenotype is therefore a promising experimental system to study ECM remodeling and diseases.
Collapse
|
18
|
Hurd DD, Miller RM, Núñez L, Portman DS. Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans. Genetics 2010; 185:883-96. [PMID: 20421600 PMCID: PMC2907207 DOI: 10.1534/genetics.110.116996] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/06/2023] Open
Abstract
Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes--the alpha-tubulins TBA-6 and TBA-9 and the beta-tubulin TBB-4--are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia.
Collapse
Affiliation(s)
- Daryl D. Hurd
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Renee M. Miller
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Lizbeth Núñez
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Douglas S. Portman
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| |
Collapse
|
19
|
Tong YG, Bürglin TR. Conditions for dye-filling of sensory neurons in Caenorhabditis elegans. J Neurosci Methods 2010; 188:58-61. [PMID: 20149821 DOI: 10.1016/j.jneumeth.2010.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/05/2023]
Abstract
Dye-filling is a common method used to stain Caenorhabditis elegans sensory neurons in vivo. While the amphids and phasmids are easy to stain, a subset of sensory neurons, the IL2 neurons, are difficult to stain reproducibly. Here we examined the conditions under which the IL2 neurons take up the lipophilic fluorescent dye DiI. We find that IL2 dye-filling depends on salt concentration, but not osmolarity. Low salt prior and during incubation is important for efficient dye uptake. Additional parameters that affect dye-filling are the speed of shaking during incubation and the addition of detergents. Our modified dye-filling procedure provides a reliable method to distinguish mutant alleles that stain amphids and phasmids, IL2 neurons, or both. An additional benefit is that it can also stain the excretory duct. The method allows genetic screens to be performed to identify mutants that selectively affect only one of the sensory structures or the excretory duct.
Collapse
Affiliation(s)
- Yong-Guang Tong
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | |
Collapse
|
20
|
Abstract
Neuronal circuitries established in development must persist throughout life. This poses a serious challenge to the structural integrity of an embryonically patterned nervous system as an animal dramatically increases its size postnatally, remodels parts of its anatomy, and incorporates new neurons. In addition, body movements, injury, and ageing generate physical stress on the nervous system. Specific molecular pathways maintain intrinsic properties of neurons in the mature nervous system. Other factors ensure that the overall organization of entire neuronal ensembles into ganglia and fascicles is appropriately maintained upon external challenges. Here, we discuss different molecules underlying these neuronal maintenance mechanisms, with a focus on lessons learned from the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Claire Bénard
- Department of Biochemistry, Howard Hughes Medical Institute, Columbia University Medical Center, New York, USA
| | | |
Collapse
|
21
|
The twisted pharynx phenotype in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2007; 7:61. [PMID: 17540043 PMCID: PMC1904197 DOI: 10.1186/1471-213x-7-61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 11/10/2022]
Abstract
Background The pharynx of C. elegans is an epithelial tube whose development has been compared to that of the embryonic heart and the kidney and hence serves as an interesting model for organ development. Several C. elegans mutants have been reported to exhibit a twisted pharynx phenotype but no careful studies have been made to directly address this phenomenon. In this study, the twisting mutants dig-1, mig-4, mnm-4 and unc-61 are examined in detail and the nature of the twist is investigated. Results We find that the twisting phenotype worsens throughout larval development, that in most mutants the pharynx retains its twist when dissected away from the worm body, and that double mutants between mnm-4 and mutants with thickened pharyngeal domains (pha-2 and sma-1) have less twisting in these regions. We also describe the ultrastructure of pharyngeal tendinous organs that connect the pharyngeal basal lamina to that of the body wall, and show that these are pulled into a spiral orientation by twisted pharynges. Within twisted pharynges, actin filaments also show twisting and are longer than in controls. In a mini screen of adhesionmolecule mutants, we also identified one more twisting pharynx mutant, sax-7. Conclusion Defects in pharyngeal cytoskeleton length or its anchor points to the extracellular matrix are proposed as the actual source of the twisting force. The twisted pharynx is a useful and easy-to-score phenotype for genes required in extracellular adhesion or organ attachment, and perhaps forgenes required for cytoskeleton regulation.
Collapse
|