1
|
Trinh LT, Finnel RR, Osipovich AB, Musselman JR, Sampson LL, Wright CVE, Magnuson MA. Positive autoregulation of Sox17 is necessary for gallbladder and extrahepatic bile duct formation. Development 2025; 152:dev203033. [PMID: 39745200 PMCID: PMC11829758 DOI: 10.1242/dev.203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Expression of SRY-box transcription factor 17 (Sox17) in the endodermal region caudal to the hepatic diverticulum during late gastrulation is necessary for hepato-pancreato-biliary system formation. Analysis of an allelic series of promoter-proximal mutations near the transcription start site (TSS) 2 of Sox17 in mouse has revealed that gallbladder (GB) and extrahepatic bile duct (EHBD) development is exquisitely sensitive to Sox17 expression levels. Deletion of a SOX17-binding cis-regulatory element in the TSS2 promoter impairs GB and EHBD development by reducing outgrowth of the nascent biliary bud. These findings reveal the existence of a SOX17-dependent autoregulatory loop that drives Sox17 expression above a critical threshold concentration necessary for GB and EHBD development to occur, and that minor impairments in Sox17 gene expression are sufficient to impair the expression of SOX17-regulated genes in the nascent GB and EHBD system, impairing or preventing development.
Collapse
Affiliation(s)
- Linh T. Trinh
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ryan R. Finnel
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B. Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Leesa L. Sampson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V. E. Wright
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A. Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Favarolo MB, Revinski DR, Garavaglia MJ, López SL. Nodal and churchill1 position the expression of a notch ligand during Xenopus germ layer segregation. Life Sci Alliance 2022; 5:5/12/e202201693. [PMID: 36180230 PMCID: PMC9604498 DOI: 10.26508/lsa.202201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Churchill and Nodal signaling, which participate in vertebrates’ germ layer induction, position a domain of Delta/Notch activity, which refines germ layer boundaries during frog gastrulation. In vertebrates, Nodal signaling plays a major role in endomesoderm induction, but germ layer delimitation is poorly understood. In avian embryos, the neural/mesoderm boundary is controlled by the transcription factor CHURCHILL1, presumably through the repressor ZEB2, but there is scarce knowledge about its role in other vertebrates. During amphibian gastrulation, Delta/Notch signaling refines germ layer boundaries in the marginal zone, but it is unknown the place this pathway occupies in the network comprising Churchill1 and Nodal. Here, we show that Xenopus churchill1 is expressed in the presumptive neuroectoderm at mid-blastula transition and during gastrulation, upregulates zeb2, prevents dll1 expression in the neuroectoderm, and favors neuroectoderm over endomesoderm development. Nodal signaling prevents dll1 expression in the endoderm but induces it in the presumptive mesoderm, from where it activates Notch1 and its target gene hes4 in the non-involuting marginal zone. We propose a model where Nodal and Churchill1 position Dll1/Notch1/Hes4 domains in the marginal zone, ensuring the delimitation between mesoderm and neuroectoderm.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Diego R Revinski
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Matías J Garavaglia
- Laboratorio de Bioinsumos, Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular e Histología/1° U.A. Departamento de Histología, Embriología, Biología Celular y Genética, Buenos Aires, Argentina .,CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| |
Collapse
|
3
|
Trinh LT, Osipovich AB, Sampson L, Wong J, Wright CV, Magnuson MA. Differential regulation of alternate promoter regions in Sox17 during endodermal and vascular endothelial development. iScience 2022; 25:104905. [PMID: 36046192 PMCID: PMC9421400 DOI: 10.1016/j.isci.2022.104905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Sox17 gene expression is essential for both endothelial and endodermal cell differentiation. To better understand the genetic basis for the expression of multiple Sox17 mRNA forms, we identified and performed CRISPR/Cas9 mutagenesis of two evolutionarily conserved promoter regions (CRs). The deletion of the upstream and endothelial cell-specific CR1 caused only a modest increase in lympho-vasculogenesis likely via reduced Notch signaling downstream of SOX17. In contrast, the deletion of the downstream CR2 region, which functions in both endothelial and endodermal cells, impairs both vascular and endodermal development causing death by embryonic day 12.5. Analyses of 3D chromatin looping, transcription factor binding, histone modification, and chromatin accessibility data at the Sox17 locus and surrounding region further support differential regulation of the two promoters during the development.
Collapse
Affiliation(s)
- Linh T. Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Wong
- College of Arts and Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Chris V.E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A. Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Jansen C, Paraiso KD, Zhou JJ, Blitz IL, Fish MB, Charney RM, Cho JS, Yasuoka Y, Sudou N, Bright AR, Wlizla M, Veenstra GJC, Taira M, Zorn AM, Mortazavi A, Cho KWY. Uncovering the mesendoderm gene regulatory network through multi-omic data integration. Cell Rep 2022; 38:110364. [PMID: 35172134 PMCID: PMC8917868 DOI: 10.1016/j.celrep.2022.110364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Mesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data composed of more than two data types is challenging. Here, we use linked self-organizing maps to combine chromatin immunoprecipitation sequencing (ChIP-seq)/ATAC-seq with temporal, spatial, and perturbation RNA sequencing (RNA-seq) data from Xenopus tropicalis mesendoderm development to build a high-resolution genome scale mechanistic GRN. We recover both known and previously unsuspected TF-DNA/TF-TF interactions validated through reporter assays. Our analysis provides insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly dimensional multi-omic datasets.
Collapse
Affiliation(s)
- Camden Jansen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA
| | - Jeff J Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Rebekah M Charney
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Jin Sun Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Norihiro Sudou
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Ann Rose Bright
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Marcin Wlizla
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gert Jan C Veenstra
- Department of Molecular Developmental Biology, Radboud University, Nijmegen, the Netherlands
| | - Masanori Taira
- Department of Biological Sciences, Chuo University, Tokyo, Japan
| | - Aaron M Zorn
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA; Center for Complex Biological Systems, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Abstract
The fertilized frog egg contains all the materials needed to initiate development of a new organism, including stored RNAs and proteins deposited during oogenesis, thus the earliest stages of development do not require transcription. The onset of transcription from the zygotic genome marks the first genetic switch activating the gene regulatory network that programs embryonic development. Zygotic genome activation occurs after an initial phase of transcriptional quiescence that continues until the midblastula stage, a period called the midblastula transition, which was first identified in Xenopus. Activation of transcription is programmed by maternally supplied factors and is regulated at multiple levels. A similar switch exists in most animals and is of great interest both to developmental biologists and to those interested in understanding nuclear reprogramming. Here we review in detail our knowledge on this major switch in transcription in Xenopus and place recent discoveries in the context of a decades old problem.
Collapse
Affiliation(s)
- Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States.
| |
Collapse
|
6
|
Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, MacDonald M, Chen X, Weirauch MT, Blitz IL, Cho KW, Zorn AM. Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network. eLife 2020; 9:58029. [PMID: 32894225 PMCID: PMC7498262 DOI: 10.7554/elife.58029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Lineage specification is governed by gene regulatory networks (GRNs) that integrate the activity of signaling effectors and transcription factors (TFs) on enhancers. Sox17 is a key transcriptional regulator of definitive endoderm development, and yet, its genomic targets remain largely uncharacterized. Here, using genomic approaches and epistasis experiments, we define the Sox17-governed endoderm GRN in Xenopus gastrulae. We show that Sox17 functionally interacts with the canonical Wnt pathway to specify and pattern the endoderm while repressing alternative mesectoderm fates. Sox17 and β-catenin co-occupy hundreds of key enhancers. In some cases, Sox17 and β-catenin synergistically activate transcription apparently independent of Tcfs, whereas on other enhancers, Sox17 represses β-catenin/Tcf-mediated transcription to spatially restrict gene expression domains. Our findings establish Sox17 as a tissue-specific modifier of Wnt responses and point to a novel paradigm where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between lineage-specific Sox TFs and β-catenin/Tcf transcriptional complexes. Given the ubiquitous nature of Sox TFs and Wnt signaling, this mechanism has important implications across a diverse range of developmental and disease contexts.
Collapse
Affiliation(s)
- Shreyasi Mukherjee
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Praneet Chaturvedi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Margaret B Fish
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Marcin Wlizla
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| | - Melissa MacDonald
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Matthew T Weirauch
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States.,Center for Autoimmune Genomics and Etiology (CAGE), Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ira L Blitz
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Ken Wy Cho
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, United States
| |
Collapse
|
7
|
Charney RM, Paraiso KD, Blitz IL, Cho KWY. A gene regulatory program controlling early Xenopus mesendoderm formation: Network conservation and motifs. Semin Cell Dev Biol 2017; 66:12-24. [PMID: 28341363 DOI: 10.1016/j.semcdb.2017.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
Germ layer formation is among the earliest differentiation events in metazoan embryos. In triploblasts, three germ layers are formed, among which the endoderm gives rise to the epithelial lining of the gut tube and associated organs including the liver, pancreas and lungs. In frogs (Xenopus), where early germ layer formation has been studied extensively, the process of endoderm specification involves the interplay of dozens of transcription factors. Here, we review the interactions between these factors, summarized in a transcriptional gene regulatory network (GRN). We highlight regulatory connections conserved between frog, fish, mouse, and human endodermal lineages. Especially prominent is the conserved role and regulatory targets of the Nodal signaling pathway and the T-box transcription factors, Vegt and Eomes. Additionally, we highlight network topologies and motifs, and speculate on their possible roles in development.
Collapse
Affiliation(s)
- Rebekah M Charney
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Kitt D Paraiso
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ira L Blitz
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, Ayala School of Biological Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS. An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 2011; 357:478-91. [PMID: 21741375 PMCID: PMC3164747 DOI: 10.1016/j.ydbio.2011.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 05/10/2011] [Accepted: 06/07/2011] [Indexed: 12/12/2022]
Abstract
Most zygotic genes remain transcriptionally silent in Drosophila, Xenopus, and zebrafish embryos through multiple mitotic divisions until the midblastula transition (MBT). Several genes have been identified in each of these organisms that are transcribed before the MBT, but whether precocious expression of specific mRNAs is important for later development has not been examined in detail. Here, we identify a class of protein coding transcripts activated before the MBT by the maternal T-box factor VegT that are components of an established transcriptional regulatory network required for mesendoderm induction in Xenopus laevis, including the Nodal related ligands xnr5, xnr6, and derrière and the transcription factors bix4, and sox17α. Accumulation of phospho-Smad2, a hallmark of active Nodal signaling, at the onset of the MBT requires preMBT transcription and activity of xnr5 and xnr6. Furthermore, preMBT activation of the Nodal pathway is essential for mesendodermal gene expression and patterning of the embryo. Finally, xnr5 and xnr6 can also activate their own expression during cleavage stages, indicating that preMBT transcription contributes to a feed-forward system that allows robust activation of Nodal signaling at the MBT.
Collapse
Affiliation(s)
| | - Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Jing Yang
- Nationwide Children’s Hospital, Columbus, OH, USA
| | - Laurent Kodjabachian
- Institut de Biologie du Développement de Marseille Luminy, CNRS-Université de la Méditerranée, Marseille, France
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Lade AG, Monga SPS. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010; 240:486-500. [PMID: 21337461 DOI: 10.1002/dvdy.22522] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2010] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling cascade that plays key roles in development and adult tissue homeostasis and is aberrantly activated in many tumors. Over a decade of work in mouse, chick, xenopus, and zebrafish models has uncovered multiple functions of this pathway in hepatic pathophysiology. Specifically, beta-catenin, the central component of the canonical Wnt pathway, is implicated in the regulation of liver regeneration, development, and carcinogenesis. Wnt-independent activation of beta-catenin by receptor tyrosine kinases has also been observed in the liver. In liver development across various species, through regulation of cell proliferation, differentiation, and maturation, beta-catenin directs foregut endoderm specification, hepatic specification of the foregut, and hepatic morphogenesis. Its role has also been defined in adult hepatic progenitors or oval cells especially in their expansion and differentiation. Thus, beta-catenin undergoes tight temporal regulation to exhibit pleiotropic effects during hepatic development and in hepatic progenitor biology.
Collapse
|
10
|
Takeuchi M, Takahashi M, Okabe M, Aizawa S. Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 2009; 332:90-102. [PMID: 19433081 DOI: 10.1016/j.ydbio.2009.05.543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/21/2009] [Accepted: 05/05/2009] [Indexed: 11/30/2022]
Abstract
Amphibian holoblastic cleavage in which all blastomeres contribute to any one of the three primary germ layers has been widely thought to be a developmental pattern in the stem lineage of vertebrates, and meroblastic cleavage to have evolved independently in each vertebrate lineage. In extant primitive vertebrates, agnathan lamprey and basal bony fishes also undergo holoblastic cleavage, and their vegetal blastomeres have been generally thought to contribute to embryonic endoderm. However, the present marker analyses in basal ray-finned fish bichir and agnathan lamprey embryos indicated that their mesoderm and endoderm develop in the equatorial marginal zone, and their vegetal cell mass is extraembryonic nutritive yolk cells, having non-cell autonomous meso-endoderm inducing activity. Eomesodermin (eomes), but not VegT, orthologs are expressed maternally in these animals, suggesting that VegT is a maternal factor for endoderm differentiation only in amphibian. The study raises the viewpoint that the lamprey/bichir type holoblastic development would have been ancestral to extant vertebrates and retained in their stem lineage; amphibian-type holoblastic development would have been acquired secondarily, accompanied by the exploitation of new molecular machinery such as maternal VegT.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Laboratory for Vertebrate Body Plan, Center for Developmental Biology, RIKEN Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
11
|
Functional analysis of the evolutionarily conserved cis-regulatory elements on the sox17 gene in zebrafish. Dev Biol 2009; 326:456-70. [DOI: 10.1016/j.ydbio.2008.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/31/2008] [Accepted: 11/11/2008] [Indexed: 11/19/2022]
|
12
|
Arnold SJ, Robertson EJ. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 2009; 10:91-103. [PMID: 19129791 DOI: 10.1038/nrm2618] [Citation(s) in RCA: 591] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic studies have identified the key signalling pathways and developmentally regulated transcription factors that govern cell lineage allocation and axis patterning in the early mammalian embryo. Recent advances have uncovered details of the molecular circuits that tightly control cell growth and differentiation in the mammalian embryo from the blastocyst stage, through the establishment of initial anterior-posterior polarity, to gastrulation, when the germ cells are set aside and the three primary germ layers are specified. Relevant studies in lower vertebrates indicate the conservation and divergence of regulatory mechanisms for cell lineage allocation and axis patterning.
Collapse
Affiliation(s)
- Sebastian J Arnold
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
13
|
Woodland HR, Zorn AM. The core endodermal gene network of vertebrates: combining developmental precision with evolutionary flexibility. Bioessays 2008; 30:757-65. [PMID: 18623060 DOI: 10.1002/bies.20785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic development combines paradoxical properties: it has great precision, it is usually conducted at breakneck speed and it is flexible on relatively short evolutionary time scales, particularly at early stages. While these features appear mutually exclusive, we consider how they may be reconciled by the properties of key early regulatory networks. We illustrate these ideas with the network that controls development of endoderm progenitors. We argue that this network enables precision because of its intrinsic stability, self propagation and dependence on signalling. The network enables high developmental speed because it is rapidly established by maternal inputs at multiple points. In turn these properties confer flexibility on an evolutionary time scale because they can be initiated in many ways, while buffering essential progenitor cell populations against changes in their embryonic environment on both evolutionary and developmental time scales. Although stable, these networks must be capable of rapid dissolution as cell differentiation progresses. While we focus on the core early endodermal network of vertebrates, we argue that these properties are likely to be general in early embryonic stem cell populations, such as mammalian ES cells.
Collapse
Affiliation(s)
- Hugh R Woodland
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
14
|
Patterson ES, Addis RC, Shamblott MJ, Gearhart JD. SOX17 directly activatesZfp202transcription during in vitro endoderm differentiation. Physiol Genomics 2008; 34:277-84. [DOI: 10.1152/physiolgenomics.90236.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SOX17 is a SRY-related high-mobility group (HMG) box transcription factor that is necessary for endoderm formation in multiple species. Despite its essential function during endoderm formation and differentiation, few direct targets of SOX17 are known. To identify targets of SOX17, we isolated SOX17 binding sites with a chromatin immunoprecipitation (ChIP)-cloning screen. SOX17-ChIP identified zinc finger protein 202 ( Zfp202) as a direct target of SOX17 during endoderm differentiation of F9 embryonal carcinoma cells. A sequence in the first intron of Zfp202 activated transcription in differentiated F9 cells, and overexpression of Sox17 increased the transcriptional activity of this sequence. SOX17 binds to a site within this sequence in electrophoretic mobility shift assays, and mutation of this site decreases the transcriptional activation. Zfp202 is induced concomitantly with Sox17 during endoderm differentiation of F9 cells. We also show that ZFP202 represses Hnf4a, which has been reported for the human ortholog ZNF202. Identifying targets of SOX17 will help to elucidate the molecular basis of endoderm differentiation and may provide a better understanding of the role of endoderm in patterning the other germ layers.
Collapse
Affiliation(s)
- Ethan S. Patterson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell C. Addis
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael J. Shamblott
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John D. Gearhart
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|