1
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
2
|
Goutas A, Trachana V. Stem cells' centrosomes: How can organelles identified 130 years ago contribute to the future of regenerative medicine? World J Stem Cells 2021; 13:1177-1196. [PMID: 34630857 PMCID: PMC8474719 DOI: 10.4252/wjsc.v13.i9.1177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
At the core of regenerative medicine lies the expectation of repair or replacement of damaged tissues or whole organs. Donor scarcity and transplant rejection are major obstacles, and exactly the obstacles that stem cell-based therapy promises to overcome. These therapies demand a comprehensive understanding of the asymmetric division of stem cells, i.e. their ability to produce cells with identical potency or differentiated cells. It is believed that with better understanding, researchers will be able to direct stem cell differentiation. Here, we describe extraordinary advances in manipulating stem cell fate that show that we need to focus on the centrosome and the centrosome-derived primary cilium. This belief comes from the fact that this organelle is the vehicle that coordinates the asymmetric division of stem cells. This is supported by studies that report the significant role of the centrosome/cilium in orchestrating signaling pathways that dictate stem cell fate. We anticipate that there is sufficient evidence to place this organelle at the center of efforts that will shape the future of regenerative medicine.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece.
| |
Collapse
|
3
|
Ogut E, Barut C. Trifurcation of the facial artery at the inferior border of the mandible: a case report. Surg Radiol Anat 2021; 43:451-454. [PMID: 33399916 DOI: 10.1007/s00276-020-02652-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The facial artery is known to show variations in its origin, course, termination, and branching pattern. This study aimed to present a case with trifurcation of the facial artery at the inferior border of the mandible accompanied by variable branches. METHODS During our routine head dissection, it was observed that a 67-year-old male cadaver had a trifurcation of the facial artery at the level of the lower border of the mandible on the left. The skin was reflected, and the subcutaneous fatty tissue and subcutaneous layers were dissected to reveal the triple facial artery. RESULTS The left facial artery arising from the external carotid artery entered the face with three branches as it crossed the lower border of the mandible. The three branches are the anterior, intermediate, and posterior branches. The posterior branch passed in front of the anterior border of the masseter muscle along with the facial vein and gave off muscular branches with a straight course, whereas the anterior thickest curved branch terminated by the inferior labial artery, and a tortuous intermediate branch initially gave off the superior labial artery and then terminated by the angular artery. CONCLUSION Understanding these variational branches of the triple facial artery and their relationships is crucial for avoiding complications in reconstructive and reparative maxillofacial, craniofacial and plastic surgery in order to mitigate the risk of damage to the facial artery during flap surgery.
Collapse
Affiliation(s)
- E Ogut
- Department of Anatomy, School of Medicine, Bahcesehir University, 34734, Istanbul, Turkey
| | - Cagatay Barut
- Department of Anatomy, School of Medicine, Bahcesehir University, 34734, Istanbul, Turkey.
| |
Collapse
|
4
|
Ogut E, Barut C. Trifurcation of the facial artery at the inferior border of the mandible: a case report. Surg Radiol Anat 2021; 43:451-454. [DOI: https:/doi.org/10.1007/s00276-020-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/08/2020] [Indexed: 07/22/2023]
|
5
|
Role of Hedgehog Signaling in Vasculature Development, Differentiation, and Maintenance. Int J Mol Sci 2019; 20:ijms20123076. [PMID: 31238510 PMCID: PMC6627637 DOI: 10.3390/ijms20123076] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The role of Hedgehog (Hh) signaling in vascular biology has first been highlighted in embryos by Pepicelli et al. in 1998 and Rowitch et al. in 1999. Since then, the proangiogenic role of the Hh ligands has been confirmed in adults, especially under pathologic conditions. More recently, the Hh signaling has been proposed to improve vascular integrity especially at the blood–brain barrier (BBB). However, molecular and cellular mechanisms underlying the role of the Hh signaling in vascular biology remain poorly understood and conflicting results have been reported. As a matter of fact, in several settings, it is currently not clear whether Hh ligands promote vessel integrity and quiescence or destabilize vessels to promote angiogenesis. The present review relates the current knowledge regarding the role of the Hh signaling in vasculature development, maturation and maintenance, discusses the underlying proposed mechanisms and highlights controversial data which may serve as a guideline for future research. Most importantly, fully understanding such mechanisms is critical for the development of safe and efficient therapies to target the Hh signaling in both cancer and cardiovascular/cerebrovascular diseases.
Collapse
|
6
|
Fraser AM, Davey MG. TALPID3 in Joubert syndrome and related ciliopathy disorders. Curr Opin Genet Dev 2019; 56:41-48. [DOI: 10.1016/j.gde.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
|
7
|
Tickle C, Towers M. Sonic Hedgehog Signaling in Limb Development. Front Cell Dev Biol 2017; 5:14. [PMID: 28293554 PMCID: PMC5328949 DOI: 10.3389/fcell.2017.00014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 02/04/2023] Open
Abstract
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Currently there are several models for how Shh specifies positional values over time in the limb buds of chick and mouse embryos and how this is integrated with growth. Extensive work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it remains unclear how antero-posterior positional values are encoded and then interpreted to give the particular structure appropriate to that position, for example, the type of digit. A distant cis-regulatory enhancer controls limb-bud-specific expression of Shh and the discovery of increasing numbers of interacting transcription factors indicate complex spatiotemporal regulation. Altered Shh signaling is implicated in clinical conditions with congenital limb defects and in the evolution of the morphological diversity of vertebrate limbs.
Collapse
Affiliation(s)
- Cheryll Tickle
- Department of Biology and Biochemistry, University of BathBath, UK
| | - Matthew Towers
- Department of Biomedical Science, The Bateson Centre, University of SheffieldWestern Bank, Sheffield, UK
| |
Collapse
|
8
|
Wang L, Lee K, Malonis R, Sanchez I, Dynlacht BD. Tethering of an E3 ligase by PCM1 regulates the abundance of centrosomal KIAA0586/Talpid3 and promotes ciliogenesis. eLife 2016; 5. [PMID: 27146717 PMCID: PMC4858382 DOI: 10.7554/elife.12950] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/18/2016] [Indexed: 12/15/2022] Open
Abstract
To elucidate the role of centriolar satellites in ciliogenesis, we deleted the gene encoding the PCM1 protein, an integral component of satellites. PCM1 null human cells show marked defects in ciliogenesis, precipitated by the loss of specific proteins from satellites and their relocation to centrioles. We find that an amino-terminal domain of PCM1 can restore ciliogenesis and satellite localization of certain proteins, but not others, pinpointing unique roles for PCM1 and a group of satellite proteins in cilium assembly. Remarkably, we find that PCM1 is essential for tethering the E3 ligase, Mindbomb1 (Mib1), to satellites. In the absence of PCM1, Mib1 destabilizes Talpid3 through poly-ubiquitylation and suppresses cilium assembly. Loss of PCM1 blocks ciliogenesis by abrogating recruitment of ciliary vesicles associated with the Talpid3-binding protein, Rab8, which can be reversed by inactivating Mib1. Thus, PCM1 promotes ciliogenesis by tethering a key E3 ligase to satellites and restricting it from centrioles. DOI:http://dx.doi.org/10.7554/eLife.12950.001
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, United States
| | - Kwanwoo Lee
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, United States
| | - Ryan Malonis
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, United States
| | - Irma Sanchez
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, United States
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, United States
| |
Collapse
|
9
|
Bodle JC, Loboa EG. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies. Stem Cells 2016; 34:1445-54. [PMID: 26866419 DOI: 10.1002/stem.2341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,College of Engineering University of Missouri, Columbia Columbia, Missouri, USA
| |
Collapse
|
10
|
Schock EN, Chang CF, Youngworth IA, Davey MG, Delany ME, Brugmann SA. Utilizing the chicken as an animal model for human craniofacial ciliopathies. Dev Biol 2015; 415:326-337. [PMID: 26597494 DOI: 10.1016/j.ydbio.2015.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/13/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
The chicken has been a particularly useful model for the study of craniofacial development and disease for over a century due to their relatively large size, accessibility, and amenability for classical bead implantation and transplant experiments. Several naturally occurring mutant lines with craniofacial anomalies also exist and have been heavily utilized by developmental biologist for several decades. Two of the most well known lines, talpid(2) (ta(2)) and talpid(3) (ta(3)), represent the first spontaneous mutants to have the causative genes identified. Despite having distinct genetic causes, both mutants have recently been identified as ciliopathic. Excitingly, both of these mutants have been classified as models for human craniofacial ciliopathies: Oral-facial-digital syndrome (ta(2)) and Joubert syndrome (ta(3)). Herein, we review and compare these two models of craniofacial disease and highlight what they have revealed about the molecular and cellular etiology of ciliopathies. Furthermore, we outline how applying classical avian experiments and new technological advances (transgenics and genome editing) with naturally occurring avian mutants can add a tremendous amount to what we currently know about craniofacial ciliopathies.
Collapse
Affiliation(s)
- Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ingrid A Youngworth
- College of Agricultural and Environmental Sciences, Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, UK
| | - Mary E Delany
- College of Agricultural and Environmental Sciences, Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Stephen LA, Tawamie H, Davis GM, Tebbe L, Nürnberg P, Nürnberg G, Thiele H, Thoenes M, Boltshauser E, Uebe S, Rompel O, Reis A, Ekici AB, McTeir L, Fraser AM, Hall EA, Mill P, Daudet N, Cross C, Wolfrum U, Jamra RA, Davey MG, Bolz HJ. TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). eLife 2015; 4. [PMID: 26386247 PMCID: PMC4641851 DOI: 10.7554/elife.08077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/19/2015] [Indexed: 12/30/2022] Open
Abstract
Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects. DOI:http://dx.doi.org/10.7554/eLife.08077.001 Joubert syndrome is a rare and severe neurodevelopmental disease in which two parts of the brain called the cerebellar vermis and brainstem do not develop properly. The disease is caused by defects in the formation of small projections from the surface of cells, called cilia, which are essential for signalling processes inside cells. Mutations in at least 25 genes are known to cause Joubert syndrome, and all encode proteins that create or maintain cilia. However, these mutations account for only half of the cases that have been studied, which indicates that mutations in other genes may also cause Joubert syndrome. Here, Stephen et al. used genetic techniques called ‘homozygosity mapping’ and ‘whole-exome sequencing’ to search for other mutations that might cause the disease. They found that mutations in a gene encoding a protein called KIAA0586 also cause Joubert syndrome in humans. One of these mutations (c.428delG) is unexpectedly common in the healthy human population. It might be a major contributor to Joubert syndrome, and the manifestation of Joubert syndrome in individuals with this mutation might depend on the presence and nature of other mutations in KIAA0586 and in other genes. The TALPID3 protein in chickens and other ‘model’ animals is the equivalent of human KIAA0586. A loss of TALPID3 protein in animals has been shown to stop cilia from forming. This protein is found in a structure called the basal body, which is part of a larger structure called the centrosome that anchors cilia to the cell. Here, Stephen et al. show that this is also true in mouse and human eye cells. Further experiments using chicken embryos show that a loss of the TALPID3 protein alters the location of centrosomes inside cells. TALPID3 is also required for cells and organs to develop the correct polarity, that is, directional differences in their structure and shape. The centrosomes of chicken brain cells that lacked TALPID3 were poorly positioned at the cell surface and abnormally long, which is likely responsible for the cilia failing to form. Stephen et al.'s findings suggest that KIAA0586 is also important for human development through its ability to control the centrosome. Defects in TALPID3 have a more severe effect on animal models than many of the identified KIAA0586 mutations have on humans. Therefore, the next step in this research is to find a more suitable animal in which to study the role of this protein, which may inform efforts to develop treatments for Joubert syndrome. DOI:http://dx.doi.org/10.7554/eLife.08077.002
Collapse
Affiliation(s)
- Louise A Stephen
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Hasan Tawamie
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gemma M Davis
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Lars Tebbe
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Gudrun Nürnberg
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michaela Thoenes
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Eugen Boltshauser
- Department of Paediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Rompel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lynn McTeir
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy M Fraser
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emma A Hall
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| | - Courtney Cross
- School of Osteopathic Medicine, A.T. Still University, Mesa, United States
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Centogene, Rostock, Germany.,Institute of Human Genetics, Leipzig University, Leipzig, Germany
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Hanno J Bolz
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany.,Bioscientia Center for Human Genetics, Bioscientia International Business, Ingelheim am Rhein, Germany
| |
Collapse
|
12
|
Malicdan MCV, Vilboux T, Stephen J, Maglic D, Mian L, Konzman D, Guo J, Yildirimli D, Bryant J, Fischer R, Zein WM, Snow J, Vemulapalli M, Mullikin JC, Toro C, Solomon BD, Niederhuber JE, Gahl WA, Gunay-Aygun M. Mutations in human homologue of chicken talpid3 gene (KIAA0586) cause a hybrid ciliopathy with overlapping features of Jeune and Joubert syndromes. J Med Genet 2015; 52:830-9. [PMID: 26386044 DOI: 10.1136/jmedgenet-2015-103316] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/24/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND In chicken, loss of TALPID3 results in non-functional cilia and short-rib polydactyly syndrome. This phenotype is caused by a frameshift mutation in the chicken ortholog of the human KIAA0586 gene, which encodes a novel coiled-coil domain protein essential for primary ciliogenesis, suggesting that KIAA0586 can be associated with ciliopathy in human beings. METHODS In our patients with ciliopathy (http://www.clinicaltrials.gov: NCT00068224), we have collected extensive clinical and neuroimaging data from affected individuals, and performed whole exome sequencing on DNA from affected individuals and their parents. We analysed gene expression on fibroblast cell line, and determined the effect of gene mutation on ciliogenesis in cells derived from patients. RESULTS We identified biallelic mutations in the human TALPID3 ortholog, KIAA0586, in six children with findings of overlapping Jeune and Joubert syndromes. Fibroblasts cultured from one of the patients with Jeune-Joubert syndrome exhibited more severe cilia defects than fibroblasts from patients with only Joubert syndrome; this difference was reflected in KIAA0586 RNA expression levels. Rescue of the cilia defect with full-length wild type KIAA0586 indicated a causal link between cilia formation and KIAA0586 function. CONCLUSIONS Our results show that biallelic deleterious mutations in KIAA0586 lead to Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Furthermore, our results confirm that KIAA0586/TALPID3 is essential in cilia formation in human beings, expand the KIAA0586 phenotype to include features of Jeune syndrome and provide a pathogenetic connection between Joubert and Jeune syndromes, based on aberrant ciliogenesis.
Collapse
Affiliation(s)
- May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thierry Vilboux
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - Joshi Stephen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dino Maglic
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Luhe Mian
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Konzman
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Guo
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Deniz Yildirimli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joy Bryant
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roxanne Fischer
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Snow
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin D Solomon
- Division of Medical Genomics, Inova Translational Medicine Institute, Falls Church, Virginia, USA
| | - John E Niederhuber
- Inova Translational Medicine Institute, Inova Health System, Falls Church, Virginia, USA
| | | | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda, Maryland, USA Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Chang CF, Schock EN, O'Hare EA, Dodgson J, Cheng HH, Muir WM, Edelmann RE, Delany ME, Brugmann SA. The cellular and molecular etiology of the craniofacial defects in the avian ciliopathic mutant talpid2. Development 2014; 141:3003-12. [PMID: 25053433 PMCID: PMC4197679 DOI: 10.1242/dev.105924] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/28/2014] [Indexed: 12/23/2022]
Abstract
talpid(2) is an avian autosomal recessive mutant with a myriad of congenital malformations, including polydactyly and facial clefting. Although phenotypically similar to talpid(3), talpid(2) has a distinct facial phenotype and an unknown cellular, molecular and genetic basis. We set out to determine the etiology of the craniofacial phenotype of this mutant. We confirmed that primary cilia were disrupted in talpid(2) mutants. Molecularly, we found disruptions in Hedgehog signaling. Post-translational processing of GLI2 and GLI3 was aberrant in the developing facial prominences. Although both GLI2 and GLI3 processing were disrupted in talpid(2) mutants, only GLI3 activator levels were significantly altered in the nucleus. Through additional fine mapping and whole-genome sequencing, we determined that the talpid(2) phenotype was linked to a 1.4 Mb region on GGA1q that contained the gene encoding the ciliary protein C2CD3. We cloned the avian ortholog of C2CD3 and found its expression was ubiquitous, but most robust in the developing limbs and facial prominences. Furthermore, we found that C2CD3 is localized proximal to the ciliary axoneme and is important for docking the mother centriole to the ciliary vesicle and cell membrane. Finally, we identified a 19 bp deletion in talpid(2) C2CD3 that produces a premature stop codon, and thus a truncated protein, as the likely causal allele for the phenotype. Together, these data provide insight into the cellular, molecular and genetic etiology of the talpid(2) phenotype. Our data suggest that, although the talpid(2) and talpid(3) mutations affect a common ciliogenesis pathway, they are caused by mutations in different ciliary proteins that result in differences in craniofacial phenotype.
Collapse
Affiliation(s)
- Ching-Fang Chang
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elizabeth A O'Hare
- College of Agricultural and Environmental Sciences, Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Jerry Dodgson
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Hans H Cheng
- USDA Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - William M Muir
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard E Edelmann
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH 45056, USA
| | - Mary E Delany
- College of Agricultural and Environmental Sciences, Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
14
|
Stephen LA, Davis GM, McTeir KE, James J, McTeir L, Kierans M, Bain A, Davey MG. Failure of centrosome migration causes a loss of motile cilia in talpid(3) mutants. Dev Dyn 2013; 242:923-31. [PMID: 23613203 DOI: 10.1002/dvdy.23980] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2013] [Accepted: 04/13/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Loss of function mutations in the centrosomal protein TALPID3 (KIAA0586) cause a failure of primary cilia formation in animal models and are associated with defective Hedgehog signalling. It is unclear, however, if TALPID3 is required only for primary cilia formation or if it is essential for all ciliogenesis, including that of motile cilia in multiciliate cells. RESULTS FOXJ1, a key regulator of multiciliate cell fate, is expressed in the dorsal neuroectoderm of the chicken forebrain and hindbrain at stage 20HH, in areas that will give rise to choroid plexuses in both wt and talpid(3) embryos. Wt ependymal cells of the prosencephalic choroid plexuses subsequently transition from exhibiting single short cilia to multiple long motile cilia at 29HH (E8). Primary cilia and long motile cilia were only rarely observed on talpid(3) ependymal cells. Electron microscopy determined that talpid(3) ependymal cells do develop multiple centrosomes in accordance with FOXJ1 expression, but these fail to migrate to the apical surface of ependymal cells although axoneme formation was sometimes observed. CONCLUSIONS TALPID3, which normally localises to the proximal centrosome, is essential for centrosomal migration prior to ciliogenesis but is not directly required for de novo centriologenesis, multiciliated fate, or axoneme formation.
Collapse
Affiliation(s)
- Louise A Stephen
- Division of Developmental Biology, The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sasai N, Briscoe J. Primary cilia and graded Sonic Hedgehog signaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:753-72. [PMID: 23799571 DOI: 10.1002/wdev.43] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
16
|
Ruat M, Roudaut H, Ferent J, Traiffort E. Hedgehog trafficking, cilia and brain functions. Differentiation 2012; 83:S97-104. [DOI: 10.1016/j.diff.2011.11.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
17
|
Bangs F, Antonio N, Thongnuek P, Welten M, Davey MG, Briscoe J, Tickle C. Generation of mice with functional inactivation of talpid3, a gene first identified in chicken. Development 2011; 138:3261-72. [PMID: 21750036 PMCID: PMC3133916 DOI: 10.1242/dev.063602] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2011] [Indexed: 01/28/2023]
Abstract
Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.
Collapse
Affiliation(s)
- Fiona Bangs
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Nicole Antonio
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Peerapat Thongnuek
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Monique Welten
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Megan G. Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - James Briscoe
- Developmental Neurobiology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Cheryll Tickle
- Biology and Biochemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
18
|
Primary cilia and organogenesis: is Hedgehog the only sculptor? Cell Tissue Res 2011; 345:21-40. [PMID: 21638207 DOI: 10.1007/s00441-011-1192-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/12/2011] [Indexed: 12/23/2022]
Abstract
The primary cilium is a small microtubule-based organelle projecting from the plasma membrane of practically all cells in the mammalian body. In the past 8 years, a flurry of papers has indicated a crucial role of this long-neglected organelle in the development of a wide variety of organs, including derivatives of all three germ layers. A common theme of these studies is the critical dependency of signal transduction of the Hedgehog pathway upon functionally intact cilia to regulate organogenesis. Another common theme is the role that the cilium plays, not necessarily in the determination of the embryonic anlagen of these organs, although this too occurs but rather in the proliferation and morphogenesis of the previously determined organ. We outline the various organ systems that are dependent upon primary cilia for their proper development and we discuss the cilia-dependent roles that Sonic and Indian Hedgehog play in these processes. In addition and most importantly for the field, we discuss the controversial involvement of another major developmental pathway, Wnt signaling, in cilia-dependent organogenesis.
Collapse
|
19
|
Dunn IC, Paton IR, Clelland AK, Sebastian S, Johnson EJ, McTeir L, Windsor D, Sherman A, Sang H, Burt DW, Tickle C, Davey MG. The chicken polydactyly (Po) locus causes allelic imbalance and ectopic expression of Shh during limb development. Dev Dyn 2011; 240:1163-72. [PMID: 21465618 DOI: 10.1002/dvdy.22623] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2011] [Indexed: 12/18/2022] Open
Abstract
Point mutations in the intronic ZRS region of Lmbr1, a limb specific cis-regulatory element of Sonic hedgehog (Shh), are associated with polydactyly in humans, cats, and mice. We and others have recently mapped the dominant preaxial polydactyly (Po) locus in Silkie chickens to a single nucleotide polymorphism (SNP) in the ZRS region. Using polymorphisms in the chicken Shh sequence, we confirm that the ZRS region directly regulates Shh expression in the developing limb causing ectopic Shh expression in the anterior leg, prolonged Shh expression in the posterior limb, and allelic imbalance between wt and Slk Shh alleles in heterozygote limbs. Using Silkie legs, we have explored the consequences of increased Shh expression in the posterior leg on the patterning of the toes, and the induction of preaxial polydactyly.
Collapse
Affiliation(s)
- Ian C Dunn
- Division of Genetics and Genomics, The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bangs F, Welten M, Davey MG, Fisher M, Yin Y, Downie H, Paton B, Baldock R, Burt DW, Tickle C. Identification of genes downstream of the Shh signalling in the developing chick wing and syn-expressed with Hoxd13 using microarray and 3D computational analysis. Mech Dev 2010; 127:428-41. [PMID: 20708683 DOI: 10.1016/j.mod.2010.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 02/04/2023]
Abstract
Sonic hedgehog (Shh) signalling by the polarizing region at the posterior margin of the chick wing bud is pivotal in patterning the digits but apart from a few key downstream genes, such as Hoxd13, which is expressed in the posterior region of the wing that gives rise to the digits, the genes that mediate the response to Shh signalling are not known. To find genes that are co-expressed with Hoxd13 in the posterior of chick wing buds and regulated in the same way, we used microarrays to compare gene expression between anterior and posterior thirds of wing buds from normal chick embryos and from polydactylous talpid³ mutant chick embryos, which have defective Shh signalling due to lack of primary cilia. We identified 1070 differentially expressed gene transcripts, which were then clustered. Two clusters contained genes predominantly expressed in posterior thirds of normal wing buds; in one cluster, genes including Hoxd13, were expressed at high levels in anterior and posterior thirds in talpid³ wing buds, in the other cluster, genes including Ptc1, were expressed at low levels in anterior and posterior thirds in talpid³ wing buds. Expression patterns of genes in these two clusters were validated in normal and talpid³ mutant wing buds by in situ hybridisation and demonstrated to be responsive to application of Shh. Expression of several genes in the Hoxd13 cluster was also shown to be responsive to manipulation of protein kinase A (PKA) activity, thus demonstrating regulation by Gli repression. Genes in the Hoxd13 cluster were then sub-clustered by computational comparison of 3D expression patterns in normal wing buds to produce syn-expression groups. Hoxd13 and Sall1 are syn-expressed in the posterior region of early chick wing buds together with 6 novel genes which are likely to be functionally related and represent secondary targets of Shh signalling. Other groups of syn-expressed genes were also identified, including a group of genes involved in vascularisation.
Collapse
Affiliation(s)
- Fiona Bangs
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010; 11:331-44. [PMID: 20395968 DOI: 10.1038/nrg2774] [Citation(s) in RCA: 1428] [Impact Index Per Article: 95.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The primary cilium has recently stepped into the spotlight, as a flood of data show that this organelle has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for hedgehog signal transduction. The formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The cilium therefore represents a nexus for signalling pathways during development. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
22
|
Lamont RE, Vu W, Carter AD, Serluca FC, MacRae CA, Childs SJ. Hedgehog signaling via angiopoietin1 is required for developmental vascular stability. Mech Dev 2010; 127:159-68. [PMID: 20156556 DOI: 10.1016/j.mod.2010.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The molecular pathways by which newly formed, immature endothelial cell tubes remodel to form a mature network of vessels supported by perivascular mural cells are not well understood. The zebrafish iguana (igu) genetic mutant has a mutation in the daz-interacting protein 1 (dzip1), a member of the hedgehog signaling pathway. Loss of dzip1 results in decreased size of the cranial dorsal aortae, ultrastructural defects in perivascular mural cell recruitment and subsequent hemorrhage. Although hedgehog signaling is disrupted in igu mutants, we find no defects in vessel patterning or artery-vein specification. Rather, we show that the loss of angiopoietin1 (angpt1) expression in ventral perivascular mesenchyme is responsible for vascular instability in igu mutants. Over-expression of angpt1 or partial down-regulation of the endogenous Angpt1 antagonist angpt2 rescues hemorrhage. This is the first direct in vivo link between hedgehog signaling and the induction of vascular stability by recruitment of perivascular mural cells through angiopoietin signaling.
Collapse
Affiliation(s)
- Ryan E Lamont
- Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
23
|
New directions in craniofacial morphogenesis. Dev Biol 2009; 341:84-94. [PMID: 19941846 DOI: 10.1016/j.ydbio.2009.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 01/15/2023]
Abstract
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Collapse
|
24
|
Yin Y, Bangs F, Paton IR, Prescott A, James J, Davey MG, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 2009; 136:655-64. [PMID: 19144723 DOI: 10.1242/dev.028464] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid(3) mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid(3) mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid(3) mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid(3) mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid(3) mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.
Collapse
Affiliation(s)
- Yili Yin
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Davey MG, Tickle C. The chicken as a model for embryonic development. Cytogenet Genome Res 2007; 117:231-9. [PMID: 17675864 DOI: 10.1159/000103184] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 11/28/2006] [Indexed: 01/05/2023] Open
Abstract
The traditional strength of chicken embryos for studying development is that they are readily manipulated. This has led to some major discoveries in developmental biology such as the demonstration that the neural crest gives rise to almost the entire peripheral nervous system and the identification of signalling centres that specify the pattern of structures in the central nervous system and limb. More recently with the burgeoning discovery of developmentally important genes, chicken embryos have provided useful models for testing function. Uncovering the molecular basis of development provides direct links with clinical genetics. In addition, since many genes that have crucial roles in development are also expressed in tumours, basic research on chickens has implications for understanding human health and disease. Now that the chicken genome has been sequenced and genomic resources for chicken are becoming increasingly available, this opens up opportunities for combining these new technologies with the manipulability of chicken embryos and also exploiting comparative genomics.
Collapse
Affiliation(s)
- M G Davey
- Division of Genetics and Genomics, Roslin Institute, Roslin Biocentre, Midlothian, UK
| | | |
Collapse
|