1
|
Benard EL, Küçükaylak I, Hatzold J, Berendes KU, Carney TJ, Beleggia F, Hammerschmidt M. wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis. Dev Dyn 2024; 253:566-592. [PMID: 37870737 PMCID: PMC11035493 DOI: 10.1002/dvdy.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.
Collapse
Affiliation(s)
- Erica L. Benard
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Ismail Küçükaylak
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Kilian U.W. Berendes
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
| | - Thomas J. Carney
- Discovery Research Division, Institute of Molecular and
Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research),
Singapore, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore, Republic of Singapore
| | - Filippo Beleggia
- Department I of Internal Medicine, Faculty of Medicine and
University Hospital Cologne, University of Cologne, Germany
- Department of Translational Genomics, Faculty of Medicine
and University Hospital Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne
Düsseldorf (MSSO ABCD), Faculty of Medicine and University Hospital Cologne,
University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit,
University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of
Cologne, Cologne, Germany
| |
Collapse
|
2
|
Jackson A, Lin SJ, Jones EA, Chandler KE, Orr D, Moss C, Haider Z, Ryan G, Holden S, Harrison M, Burrows N, Jones WD, Loveless M, Petree C, Stewart H, Low K, Donnelly D, Lovell S, Drosou K, Varshney GK, Banka S. Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES 2023; 4:100186. [PMID: 37009414 PMCID: PMC10064225 DOI: 10.1016/j.xhgg.2023.100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/27/2023] [Indexed: 06/11/2023] Open
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the β-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is ∼1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara -/-;tspearb -/- double-knockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Collapse
Affiliation(s)
- Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sheng-Jia Lin
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Elizabeth A. Jones
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Kate E. Chandler
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Orr
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Celia Moss
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Zahra Haider
- Department of Dermatology, Birmingham Children’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK
| | - Simon Holden
- Clinical Genetics, Addenbrooke’s Hospital, Cambridge, UK
| | - Mike Harrison
- Department of Pediatric Dentistry, Guy’s and St Thomas' Dental Institute, London, UK
| | - Nigel Burrows
- Department of Dermatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Wendy D. Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street NHS Foundation Trust, London, UK
| | - Mary Loveless
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Cassidy Petree
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karen Low
- Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Deirdre Donnelly
- Department of Genetic Medicine, Belfast HSC Trust, Lisburn Road, Belfast, UK
| | - Simon Lovell
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Konstantina Drosou
- Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, 99 Oxford Road, Manchester, UK
| | - Gaurav K. Varshney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| |
Collapse
|
3
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Zhang JL, Richetti S, Ramezani T, Welcker D, Lütke S, Pogoda HM, Hatzold J, Zaucke F, Keene DR, Bloch W, Sengle G, Hammerschmidt M. Vertebrate extracellular matrix protein hemicentin-1 interacts physically and genetically with basement membrane protein nidogen-2. Matrix Biol 2022; 112:132-154. [PMID: 36007682 PMCID: PMC10015821 DOI: 10.1016/j.matbio.2022.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mouse and zebrafish hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 in basement membrane integrity. We show that HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately 3.5-fold lower affinity and in a competitive manner. Furthermore, immunofluorescence and immunogold labeling revealed that HMCN1/Hmcn1 is localized close to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as the loss of Laminin-α5 (Lama5) or Hmcn1. Finally, combined partial loss-of-function studies indicated that nid2a genetically interacts with both hmcn1 and lama5. Together, these findings suggest that despite their mutually exclusive physical binding, hemicentins, nidogens, and laminins tightly cooperate and support each other during formation, maintenance, and function of basement membranes to confer tissue linkage.
Collapse
Affiliation(s)
- Jin-Li Zhang
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Stefania Richetti
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Daniela Welcker
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Steffen Lütke
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hans-Martin Pogoda
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Frank Zaucke
- Research Unit for Osteoarthritis, Department for Orthopedics, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR, United States
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Miyamoto K, Kawakami K, Tamura K, Abe G. Developmental independence of median fins from the larval fin fold revises their evolutionary origin. Sci Rep 2022; 12:7521. [PMID: 35525860 PMCID: PMC9079066 DOI: 10.1038/s41598-022-11180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
The median fins of modern fish that show discrete forms (dorsal, anal, and caudal fins) are derived from a continuous fold-like structure, both in ontogeny and phylogeny. The median fin fold (MFF) hypothesis assumes that the median fins evolved by reducing some positions in the continuous fin fold of basal chordates, based on the classical morphological observation of developmental reduction in the larval fin folds of living fish. However, the developmental processes of median fins are still unclear at the cellular and molecular levels. Here, we describe the transition from the larval fin fold into the median fins in zebrafish at the cellular and molecular developmental level. We demonstrate that reduction does not play a role in the emergence of the dorsal fin primordium. Instead, the reduction occurs along with body growth after primordium formation, rather than through actively scrapping the non-fin forming region by inducing cell death. We also report that the emergence of specific mesenchymal cells and their proliferation promote dorsal fin primordium formation. Based on these results, we propose a revised hypothesis for median fin evolution in which the acquisition of de novo developmental mechanisms is a crucial evolutionary component of the discrete forms of median fins.
Collapse
Affiliation(s)
- Kazuhide Miyamoto
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Koji Tamura
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan
| | - Gembu Abe
- Laboratory of Organ Morphogenesis, Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, 980-8578, Japan.
- Division of Developmental Biology, Department of Functional Morphology, School of Life Science, Faculty of Medicine, Tottori University, Nishi-cho 86, Yonago, 683-8503, Japan.
| |
Collapse
|
6
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
7
|
Armistead J, Hatzold J, van Roye A, Fahle E, Hammerschmidt M. Entosis and apical cell extrusion constitute a tumor-suppressive mechanism downstream of Matriptase. J Cell Biol 2020; 219:132730. [PMID: 31819976 PMCID: PMC7041680 DOI: 10.1083/jcb.201905190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Armistead et al. show that in a bilayered epithelium in vivo, apical cell extrusion of basal cells is achieved via their engulfment by surface cells. In zebrafish hai1a mutants, this constitutes a tumor-suppressive mechanism, revealing a double face of Matriptase. The type II transmembrane serine protease Matriptase 1 (ST14) is commonly known as an oncogene, yet it also plays an understudied role in suppressing carcinogenesis. This double face is evident in the embryonic epidermis of zebrafish loss-of-function mutants in the cognate Matriptase inhibitor Hai1a (Spint1a). Mutant embryos display epidermal hyperplasia, but also apical cell extrusions, during which extruding outer keratinocytes carry out an entosis-like engulfment and entrainment of underlying basal cells, constituting a tumor-suppressive effect. These counteracting Matriptase effects depend on EGFR and the newly identified mediator phospholipase D (PLD), which promotes both mTORC1-dependent cell proliferation and sphingosine-1-phosphate (S1P)–dependent entosis and apical cell extrusion. Accordingly, hypomorphic hai1a mutants heal spontaneously, while otherwise lethal hai1a amorphs are efficiently rescued upon cotreatment with PLD inhibitors and S1P. Together, our data elucidate the mechanisms underlying the double face of Matriptase function in vivo and reveal the potential use of combinatorial carcinoma treatments when such double-face mechanisms are involved.
Collapse
Affiliation(s)
- Joy Armistead
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Julia Hatzold
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Anna van Roye
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Evelin Fahle
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Fabian L, Dowling JJ. Zebrafish Models of LAMA2-Related Congenital Muscular Dystrophy (MDC1A). Front Mol Neurosci 2020; 13:122. [PMID: 32742259 PMCID: PMC7364686 DOI: 10.3389/fnmol.2020.00122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
LAMA2-related congenital muscular dystrophy (CMD; LAMA2-MD), also referred to as merosin deficient CMD (MDC1A), is a severe neonatal onset muscle disease caused by recessive mutations in the LAMA2 gene. LAMA2 encodes laminin α2, a subunit of the extracellular matrix (ECM) oligomer laminin 211. There are currently no treatments for MDC1A, and there is an incomplete understanding of disease pathogenesis. Zebrafish, due to their high degree of genetic conservation with humans, large clutch sizes, rapid development, and optical clarity, have emerged as an excellent model system for studying rare Mendelian diseases. They are particularly suitable as a model for muscular dystrophy because they contain at least one orthologue to all major human MD genes, have muscle that is similar to human muscle in structure and function, and manifest obvious and easily measured MD related phenotypes. In this review article, we present the existing zebrafish models of MDC1A, and discuss their contribution to the understanding of MDC1A pathomechanisms and therapy development.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada.,Departments of Pediatrics and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Li L, Zhang J, Akimenko MA. Inhibition of mmp13a during zebrafish fin regeneration disrupts fin growth, osteoblasts differentiation, and Laminin organization. Dev Dyn 2019; 249:187-198. [PMID: 31487071 DOI: 10.1002/dvdy.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases 13 (MMP13) is a potent endopeptidase that regulate cell growth, migration, and extracellular matrix remodeling. However, its role in fin regeneration remains unclear. RESULTS mmp13a expression is strongly upregulated during blastema formation and persists in the distal blastema. mmp13a knockdown via morpholino electroporation impairs regenerative outgrowth by decreasing cell proliferation, which correlates with a downregulation of fgf10a and sall4 expression in the blastema. Laminin distribution in the basement membrane is also affected in mmp13a MO-injected rays. Another impact of mmp13a knockdown is observed in the skeletal elements of the fin rays. Expression of two main components of actinotrichia, Collagen II and Actinodin 1 is highly reduced in mmp13a MO-injected rays leading to highly disorganized actinotrichia pattern. Inhibition of mmp13a strongly affects bone formation as shown by a reduction of Zns5 and sp7 expression and of bone matrix mineralization in rays. These defects are accompanied by a significant increase in apoptosis in mmp13a MO-injected fin regenerates. CONCLUSION Defects of expression of this multifunctional proteinase drastically affects osteoblast differentiation, bone and actinotrichia formation as well as Laminin distribution in the basement membrane of the fin regenerate, suggesting the important role of Mmp13 during the regenerative process.
Collapse
Affiliation(s)
- Li Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China.,CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jing Zhang
- CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- CAREG, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
ECM alterations in Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin development and regeneration defects. Sci Rep 2019; 9:13383. [PMID: 31527654 PMCID: PMC6746793 DOI: 10.1038/s41598-019-50055-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/05/2019] [Indexed: 11/08/2022] Open
Abstract
Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.
Collapse
|
11
|
Keeley DP, Sherwood DR. Tissue linkage through adjoining basement membranes: The long and the short term of it. Matrix Biol 2019; 75-76:58-71. [PMID: 29803937 PMCID: PMC6252152 DOI: 10.1016/j.matbio.2018.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 01/01/2023]
Abstract
Basement membranes (BMs) are thin dense sheets of extracellular matrix that surround most tissues. When the BMs of neighboring tissues come into contact, they usually slide along one another and act to separate tissues and organs into distinct compartments. However, in certain specialized regions, the BMs of neighboring tissues link, helping to bring tissues together. These BM connections can be transient, such as during tissue fusion events in development, or long-term, as with adult tissues involved with filtration, including the blood brain barrier and kidney glomerulus. The transitory nature of these connections in development and the complexity of tissue filtration systems in adults have hindered the understanding of how juxtaposed BMs fasten together. The recent identification of a BM-BM adhesion system in C. elegans, termed B-LINK (BM linkage), however, is revealing cellular and extracellular matrix components of a nascent tissue adhesion system. We discuss insights gained from studying the B-LINK tissue adhesion system in C. elegans, compare this adhesion with other BM-BM connections in Drosophila and vertebrates, and outline important future directions towards elucidating this fascinating and poorly understood mode of adhesion that joins neighboring tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Tinoco A, Sárria MP, Loureiro A, Parpot P, Espiña B, Gomes AC, Cavaco-Paulo A, Ribeiro A. BSA/ASN/Pol407 nanoparticles for acute lymphoblastic leukemia treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Gamble JT, Reed-Harris Y, Barton CL, La Du J, Tanguay R, Greenwood JA. Quantification of glioblastoma progression in zebrafish xenografts: Adhesion to laminin alpha 5 promotes glioblastoma microtumor formation and inhibits cell invasion. Biochem Biophys Res Commun 2018; 506:833-839. [PMID: 30389143 DOI: 10.1016/j.bbrc.2018.10.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/13/2018] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is a deadly disease due to its ability to quickly invade and destroy brain tissue. Slowing or stopping GBM cell progression is crucial to help those inflicted with the disease. Our lab created an embryo-larval zebrafish xenograft model as a tool to study human GBM progression in an observable brain environment. The zebrafish brain is a dynamic and complex environment providing an optimal setting for studying GBM cell progression. Here we demonstrate the ability of our model to quantitate GBM proliferation, dispersal, blood vessel association, microtumor formation, and individual cell invasion by evaluating the importance of an extracellular matrix protein, laminin alpha 5 (lama5), on U251MG cell progression. Lama5 has been implicated in cancer cell survival, proliferation and invasion and is a known adhesion site for GBM cells. While lama5 is highly expressed in endothelial cells in the brain, it is unknown how lama5 affects GBM behavior. Using a lama5 morpholino, we discovered that lama5 decreased U251MG dispersal by 23% and doubles the formation of blood vessel dependent microtumors. Despite lama5 being a known attachment site for GBM, lama5 expression had no effect on U251MG association with blood vessels. Analysis of individual U251MG cells revealed lama5 significantly lowered invasion as mobile U251MG cells traveled 32.5 μm less, invaded 5.0 μm/hr slower and initiated invasion 60% few times per cell.
Collapse
Affiliation(s)
- John T Gamble
- Oregon State University, Biochemistry and Biophysics Department, Corvallis, OR, USA
| | - Yuriyah Reed-Harris
- Oregon State University, Biochemistry and Biophysics Department, Corvallis, OR, USA
| | - Carrie L Barton
- Oregon State University, Department of Environmental and Molecular Toxicology, Corvallis, OR, USA
| | - Jane La Du
- Oregon State University, Department of Environmental and Molecular Toxicology, Corvallis, OR, USA
| | - Robert Tanguay
- Oregon State University, Department of Environmental and Molecular Toxicology, Corvallis, OR, USA
| | - Juliet A Greenwood
- Oregon State University, Biochemistry and Biophysics Department, Corvallis, OR, USA.
| |
Collapse
|
14
|
Functional characterisation of romeharsha and clint1 reaffirms the link between plasma membrane homeostasis, cell size maintenance and tissue homeostasis in developing zebrafish epidermis. J Biosci 2018. [DOI: 10.1007/s12038-018-9777-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Rohn F, Kordes C, Castoldi M, Götze S, Poschmann G, Stühler K, Herebian D, Benk AS, Geiger F, Zhang T, Spatz JP, Häussinger D. Laminin-521 promotes quiescence in isolated stellate cells from rat liver. Biomaterials 2018; 180:36-51. [PMID: 30014965 DOI: 10.1016/j.biomaterials.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
The laminin α5 protein chain is an element of basement membranes and important to maintain stem cells. Hepatic stellate cells (HSC) are liver-resident mesenchymal stem cells, which reside in a quiescent state on a basement membrane-like structure in the space of Dissé. In the present study, laminin α5 chain was detected in the space of Dissé of normal rat liver. Since HSC are critical for liver regeneration and can contribute to fibrosis in chronic liver diseases, the effect of laminins on HSC maintenance was investigated. Therefore, isolated rat HSC were seeded on uncoated polystyrene (PS) or PS coated with either laminin-521 (PS/LN-521) or laminin-211 (PS/LN-211). PS/LN-521 improved HSC adhesion and better preserved their retinoid stores as well as quiescence- and stem cell-associated phenotype, whereas HSC on PS/LN-211 or PS developed into myofibroblasts-like cells. To improve the homogeneity as well as the presentation of laminin molecules on the culture surface to HSC, laminin-functionalized, gold-nanostructured glass surfaces were generated. This approach further enhanced the expression of quiescence-associated genes in HSC. In conclusion, the results indicate that LN-521 supports the quiescent state of HSC and laminin α5 can be regarded as an important element of their niche in the space of Dissé.
Collapse
Affiliation(s)
- Friederike Rohn
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Silke Götze
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; Institute of Molecular Medicine, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Amelie S Benk
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Fania Geiger
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Tingyu Zhang
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Max-Planck-Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120 Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Williams MLK, Sawada A, Budine T, Yin C, Gontarz P, Solnica-Krezel L. Gon4l regulates notochord boundary formation and cell polarity underlying axis extension by repressing adhesion genes. Nat Commun 2018; 9:1319. [PMID: 29615614 PMCID: PMC5882663 DOI: 10.1038/s41467-018-03715-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/06/2018] [Indexed: 01/15/2023] Open
Abstract
Anteroposterior (AP) axis extension during gastrulation requires embryonic patterning and morphogenesis to be spatiotemporally coordinated, but the underlying genetic mechanisms remain poorly understood. Here we define a role for the conserved chromatin factor Gon4l, encoded by ugly duckling (udu), in coordinating tissue patterning and axis extension during zebrafish gastrulation through direct positive and negative regulation of gene expression. Although identified as a recessive enhancer of impaired axis extension in planar cell polarity (PCP) mutants, udu functions in a genetically independent, partially overlapping fashion with PCP signaling to regulate mediolateral cell polarity underlying axis extension in part by promoting notochord boundary formation. Gon4l limits expression of the cell–cell and cell–matrix adhesion molecules EpCAM and Integrinα3b, excesses of which perturb the notochord boundary via tension-dependent and -independent mechanisms, respectively. By promoting formation of this AP-aligned boundary and associated cell polarity, Gon4l cooperates with PCP signaling to coordinate morphogenesis along the AP embryonic axis. Anteroposterior axis extension during gastrulation is dynamically coordinated, but how this is regulated at a molecular level is unclear. Here, the authors show in zebrafish that the chromatin factor Gon4l, encoded by ugly duckling, coordinates axis extension by modulating EpCAM and Integrinα3b expression.
Collapse
Affiliation(s)
- Margot L K Williams
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Terin Budine
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Chunyue Yin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital, Cincinnati, OH, 45229, USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA. .,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
17
|
Kimelman D, Smith NL, Lai JKH, Stainier DYR. Regulation of posterior body and epidermal morphogenesis in zebrafish by localized Yap1 and Wwtr1. eLife 2017; 6:e31065. [PMID: 29283341 PMCID: PMC5773182 DOI: 10.7554/elife.31065] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the presumptive epidermis and notochord, and play a critical and unexpected role in posterior body extension by regulating Fibronectin assembly underneath the presumptive epidermis and surrounding the notochord. We further find that Yap1 and Wwtr1, also via Fibronectin, have an essential role in the epidermal morphogenesis necessary to form the initial dorsal and ventral fins, a process previously thought to involve bending of an epithelial sheet, but which we now show involves concerted active cell movement. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo.
Collapse
Affiliation(s)
- David Kimelman
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Natalie L Smith
- Department of BiochemistryUniversity of WashingtonSeattleUnited States
| | - Jason Kuan Han Lai
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Didier YR Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| |
Collapse
|
18
|
Alharthy KM, Albaqami FF, Thornton C, Corrales J, Willett KL. Mechanistic Evaluation of Benzo[a]pyrene's Developmental Toxicities Mediated by Reduced Cyp19a1b Activity. Toxicol Sci 2016; 155:135-147. [PMID: 27633980 DOI: 10.1093/toxsci/kfw182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental contaminant that is both an endocrine disruptor and a carcinogen. Aromatase (CYP19) is a key enzyme in steroidogenesis that is responsible for conversion of androgens to estrogens and thus plays a key role in steroid homeostasis. We hypothesized that some of the adverse outcomes of early developmental exposure to BaP are the result of reduced Cyp19a1b activity. Our goal was to investigate the role of estrogen homeostasis during early development and determine the role of aromatase inhibition as a relevant mechanism in BaP's developmental toxicities. One-cell zebrafish embryos were injected with a Cyp19a1b-morpholino (MO) or control-MO. Other non-injected embryos were exposed to waterborne BaP, fadrozole (a Cyp19 inhibitor), estradiol (E2), BaP + E2, Cyp19a1b MO + E2, or fadrozole + E2 for 96 hours post-fertilization (hpf). Adverse outcomes were compared between treatments, and the ability of E2 co-exposure to rescue each observed dysmorphology was assessed. BaP significantly decreased cyp19a1b gene expression in 96 hpf zebrafish larvae homogenates. Concentrations of E2 in 48 hpf larvae were significantly decreased by BaP, fadrozole and Cyp19a1b-MO. Cumulative mortality of zebrafish larvae was significantly increased following BaP or fadrozole exposure or Cyp19a1b knockdown compared to controls. E2 co-treatment rescued mortality caused by 10 μg/L BaP, 10 μg/L fadrozole, or Cyp19a1b-MO. In a treatment-blinded morphological assessment of larvae at 96 hpf, several phenotypes were negatively impacted by BaP, fadrozole, or Cyp19a1b knockdown and rescued by exogenous E2 co-treatment; these included body length, optic vesicle size, swim bladder inflation, pericardial and abdominal edema, and incidence of normal larval tail shape. Abnormal pectoral fins were caused by BaP exposure only. Uninflated swim bladders were caused by all treatments including E2 alone. Our results indicate that certain BaP-mediated adverse developmental outcomes were mechanistically in accordance with BaP-mediated Cyp19a1b inhibition.
Collapse
Affiliation(s)
- Khalid M Alharthy
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Faisal F Albaqami
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Cammi Thornton
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Jone Corrales
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| | - Kristine L Willett
- Department of BioMolecular Sciences, Divisions of Pharmacology and Environmental Toxicology, School of Pharmacy, University of Mississippi, Mississippi
| |
Collapse
|
19
|
Lalonde R, Moses D, Zhang J, Cornell N, Ekker M, Akimenko MA. Differential actinodin1 regulation in zebrafish and mouse appendages. Dev Biol 2016; 417:91-103. [DOI: 10.1016/j.ydbio.2016.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
20
|
Masselink W, Cole NJ, Fenyes F, Berger S, Sonntag C, Wood A, Nguyen PD, Cohen N, Knopf F, Weidinger G, Hall TE, Currie PD. A somitic contribution to the apical ectodermal ridge is essential for fin formation. Nature 2016; 535:542-6. [DOI: 10.1038/nature18953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
|
21
|
Govindan J, Iovine MK. Dynamic remodeling of the extra cellular matrix during zebrafish fin regeneration. Gene Expr Patterns 2015; 19:21-9. [DOI: 10.1016/j.gep.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/01/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
|
22
|
Chen CH, Merriman AF, Savage J, Willer J, Wahlig T, Katsanis N, Yin VP, Poss KD. Transient laminin beta 1a Induction Defines the Wound Epidermis during Zebrafish Fin Regeneration. PLoS Genet 2015; 11:e1005437. [PMID: 26305099 PMCID: PMC4549328 DOI: 10.1371/journal.pgen.1005437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022] Open
Abstract
The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis. Unlike mammals, adult teleost fish and urodele amphibians can fully regenerate lost appendages. Understanding what initiates regeneration in these vertebrates is of great interest to the scientific community. It has long been known that the epidermis that forms quickly over an amputated limb stump is critical for initiating regenerative programs. Yet, little of understood of the molecular and cellular mechanisms by which a simple adult epithelium transforms into this key signaling source. Here, we performed a large-scale, unbiased genetic screen for epithelial signaling deficiencies during the regeneration of amputated adult zebrafish fins, from which we identified several new mutants. One gene identified from this screen disrupts a specific component of the extracellular matrix material Laminin, Laminin beta 1a, a factor that we find to be dispensable in uninjured adult animals but required for all stages fin regeneration. Transient induction of this component by amputation polarizes the basal layer of the nascent epithelium, and, in turn, facilitates the synthesis of signaling factors, the positioning of ligand receptors, and the patterning of new bone cells. We also find that normal induction of Laminin beta 1a by injury relies on the function of Fibroblast growth factors, secreted polypeptide signals that are released early upon injury. Our results identify key early steps in the endogenous program for vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Alexander F. Merriman
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jeremiah Savage
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Jason Willer
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Taylor Wahlig
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham, North Carolina, United States of America
| | - Viravuth P. Yin
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Westcot SE, Hatzold J, Urban MD, Richetti SK, Skuster KJ, Harm RM, Lopez Cervera R, Umemoto N, McNulty MS, Clark KJ, Hammerschmidt M, Ekker SC. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS One 2015; 10:e0130688. [PMID: 26110643 PMCID: PMC4482254 DOI: 10.1371/journal.pone.0130688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.
Collapse
Affiliation(s)
- Stephanie E. Westcot
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julia Hatzold
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stefânia K. Richetti
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
| | - Kimberly J. Skuster
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rhianna M. Harm
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noriko Umemoto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Melissa S. McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stephen C. Ekker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
Cellular debris created by developmental processes or injury must be cleared by phagocytic cells to maintain and repair tissues. Cutaneous injuries damage not only epidermal cells but also the axonal endings of somatosensory (touch-sensing) neurons, which must be repaired to restore the sensory function of the skin. Phagocytosis of neuronal debris is usually performed by macrophages or other blood-derived professional phagocytes, but we have found that epidermal cells phagocytose somatosensory axon debris in zebrafish. Live imaging revealed that epidermal cells rapidly internalize debris into dynamic phosphatidylinositol 3-monophosphate-positive phagosomes that mature into phagolysosomes using a pathway similar to that of professional phagocytes. Epidermal cells phagocytosed not only somatosensory axon debris but also debris created by injury to other peripheral axons that were mislocalized to the skin, neighboring skin cells, and macrophages. Together, these results identify vertebrate epidermal cells as broad-specificity phagocytes that likely contribute to neural repair and wound healing.
Collapse
|
25
|
Nagendran M, Arora P, Gori P, Mulay A, Ray S, Jacob T, Sonawane M. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages. Development 2014; 142:320-30. [PMID: 25519245 PMCID: PMC4302845 DOI: 10.1242/dev.118703] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The patterning and morphogenesis of body appendages – such as limbs and fins – is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage – the median fin in zebrafish – as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins – evolutionarily recent appendages that are homologous to tetrapod limbs. Highlighted article: In the zebrafish fin, a Wnt gradient dictates the expression of laminin α5, which signals via integrin α3 to control epithelial cell morphology.
Collapse
Affiliation(s)
- Monica Nagendran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Prateek Arora
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Payal Gori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Aditya Mulay
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Shinjini Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Tressa Jacob
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
26
|
Duran I, Ruiz-Sánchez J, Santamaría JA, Marí-Beffa M. Holmgren's principle of delamination during fin skeletogenesis. Mech Dev 2014; 135:16-30. [PMID: 25460362 DOI: 10.1016/j.mod.2014.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
During fin morphogenesis, several mesenchyme condensations occur to give rise to the dermal skeleton. Although each of them seems to create distinctive and unique structures, they all follow the premises of the same morphogenetic principle. Holmgren's principle of delamination was first proposed to describe the morphogenesis of skeletal elements of the cranium, but Jarvik extended it to the development of the fin exoskeleton. Since then, some cellular or molecular explanations, such as the "flypaper" model (Thorogood et al.), or the evolutionary description by Moss, have tried to clarify this topic. In this article, we review new data from zebrafish studies to meet these criteria described by Holmgren and other authors. The variety of cell lineages involved in these skeletogenic condensations sheds light on an open discussion of the contributions of mesoderm- versus neural crest-derived cell lineages to the development of the head and trunk skeleton. Moreover, we discuss emerging molecular studies that are disclosing conserved regulatory mechanisms for dermal skeletogenesis and similarities during fin development and regeneration, which may have important implications in the potential use of the zebrafish fin as a model for regenerative medicine.
Collapse
Affiliation(s)
- I Duran
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Orthopedic Surgery, University of California, Los Angeles, CA 90095, USA; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| | - J Ruiz-Sánchez
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - J A Santamaría
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain
| | - M Marí-Beffa
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Biomedical Research Institute of Málaga (IBIMA), Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 29071 Málaga, Spain.
| |
Collapse
|
27
|
Kindlin-1 Mutant Zebrafish as an In Vivo Model System to Study Adhesion Mechanisms in the Epidermis. J Invest Dermatol 2013; 133:2180-90. [DOI: 10.1038/jid.2013.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/01/2013] [Accepted: 03/16/2013] [Indexed: 12/27/2022]
|
28
|
Bader HL, Lambert E, Guiraud A, Malbouyres M, Driever W, Koch M, Ruggiero F. Zebrafish collagen XIV is transiently expressed in epithelia and is required for proper function of certain basement membranes. J Biol Chem 2013; 288:6777-87. [PMID: 23325806 DOI: 10.1074/jbc.m112.430637] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found that zebrafish has two differentially expressed col14a1 paralogs. col14a1a expression peaked between 18-somite stage and 24 hours postfertilization (hpf), whereas col14a1b was first expressed at 32 hpf. To uncover functions of collagen XIV (COLXIV) during early embryogenesis, we focused our study on col14a1a. We characterized the α1 (XIV-A) chain as a collagenase-sensitive 200-kDa protein that formed dimer that could be reduced at high pH. As observed for the transcript, COLXIV-A protein expression peaked between 24 and 48 hpf. Using antisense probes and polyclonal antibodies, we show that col14a1a and its protein product COLXIV-A are transiently expressed in several epithelia, including epithelia undergoing shape changes, such as the fin folds. In contrast, anti-COLXII antibodies stained only connective tissues. COLXIV-A was also detected in the basement membrane (BM), where it co-localized with COLXII. At later developmental stages, COLXIV-A was not expressed in epithelia anymore but persisted in the BM. Morpholino knockdown of COLXIV-A provoked a skin detachment phenotype. Electron microscopy analysis revealed that morpholino-injected embryos lacked a lamina densa and lamina lucida at 24 hpf, and BM defects, such as gaps in the adepidermal granules, were still detected at 48 hpf. These BM defects were accompanied by a rupture of the dermis and detachment of the epidermis. Taken together, these data suggest an unexpected role of COLXIV-A in undifferentiated epithelia and in the formation of embryonic basement membranes.
Collapse
Affiliation(s)
- Hannah L Bader
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242 CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, F-69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Anna Domogatskaya
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Sergey Rodin
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden; , ,
| |
Collapse
|
30
|
Yano T, Abe G, Yokoyama H, Kawakami K, Tamura K. Mechanism of pectoral fin outgrowth in zebrafish development. Development 2012; 139:2916-25. [PMID: 22791899 DOI: 10.1242/dev.075572] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fins and limbs, which are considered to be homologous paired vertebrate appendages, have obvious morphological differences that arise during development. One major difference in their development is that the AER (apical ectodermal ridge), which organizes fin/limb development, transitions into a different, elongated organizing structure in the fin bud, the AF (apical fold). Although the role of AER in limb development has been clarified in many studies, little is known about the role of AF in fin development. Here, we investigated AF-driven morphogenesis in the pectoral fin of zebrafish. After the AER-AF transition at ∼36 hours post-fertilization, the AF was identifiable distal to the circumferential blood vessel of the fin bud. Moreover, the AF was divisible into two regions: the proximal AF (pAF) and the distal AF (dAF). Removing the AF caused the AER and a new AF to re-form. Interestingly, repeatedly removing the AF led to excessive elongation of the fin mesenchyme, suggesting that prolonged exposure to AER signals results in elongation of mesenchyme region for endoskeleton. Removal of the dAF affected outgrowth of the pAF region, suggesting that dAF signals act on the pAF. We also found that the elongation of the AF was caused by morphological changes in ectodermal cells. Our results suggest that the timing of the AER-AF transition mediates the differences between fins and limbs, and that the acquisition of a mechanism to maintain the AER was a crucial evolutionary step in the development of tetrapod limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
'Evo-devo', an interdisciplinary field based on developmental biology, includes studies on the evolutionary processes leading to organ morphologies and functions. One fascinating theme in evo-devo is how fish fins evolved into tetrapod limbs. Studies by many scientists, including geneticists, mathematical biologists, and paleontologists, have led to the idea that fins and limbs are homologous organs; now it is the job of developmental biologists to integrate these data into a reliable scenario for the mechanism of fin-to-limb evolution. Here, we describe the fin-to-limb transition based on key recent developmental studies from various research fields that describe mechanisms that may underlie the development of fins, limb-like fins, and limbs.
Collapse
Affiliation(s)
- Tohru Yano
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai, Japan.
| | | |
Collapse
|
32
|
Pyati UJ, Gjini E, Carbonneau S, Lee JS, Guo F, Jette CA, Kelsell DP, Look AT. p63 mediates an apoptotic response to pharmacological and disease-related ER stress in the developing epidermis. Dev Cell 2011; 21:492-505. [PMID: 21920315 DOI: 10.1016/j.devcel.2011.07.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 04/12/2011] [Accepted: 07/22/2011] [Indexed: 01/12/2023]
Abstract
Endoplasmic reticulum (ER) stress triggers tissue-specific responses that culminate in either cellular adaptation or apoptosis, but the genetic networks distinguishing these responses are not well understood. Here we demonstrate that ER stress induced in the developing zebrafish causes rapid apoptosis in the brain, spinal cord, tail epidermis, lens, and epiphysis. Focusing on the tail epidermis, we uncover an apoptotic response that depends on Puma, but not on p53 or Chop. puma is transcriptionally activated during this ER stress response in a p53-independent manner, and is an essential mediator of epidermal apoptosis. We demonstrate that the p63 transcription factor is upregulated to initiate this apoptotic pathway and directly activates puma transcription in response to ER stress. We also show that a mutation of human Connexin 31, which causes erythrokeratoderma variabilis, induces ER stress and p63-dependent epidermal apoptosis in the zebrafish embryo, thus implicating this pathway in the pathogenesis of inherited disease.
Collapse
Affiliation(s)
- Ujwal J Pyati
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Durán I, Marí-Beffa M, Santamaría JA, Becerra J, Santos-Ruiz L. Actinotrichia collagens and their role in fin formation. Dev Biol 2011; 354:160-72. [PMID: 21420398 DOI: 10.1016/j.ydbio.2011.03.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/15/2011] [Accepted: 03/10/2011] [Indexed: 11/17/2022]
Abstract
The skeleton of zebrafish fins consists of lepidotrichia and actinotrichia. Actinotrichia are fibrils located at the tip of each lepidotrichia and play a morphogenetic role in fin formation. Actinotrichia are formed by collagens associated with non-collagen components. The non-collagen components of actinotrichia (actinodins) have been shown to play a critical role in fin to limb transition. The present study has focused on the collagens that form actinotrichia and their role in fin formation. We have found actinotrichia are formed by Collagen I plus a novel form of Collagen II, encoded by the col2a1b gene. This second copy of the collagen II gene is only found in fishes and is the only Collagen type II expressed in fins. Both col1a1a and col2a1b were found in actinotrichia forming cells. Significantly, they also expressed the lysyl hydroxylase 1 (lh1) gene, which encodes an enzyme involved in the post-translational processing of collagens. Morpholino knockdown in zebrafish embryos demonstrated that the two collagens and lh1 are essential for actinotrichia and fin fold morphogenesis. The col1a1 dominant mutant chihuahua showed aberrant phenotypes in both actinotrichia and lepidotrichia during fin development and regeneration. These pieces of evidences support that actinotrichia are composed of Collagens I and II, which are post-translationally processed by Lh1, and that the correct expression and assembling of these collagens is essential for fin formation. The unique collagen composition of actinotrichia may play a role in fin skeleton morphogenesis.
Collapse
Affiliation(s)
- I Durán
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, Málaga, Spain.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Zebrafish fins have a proximal skeleton of endochondral bones and a distal skeleton of dermal bones. Recent experimental and genetic studies are discovering mechanisms to control fin skeleton morphogenesis. Whereas the endochondral skeleton has been extensively studied, the formation of the dermal skeleton requires further revision. The shape of the dermal skeleton of the fin is generated in its distal growing margin and along a proximal growing domain. In these positions, dermoskeletal fin morphogenesis can be explained by intertissue interactions and the function of several genetic pathways. These pathways regulate patterning, size, and cell differentiation along three axes. Finally, a common genetic control of late development, regeneration, and tissue homeostasis of the fin dermoskeleton is currently being analyzed. These pathways may be responsible for the similar shape obtained after each morphogenetic process. This provides an interesting conceptual framework for future studies on this topic. Developmental Dynamics 239:2779–2794, 2010. © 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, and Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain.
| | | |
Collapse
|
35
|
Sztal T, Berger S, Currie PD, Hall TE. Characterization of the laminin gene family and evolution in zebrafish. Dev Dyn 2011; 240:422-31. [PMID: 21246659 DOI: 10.1002/dvdy.22537] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 11/10/2022] Open
Abstract
Laminins are essential components of all basement membranes and are fundamental to tissue development and homeostasis. Humans possess at least 16 different heterotrimeric laminin complexes formed through different combinations of alpha, beta, and gamma chains. Individual chains appear to exhibit unique expression patterns, leading to the notion that overlap between expression domains governs the constitution of complexes found within particular tissues. However, the spatial and temporal expression of laminin genes has not been comprehensively analyzed in any vertebrate model to date. Here, we describe the tissue-specific expression patterns of all laminin genes in the zebrafish, throughout embryonic development and into the "post-juvenile" period, which is representative of the adult body form. In addition, we present phylogenetic and microsynteny analyses, which demonstrate that the majority of our zebrafish sequences are orthologous to human laminin genes. Together, these data represent a fundamental resource for the study of vertebrate laminins.
Collapse
Affiliation(s)
- Tamar Sztal
- Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
36
|
Feitosa NM, Richardson R, Bloch W, Hammerschmidt M. Basement membrane diseases in zebrafish. Methods Cell Biol 2011; 105:191-222. [PMID: 21951531 DOI: 10.1016/b978-0-12-381320-6.00008-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Basement membranes (BMs) are a complex, sheet-like network of specialized extracellular matrix that underlies epithelial cells and surrounds muscle cells. They provide adherence between neighboring tissues, permit some flexibility of these adherent structures, and can act as a store for growth factors and as a guide for cell migration. The BM is not just a static structure; its deposition and remodeling are important for many processes including embryonic development, immune response, and wound healing. To date, dysfunction in BM deposition or remodeling has been linked to many human congenital disorders and diseases, affecting many different tissues in the body, including malformations, dystrophies, and cancer. However, many questions remain to be answered on the role BM proteins, and their mutations, play in the pathogenesis of human disease. In recent years, the zebrafish (Danio rerio) has emerged as a powerful animal model for human development and disease. In the first part of this chapter, we provide an overview of described defects caused by BM dysfunction in zebrafish, including development and function of notochord, muscle, central nervous system, skin, cardiovascular system, and kidney. In the second part, we will describe details of methods used to visualize and assess the structure of the BM in zebrafish, and to functionally analyze its different components.
Collapse
|
37
|
Wiradjaja F, DiTommaso T, Smyth I. Basement membranes in development and disease. ACTA ACUST UNITED AC 2010; 90:8-31. [PMID: 20301220 DOI: 10.1002/bdrc.20172] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basement membranes (BMs) are specializations of the extracellular matrix that act as key mediators of development and disease. Their sheet like protein matrices typically serve to separate epithelial or endothelial cell layers from underlying mesenchymal tissues, providing both a biophysical support to overlying tissue as well as a hub to promote and regulate cell-cell and cell-protein interactions. In the latter context, the BM is increasingly being recognized as a mediator of growth factor interactions during development. In this review, we discuss recent findings regarding the structure of the BM and its roles in mediating the normal development of the embryo, and we examine congenital diseases affecting the BM which impact embryonic development and health in later life.
Collapse
Affiliation(s)
- Fenny Wiradjaja
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Australia
| | | | | |
Collapse
|
38
|
|
39
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 950] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
40
|
Carney TJ, Feitosa NM, Sonntag C, Slanchev K, Kluger J, Kiyozumi D, Gebauer JM, Coffin Talbot J, Kimmel CB, Sekiguchi K, Wagener R, Schwarz H, Ingham PW, Hammerschmidt M. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes. PLoS Genet 2010; 6:e1000907. [PMID: 20419147 PMCID: PMC2855323 DOI: 10.1371/journal.pgen.1000907] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 03/11/2010] [Indexed: 12/16/2022] Open
Abstract
Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease. There are a large number of human genetic syndromes with limb and digit deformities. It has been shown that the genes underlying these syndromes are well conserved in evolution, and most perform the same role even in the fins of fish. One such human syndrome is Fraser Syndrome, characterized by a number of defects including fusion of the fingers (syndactyly). Data obtained with corresponding mouse mutants suggest that all of these defects are due to transient basement membrane disruptions and epithelial blistering during development. Whilst some of the Fraser Syndrome genes have been identified, others are unknown. We show that mutation of the known Fraser Syndrome genes in zebrafish generate comparable blistering defects in the fins. Importantly, we have also identified additional genes and mechanisms required for the same processes. Included in this are hemicentin1, a gene whose function had thus far only been studied in nematodes, and furinA, encoding a proprotein convertase, for which we reveal a novel role in ectodomain shedding of Fras/Frem proteins. This work thus expands our understanding, not only of Fraser Syndrome, but also of the common processes of basement membrane formation and function during fin and limb development.
Collapse
Affiliation(s)
- Thomas J. Carney
- Max-Planck Institute of Immunobiology, Georges-Koehler-Laboratory, Freiburg, Germany
- Institute of Molecular and Cell Biology, Proteos, Singapore
- * E-mail: (TJC); (MH)
| | - Natália Martins Feitosa
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carmen Sonntag
- Max-Planck Institute of Immunobiology, Georges-Koehler-Laboratory, Freiburg, Germany
| | - Krasimir Slanchev
- Max-Planck Institute of Immunobiology, Georges-Koehler-Laboratory, Freiburg, Germany
| | - Johannes Kluger
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Daiji Kiyozumi
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jan M. Gebauer
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jared Coffin Talbot
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Charles B. Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | | | - Raimund Wagener
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Heinz Schwarz
- Max-Planck Institute of Developmental Biology, Tübingen, Germany
| | | | - Matthias Hammerschmidt
- Max-Planck Institute of Immunobiology, Georges-Koehler-Laboratory, Freiburg, Germany
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- * E-mail: (TJC); (MH)
| |
Collapse
|
41
|
Virta VC, Cooper MS. Ontogeny and phylogeny of the yolk extension in embryonic cypriniform fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:196-223. [PMID: 19206142 DOI: 10.1002/jez.b.21284] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The validity of defining a common phylotypic stage for all vertebrates has been questioned because of variations in embryonic morphological traits between vertebrate classes, as well as variations in embryonic phenotypes between species of the same vertebrate class. To evaluate the evolutionary lability of phylotypic features in vertebrate embryos, we have examined the phylogenetic and ontogenetic origins of the yolk extension--a distinctive morphological trait that is found in the ventrolateral trunk region of cypriniform fish embryos. This posterior axial protrusion, extending from the embryonic yolk ball, is formed in cypriniform fishes by a ventrolateral constriction of the yolk mass during the phylotypic period of development. Using a functional definition of the phylotypic period, a comparative analysis of published literature on developing actinoptyerygian (ray-finned) fishes reveals that the yolk extension is a shared embryonic trait of the clade Cypriniformes. The yolk extension also appears in several species in two other basal teleostean clades, Characiformes and Anguilliformes. The conservation of the yolk extension in the clade Cypriniformes, as well as its presence in two other basal teleostean clades, supports the hypothesis that the yolk extension is a product of evolutionary transformation. Besides exhibiting evolutionary transformation, the process of yolk extension formation satisfies five other defined criteria for developmental modularity. Thus, it appears that yolk extension ontogenesis is a novel evolutionary, developmental module that has been incorporated into the phylotypic period of certain teleostean lineages.
Collapse
|
42
|
Dodd ME, Hatzold J, Mathias JR, Walters KB, Bennin DA, Rhodes J, Kanki JP, Look AT, Hammerschmidt M, Huttenlocher A. The ENTH domain protein Clint1 is required for epidermal homeostasis in zebrafish. Development 2009; 136:2591-600. [PMID: 19570844 DOI: 10.1242/dev.038448] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidermal hyperproliferation and inflammation are hallmarks of the human condition psoriasis. Here, we report that a zebrafish line with a mutation in the cargo adaptor protein Clint1 exhibits psoriasis-like phenotypes including epithelial hyperproliferation and leukocyte infiltration. Clint1 is an ENTH domain-containing protein that binds SNARE proteins and functions in vesicle trafficking; however, its in vivo function in animal models has not been reported to date. The clint1 mutants exhibit chronic inflammation characterized by increased Interleukin 1beta expression, leukocyte infiltration, bidirectional trafficking and phagocytosis of cellular debris. The defects in clint1 mutants can be rescued by expression of zebrafish clint1 and can be phenocopied with clint1-specific morpholinos, supporting an essential role for Clint1 in epidermal development. Interaction studies suggest that Clint1 and Lethal giant larvae 2 function synergistically to regulate epidermal homeostasis. Accordingly, clint1 mutants show impaired hemidesmosome formation, loss of cell-cell contacts and increased motility suggestive of epithelial to mesenchymal transition. Taken together, our findings describe a novel function for the ENTH domain protein Clint1 in epidermal development and inflammation and suggest that its deficiency in zebrafish generates a phenotype that resembles the human condition psoriasis.
Collapse
Affiliation(s)
- M Ernest Dodd
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hodgkinson VS, Ericsson R, Johanson Z, Joss JMP. The apical ectodermal ridge in the pectoral fin of the Australian Lungfish (Neoceratodus forsteri): keeping the fin to limb transition in the fold. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2008.00349.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet 2008; 4:e1000296. [PMID: 19057675 PMCID: PMC2585812 DOI: 10.1371/journal.pgen.1000296] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 11/04/2008] [Indexed: 12/19/2022] Open
Abstract
Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord. We describe a novel genetic syndrome that we named MEDNIK, to designate a disease characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis and keratodermia. This syndrome was found in four French-Canadian families with a common ancestor and is caused by a mutation in the AP1S1 gene. This gene encodes a subunit (σ1A) of an adaptor protein complex (AP-1) involved in the organisation and transport of many other proteins within the cell. By using rapidly developing zebrafish embryos as a model, we observed that the loss of this gene resulted in broad defects, including skin malformation and severe motor deficits due to impairment of spinal cord development. By expressing the human AP1S1 gene instead of the zebrafish ap1s1 gene, we found that the normal human AP1S1 gene could rescue these developmental deficits but not the human AP1S1 gene bearing the disease-related mutation. Together, our results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in the development of the skin and the spinal cord.
Collapse
|
45
|
Webb AE, Driever W, Kimelman D. psoriasis regulates epidermal development in zebrafish. Dev Dyn 2008; 237:1153-64. [PMID: 18351656 DOI: 10.1002/dvdy.21509] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zebrafish epidermis completely envelopes the embryo by 14 hours postfertilization, providing an essential barrier between the internal organs and the environment. As the embryo increases in size, keratinocytes in the epidermis must proliferate and differentiate to form the three epidermal layers present in the adult. The mechanisms controlling growth, differentiation, and maintenance of the fish epidermis are mostly unknown. Here, we describe psoriasis, an epidermal mutant that exhibits widespread overproliferation of the epidermis at 3 days postfertilization and a defect in keratinocyte differentiation. Based on mosaic analysis, we show that psoriasis acts non-cell-autonomously, suggesting that psoriasis encodes a secreted factor. Our analysis of the psoriasis mutant indicates that keratinocyte differentiation and proliferation are tightly regulated to maintain a cohesive epidermal sheet around the embryo and that disruptions in these processes result in the formation of epidermal aggregates.
Collapse
Affiliation(s)
- Ashley E Webb
- University of Washington, Department of Biochemistry, Seattle, Washington 98195-7350, USA
| | | | | |
Collapse
|
46
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|