1
|
Lee S, Han J, Yang J, Lyu J, Park H, Bang J, Kim Y, Chang H, Park T. Exosomes from Human iPSC-Derived Retinal Organoids Enhance Corneal Epithelial Wound Healing. Int J Mol Sci 2024; 25:8925. [PMID: 39201611 PMCID: PMC11354741 DOI: 10.3390/ijms25168925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigated the therapeutic effects of exosomes derived from human-induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) on corneal epithelial wound healing. Exosomes were isolated from the culture medium of the hiPSC-derived ROs (Exo-ROs) using ultracentrifugation, and then they were characterized by a nanoparticle tracking analysis and transmission electron microscopy. In a murine model of corneal epithelial wounds, these exosomes were topically applied to evaluate their healing efficacy. The results demonstrated that the exosome-treated eyes showed significantly enhanced wound closures compared with the controls at 24 h post-injury. The 5-ethyl-2'-deoxyuridine assay and quantitative reverse transcription polymerase chain reaction revealed a substantial increase in cell proliferation and a decrease in inflammatory marker contents in the exosome-treated group. The RNA sequencing and exosomal microRNA analysis revealed that the Exo-RO treatment targeted various pathways related to inflammation and cell proliferation, including the PI3K-Akt, TNF, MAPK, and IL-17 signaling pathways. Moreover, the upregulation of genes related to retinoic acid and eicosanoid metabolism may have enhanced corneal epithelial healing in the eyes treated with the Exo-ROs. These findings suggest that hiPSC-derived RO exosomes could be novel therapeutic agents for promoting corneal epithelial wound healing.
Collapse
Affiliation(s)
- Sihyung Lee
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jungwoo Han
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jinyoung Yang
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Jungmook Lyu
- Department of Medical Science, Myung-Gok Eye Research Institute, Konyang University, Daejeon 32992, Republic of Korea;
| | - Hyosong Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
| | - Jihong Bang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| | - Yeji Kim
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
| | - Hunsoo Chang
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
- Department of Microbiology, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| | - Taekwann Park
- Department of Ophthalmology, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (S.L.); (J.H.); (H.P.)
- Department of Ophthalmology, Soonchunhyang University Bucheon, 170, Jomaru-ro, Bucheon 14584, Republic of Korea
- Laboratory of Molecular Therapy for Retinal Degeneration, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.Y.); (Y.K.)
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea; (J.B.); (H.C.)
| |
Collapse
|
2
|
Tamayo A, Núñez-Moreno G, Ruiz C, Plaisancie J, Damian A, Moya J, Chassaing N, Calvas P, Ayuso C, Minguez P, Corton M. Minigene Splicing Assays and Long-Read Sequencing to Unravel Pathogenic Deep-Intronic Variants in PAX6 in Congenital Aniridia. Int J Mol Sci 2023; 24:ijms24021562. [PMID: 36675087 PMCID: PMC9863980 DOI: 10.3390/ijms24021562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
PAX6 haploinsufficiency causes aniridia, a congenital eye disorder that involves the iris, and foveal hypoplasia. Comprehensive screening of the PAX6 locus, including the non-coding regions, by next-generation sequencing revealed four deep-intronic variants with potential effects on pre-RNA splicing. Nevertheless, without a functional analysis, their pathogenicity could not be established. We aimed to decipher their impact on the canonical PAX6 splicing using in vitro minigene splicing assays and nanopore-based long-read sequencing. Two multi-exonic PAX6 constructs were generated, and minigene assays were carried out. An aberrant splicing pattern was observed for two variants in intron 6, c.357+136G>A and c.357+334G>A. In both cases, several exonization events, such as pseudoexon inclusions and partial intronic retention, were observed due to the creation or activation of new/cryptic non-canonical splicing sites, including a shared intronic donor site. In contrast, two variants identified in intron 11, c.1032+170A>T and c.1033-275A>C, seemed not to affect splicing processes. We confirmed the high complexity of alternative splicing of PAX6 exon 6, which also involves unreported cryptic intronic sites. Our study highlights the importance of integrating functional studies into diagnostic algorithms to decipher the potential implication of non-coding variants, usually classified as variants of unknown significance, thus allowing variant reclassification to achieve a conclusive genetic diagnosis.
Collapse
Affiliation(s)
- Alejandra Tamayo
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, Science and Technology Campus, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Gonzalo Núñez-Moreno
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28240 Madrid, Spain
| | - Carolina Ruiz
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Julie Plaisancie
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Purpan, CHU Toulouse, 31000 Toulouse, France
- INSERM U1214, Université Toulouse III, 31000 Toulouse, France
| | - Alejandra Damian
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jennifer Moya
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Purpan, CHU Toulouse, 31000 Toulouse, France
- INSERM U1214, Université Toulouse III, 31000 Toulouse, France
| | - Patrick Calvas
- Centre de Référence des Affections Rares en Génétique Ophtalmologique (CARGO), Hôpital Purpan, CHU Toulouse, 31000 Toulouse, France
- INSERM U1214, Université Toulouse III, 31000 Toulouse, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Pablo Minguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28240 Madrid, Spain
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
3
|
Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty Years' History since the Discovery of Pax6: From Central Nervous System Development to Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:6115. [PMID: 35682795 PMCID: PMC9181425 DOI: 10.3390/ijms23116115] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.
Collapse
Affiliation(s)
| | | | | | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.O.); (S.M.); (T.K.)
| |
Collapse
|
4
|
Multiple roles for Pax2 in the embryonic mouse eye. Dev Biol 2021; 472:18-29. [PMID: 33428890 DOI: 10.1016/j.ydbio.2020.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
The vertebrate eye anlage grows out of the brain and folds into bilayered optic cups. The eye is patterned along multiple axes, precisely controlled by genetic programs, to delineate neural retina, pigment epithelium, and optic stalk tissues. Pax genes encode developmental regulators of key morphogenetic events, with Pax2 being essential for interpreting inductive signals, including in the eye. PAX2 mutations cause ocular coloboma, when the ventral optic fissure fails to close. Previous studies established that Pax2 is necessary for fissure closure and to maintain the neural retina -- glial optic stalk boundary. Using a Pax2GFP/+ knock-in allele we discovered that the mutant optic nerve head (ONH) lacks molecular boundaries with the retina and RPE, rendering the ONH larger than normal. This was preceded by ventronasal cup mispatterning, a burst of overproliferation and followed by optic cup apoptosis. Our findings support the hypothesis that ONH cells are tripotential, requiring Pax2 to remain committed to glial fates. This work extends current models of ocular development, contributes to broader understanding of tissue boundary formation and informs the underlying mechanisms of human coloboma.
Collapse
|
5
|
Tao Y, Cao J, Li M, Hoffmann B, Xu K, Chen J, Lu X, Guo F, Li X, Phillips MJ, Gamm DM, Chen H, Zhang S. PAX6D instructs neural retinal specification from human embryonic stem cell-derived neuroectoderm. EMBO Rep 2020; 21:e50000. [PMID: 32700445 PMCID: PMC7507545 DOI: 10.15252/embr.202050000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022] Open
Abstract
PAX6 is essential for neural retina (NR) and forebrain development but how PAX6 instructs NR versus forebrain specification remains unknown. We found that the paired-less PAX6, PAX6D, is expressed in NR cells during human eye development and along human embryonic stem cell (hESC) specification to retinal cells. hESCs deficient for PAX6D failed to enter NR specification. Induced expression of PAX6D but not PAX6A in a PAX6-null background restored the NR specification capacity. ChIP-Seq, confirmed by functional assays, revealed a set of retinal genes and non-retinal neural genes that are potential targets of PAX6D, including WNT8B. Inhibition of WNTs or knocking down of WNT8B restored the NR specification capacity of neuroepithelia with PAX6D knockout, whereas activation of WNTs blocked NR specification even when PAX6D was induced. Thus, PAX6D specifies neuroepithelia to NR cells via the regulation of WNT8B.
Collapse
Affiliation(s)
- Yunlong Tao
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jingyuan Cao
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Mingxing Li
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Ke Xu
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Chen
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xin Lu
- Wuhan No. 1 HospitalWuhanChina
| | - Fangliang Guo
- Neurological Department of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiang Li
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - M Joseph Phillips
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- McPherson Eye Research InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - David M Gamm
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- McPherson Eye Research InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hong Chen
- Department of Rehabilitation of Tongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Su‐Chun Zhang
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of NeuroscienceDepartment of NeurologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- Program in Neuroscience & Behavioral DisordersDuke‐NUS Medical SchoolSingapore CitySingapore
| |
Collapse
|
6
|
Lima Cunha D, Arno G, Corton M, Moosajee M. The Spectrum of PAX6 Mutations and Genotype-Phenotype Correlations in the Eye. Genes (Basel) 2019; 10:genes10121050. [PMID: 31861090 PMCID: PMC6947179 DOI: 10.3390/genes10121050] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor PAX6 is essential in ocular development in vertebrates, being considered the master regulator of the eye. During eye development, it is essential for the correct patterning and formation of the multi-layered optic cup and it is involved in the developing lens and corneal epithelium. In adulthood, it is mostly expressed in cornea, iris, and lens. PAX6 is a dosage-sensitive gene and it is highly regulated by several elements located upstream, downstream, and within the gene. There are more than 500 different mutations described to affect PAX6 and its regulatory regions, the majority of which lead to PAX6 haploinsufficiency, causing several ocular and systemic abnormalities. Aniridia is an autosomal dominant disorder that is marked by the complete or partial absence of the iris, foveal hypoplasia, and nystagmus, and is caused by heterozygous PAX6 mutations. Other ocular abnormalities have also been associated with PAX6 changes, and genotype-phenotype correlations are emerging. This review will cover recent advancements in PAX6 regulation, particularly the role of several enhancers that are known to regulate PAX6 during eye development and disease. We will also present an updated overview of the mutation spectrum, where an increasing number of mutations in the non-coding regions have been reported. Novel genotype-phenotype correlations will also be discussed.
Collapse
Affiliation(s)
| | - Gavin Arno
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital—Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Mariya Moosajee
- Institute of Ophthalmology, UCL, London EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- Correspondence:
| |
Collapse
|
7
|
Song M, Kim H, Park S, Kwon H, Joung I, Kim Kwon Y. Aucubin Promotes Differentiation of Neural Precursor Cells into GABAergic Neurons. Exp Neurobiol 2018; 27:112-119. [PMID: 29731677 PMCID: PMC5934542 DOI: 10.5607/en.2018.27.2.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/13/2022] Open
Abstract
Aucubin is a small compound naturally found in traditional medicinal herbs with primarily anti-inflammatory and protective effects. In the nervous system, aucubin is reported to be neuroprotective by enhancing neuronal survival and inhibiting apoptotic cell death in cultures and disease models. Our previous data, however, suggest that aucubin facilitates neurite elongation in cultured hippocampal neurons and axonal regrowth in regenerating sciatic nerves. Here, we investigated whether aucubin facilitates the differentiation of neural precursor cells (NPCs) into specific types of neurons. In NPCs cultured primarily from the rat embryonic hippocampus, aucubin significantly elevated the number of GAD65/67 immunoreactive cells and the expression of GAD65/67 proteins was upregulated dramatically by more than three-fold at relatively low concentrations of aucubin (0.01 µM to 10 µM). The expression of both NeuN and vGluT1 of NPCs, the markers for neurons and glutamatergic cells, respectively, and the number of vGluT1 immunoreactive cells also increased with higher concentrations of aucubin (1 µM and 10 µM), but the ratio of the increases was largely lower than GAD expression and GAD immunoreactive cells. The GABAergic differentiation of pax6-expressing late NPCs into GABA-producing cells was further supported in cortical NPCs primarily cultured from transgenic mouse brains, which express recombinant GFP under the control of pax6 promoter. The results suggest that aucubin can be developed as a therapeutic candidate for neurodegenerative disorders caused by the loss of inhibitory GABAergic neurons.
Collapse
Affiliation(s)
- Miyeoun Song
- Department of Life and Nanopharmarceutical Science, Kyung Hee University, Seoul 02447, Korea
| | - Hyomin Kim
- Department of Life and Nanopharmarceutical Science, Kyung Hee University, Seoul 02447, Korea
| | - Sujin Park
- Department of Life and Nanopharmarceutical Science, Kyung Hee University, Seoul 02447, Korea
| | - Hyockman Kwon
- Department of Biosciences and Biotechnology, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Insil Joung
- Department of Biological Sciences, Hanseo University, Seosan 31962, Korea
| | - Yunhee Kim Kwon
- Department of Life and Nanopharmarceutical Science, Kyung Hee University, Seoul 02447, Korea.,Department of Biology, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
8
|
Chen T, Cavari B, Schartl M, Hong Y. Identification and Expression of Conserved and Novel RNA Variants of Medakapax6bGene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:412-422. [PMID: 28547909 DOI: 10.1002/jez.b.22742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Tiansheng Chen
- Key Laboratory of Freshwater Animal Breeding; Ministry of Agriculture and College of Fisheries; Huazhong Agricultural University; Wuhan Hubei China
| | - Benzion Cavari
- Israel Oceanographic and Limnological Research; Tel Shikmona; Halfa Israel
| | - Manfred Schartl
- Department of Physiological Chemistry I, Biocenter; University of Würzburg; Würzburg Germany
| | - Yunhan Hong
- Department of Biological Sciences; National University of Singapore; Singapore
| |
Collapse
|
9
|
Inami W, Islam MR, Nakamura K, Yoshikawa T, Yasumuro H, Casco-Robles MM, Toyama F, Maruo F, Chiba C. Expression of Two Classes of Pax6 Transcripts in Reprogramming Retinal Pigment Epithelium Cells of the Adult Newt. Zoolog Sci 2016; 33:21-30. [PMID: 26853865 DOI: 10.2108/zs150111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adult newt has the remarkable ability to regenerate a functional retina from retinal pigment epithelium (RPE) cells, even when the neural retina (NR) is completely lost from the eye. In this system, RPE cells are reprogrammed into a unique state of multipotent cells, named RPESCs, in an early phase of retinal regeneration. However, the signals that trigger reprogramming remain unknown. Here, to approach this issue we focused on Pax6, a transcription factor known to be expressed in RPESCs. We first identified four classes (v1, v2, v3 and v4) of Pax6 variants in the eye of adult newt, Cynops pyrrhogaster. These variants were expressed in most tissues of the intact eye in different combinations but not in the RPE, choroid or sclera. On the basis of this information, we investigated the expression of Pax6 in RPE cells after the NR was removed from the eye by surgery (retinectomy), and found that two classes (v1 and v2) of Pax6 variants were newly expressed in RPE cells 10 days after retinectomy, both in vivo and in vitro (RLEC system). In the RLEC system, we found that Pax6 expression is mediated through a pathway separate from the MEK-ERK pathway, which is required for cell cycle re-entry of RPE cells. These results predict the existence of a pathway that may be of fundamental importance to a better understanding of the reprogramming of RPE cells in vivo.
Collapse
Affiliation(s)
- Wataru Inami
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Md Rafiqul Islam
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenta Nakamura
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Taro Yoshikawa
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hirofumi Yasumuro
- 1 Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Martin Miguel Casco-Robles
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Fubito Toyama
- 3 Graduate School of Engineering, Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585, Japan
| | - Fumiaki Maruo
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Chikafumi Chiba
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
10
|
Nakayama T, Fisher M, Nakajima K, Odeleye AO, Zimmerman KB, Fish MB, Yaoita Y, Chojnowski JL, Lauderdale JD, Netland PA, Grainger RM. Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Dev Biol 2015; 408:328-44. [PMID: 25724657 DOI: 10.1016/j.ydbio.2015.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Mutations in the Pax6 gene cause ocular defects in both vertebrate and invertebrate animal species, and the disease aniridia in humans. Despite extensive experimentation on this gene in multiple species, including humans, we still do not understand the earliest effects on development mediated by this gene. This prompted us to develop pax6 mutant lines in Xenopus tropicalis taking advantage of the utility of the Xenopus system for examining early development and in addition to establish a model for studying the human disease aniridia in an accessible lower vertebrate. We have generated mutants in pax6 by using Transcription Activator-Like Effector Nuclease (TALEN) constructs for gene editing in X. tropicalis. Embryos with putative null mutations show severe eye abnormalities and changes in brain development, as assessed by changes in morphology and gene expression. One gene that we found is downregulated very early in development in these pax6 mutants is myc, a gene involved in pluripotency and progenitor cell maintenance and likely a mediator of some key pax6 functions in the embryo. Changes in gene expression in the developing brain and pancreas reflect other important functions of pax6 during development. In mutations with partial loss of pax6 function eye development is initially relatively normal but froglets show an underdeveloped iris, similar to the classic phenotype (aniridia) seen in human patients with PAX6 mutations. Other eye abnormalities observed in these froglets, including cataracts and corneal defects, are also common in human aniridia. The frog model thus allows us to examine the earliest deficits in eye formation as a result of pax6 lesions, and provides a useful model for understanding the developmental basis for the aniridia phenotype seen in humans.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Marilyn Fisher
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keisuke Nakajima
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Akinleye O Odeleye
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Keith B Zimmerman
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Margaret B Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Yoshio Yaoita
- Division of Embryology and Genetics, Institute for Amphibian Biology, Hiroshima University, Higashihiroshima 739-8526, Japan
| | - Jena L Chojnowski
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - James D Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
11
|
Raviv S, Bharti K, Rencus-Lazar S, Cohen-Tayar Y, Schyr R, Evantal N, Meshorer E, Zilberberg A, Idelson M, Reubinoff B, Grebe R, Rosin-Arbesfeld R, Lauderdale J, Lutty G, Arnheiter H, Ashery-Padan R. PAX6 regulates melanogenesis in the retinal pigmented epithelium through feed-forward regulatory interactions with MITF. PLoS Genet 2014; 10:e1004360. [PMID: 24875170 PMCID: PMC4038462 DOI: 10.1371/journal.pgen.1004360] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 03/24/2014] [Indexed: 12/19/2022] Open
Abstract
During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage. It is currently poorly understood how a single developmental transcription regulator controls early specification as well as a broad range of highly specialized differentiation schemes. PAX6 is one of the most extensively investigated factors in central nervous system development, yet its role in execution of lineage-specific programs remains mostly elusive. Here, we directly investigated the involvement of PAX6 in the differentiation of one lineage, the retinal pigmented epithelium (RPE), a neuroectodermal-derived tissue that is essential for retinal development and function. We revealed that PAX6 accomplishes its role through a unique regulatory interaction with the transcription factor MITF, a master regulator of the pigmentation program. During the differentiation of the RPE, PAX6 regulates the expression of an RPE-specific isoform of Mitf and importantly, at the same time, PAX6 functions together with MITF to directly activate the expression of downstream genes required for pigment biogenesis. These findings provide comprehensive insight into the gene hierarchy that controls RPE development: from a kernel gene (a term referring to the upper-most gene in the gene regulatory network) that is broadly expressed during CNS development through a lineage-specific transcription factor that together with the kernel gene creates cis-regulatory input that contributes to transcriptionally activate a battery of terminal differentiation genes.
Collapse
Affiliation(s)
- Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sigal Rencus-Lazar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yamit Cohen-Tayar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Schyr
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naveh Evantal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alona Zilberberg
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Idelson
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy & Department of Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rhonda Grebe
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - James Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, United States of America
| | - Gerard Lutty
- Wilmer Ophthalmological Institute, The Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Heinz Arnheiter
- Mammalian Development Section, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
12
|
Mussar K, Tucker A, McLennan L, Gearhart A, Jimenez-Caliani AJ, Cirulli V, Crisa L. Macrophage/epithelium cross-talk regulates cell cycle progression and migration in pancreatic progenitors. PLoS One 2014; 9:e89492. [PMID: 24586821 PMCID: PMC3929706 DOI: 10.1371/journal.pone.0089492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/21/2014] [Indexed: 01/06/2023] Open
Abstract
Macrophages populate the mesenchymal compartment of all organs during embryogenesis and have been shown to support tissue organogenesis and regeneration by regulating remodeling of the extracellular microenvironment. Whether this mesenchymal component can also dictate select developmental decisions in epithelia is unknown. Here, using the embryonic pancreatic epithelium as model system, we show that macrophages drive the epithelium to execute two developmentally important choices, i.e. the exit from cell cycle and the acquisition of a migratory phenotype. We demonstrate that these developmental decisions are effectively imparted by macrophages activated toward an M2 fetal-like functional state, and involve modulation of the adhesion receptor NCAM and an uncommon "paired-less" isoform of the transcription factor PAX6 in the epithelium. Over-expression of this PAX6 variant in pancreatic epithelia controls both cell motility and cell cycle progression in a gene-dosage dependent fashion. Importantly, induction of these phenotypes in embryonic pancreatic transplants by M2 macrophages in vivo is associated with an increased frequency of endocrine-committed cells emerging from ductal progenitor pools. These results identify M2 macrophages as key effectors capable of coordinating epithelial cell cycle withdrawal and cell migration, two events critical to pancreatic progenitors' delamination and progression toward their differentiated fates.
Collapse
Affiliation(s)
- Kristin Mussar
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Andrew Tucker
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Linsey McLennan
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Addie Gearhart
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Antonio J. Jimenez-Caliani
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Vincenzo Cirulli
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Laura Crisa
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
13
|
Huang L, Wang C, Zhang Y, Wu M, Zuo Z. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:172-180. [PMID: 23921180 DOI: 10.1016/j.jhazmat.2013.07.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
14
|
Elso C, Lu X, Weisner PA, Thompson HL, Skinner A, Carver E, Stubbs L. A reciprocal translocation dissects roles of Pax6 alternative promoters and upstream regulatory elements in the development of pancreas, brain, and eye. Genesis 2013; 51:630-46. [PMID: 23798316 DOI: 10.1002/dvg.22409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/28/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Pax6 encodes a transcription factor with key roles in the development of the pancreas, central nervous system, and eye. Gene expression is orchestrated by several alternative promoters and enhancer elements that are distributed over several hundred kilobases. Here, we describe a reciprocal translocation, called 1Gso, which disrupts the integrity of transcripts arising from the 5'-most promoter, P0, and separates downstream promoters from enhancers active in pancreas and eye. Despite this fact, 1Gso animals exhibit none of the dominant Pax6 phenotypes, and the translocation complements recessive brain and craniofacial phenotypes. However, 1Gso fails to complement Pax6 recessive effects in lacrimal gland, conjunctiva, lens, and pancreas. The 1Gso animals also express a corneal phenotype that is related to but distinct from that expressed by Pax6 null mutants, and an abnormal density and organization of retinal ganglion cell axons; these phenotypes may be related to a modest upregulation of Pax6 expression from downstream promoters that we observed during development. Our investigation maps the activities of Pax6 alternative promoters including a novel one in developing tissues, confirms the phenotypic consequences of upstream enhancer disruption, and limits the likely effects of the P0 transcript null mutation to recessive abnormalities in the pancreas and specific structures of the eye.
Collapse
Affiliation(s)
- Colleen Elso
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California
| | | | | | | | | | | | | |
Collapse
|
15
|
Ravi V, Bhatia S, Gautier P, Loosli F, Tay BH, Tay A, Murdoch E, Coutinho P, van Heyningen V, Brenner S, Venkatesh B, Kleinjan DA. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences. PLoS Genet 2013; 9:e1003177. [PMID: 23359656 PMCID: PMC3554528 DOI: 10.1371/journal.pgen.1003177] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Pax6 is a developmental control gene essential for eye development throughout the animal kingdom. In addition, Pax6 plays key roles in other parts of the CNS, olfactory system, and pancreas. In mammals a single Pax6 gene encoding multiple isoforms delivers these pleiotropic functions. Here we provide evidence that the genomes of many other vertebrate species contain multiple Pax6 loci. We sequenced Pax6-containing BACs from the cartilaginous elephant shark (Callorhinchus milii) and found two distinct Pax6 loci. Pax6.1 is highly similar to mammalian Pax6, while Pax6.2 encodes a paired-less Pax6. Using synteny relationships, we identify homologs of this novel paired-less Pax6.2 gene in lizard and in frog, as well as in zebrafish and in other teleosts. In zebrafish two full-length Pax6 duplicates were known previously, originating from the fish-specific genome duplication (FSGD) and expressed in divergent patterns due to paralog-specific loss of cis-elements. We show that teleosts other than zebrafish also maintain duplicate full-length Pax6 loci, but differences in gene and regulatory domain structure suggest that these Pax6 paralogs originate from a more ancient duplication event and are hence renamed as Pax6.3. Sequence comparisons between mammalian and elephant shark Pax6.1 loci highlight the presence of short- and long-range conserved noncoding elements (CNEs). Functional analysis demonstrates the ancient role of long-range enhancers for Pax6 transcription. We show that the paired-less Pax6.2 ortholog in zebrafish is expressed specifically in the developing retina. Transgenic analysis of elephant shark and zebrafish Pax6.2 CNEs with homology to the mouse NRE/Pα internal promoter revealed highly specific retinal expression. Finally, morpholino depletion of zebrafish Pax6.2 resulted in a "small eye" phenotype, supporting a role in retinal development. In summary, our study reveals that the pleiotropic functions of Pax6 in vertebrates are served by a divergent family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses.
Collapse
Affiliation(s)
- Vydianathan Ravi
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Shipra Bhatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Felix Loosli
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Alice Tay
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Emma Murdoch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Coutinho
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronica van Heyningen
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore, Singapore
- * E-mail: (DA Kleinjan); (B Venkatesh)
| | - Dirk A. Kleinjan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DA Kleinjan); (B Venkatesh)
| |
Collapse
|
16
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
17
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
18
|
Fish MB, Nakayama T, Grainger RM. Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus. Genesis 2011; 50:307-15. [PMID: 22084035 DOI: 10.1002/dvg.20819] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 01/19/2023]
Abstract
We have developed a method of injecting bacterial artificial chromosome (BAC) DNA into Xenopus embryos that is simple and efficient, and results in consistent and tissue-specific expression of transgenes cloned into BAC vectors. Working with large pieces of DNA, as can be accommodated by BACs, is necessary when studying large or complex genes and conducive to studying the function of long-range regulatory elements that act to control developmentally restricted gene expression. We recombineered fluorescent reporters into three Xenopus tropicalis BAC clones targeting three different genes and report that up to 60% of injected embryos express the reporter in a manner consistent with endogenous expression. The behavior of these BACs, which are replicated after injection, contrasts with that of smaller plasmids, which degrade relatively quickly when injected as circular molecules and generally fail to recapitulate endogenous expression when not integrated into the Xenopus genome.
Collapse
Affiliation(s)
- Margaret B Fish
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
19
|
Matsushima D, Heavner W, Pevny LH. Combinatorial regulation of optic cup progenitor cell fate by SOX2 and PAX6. Development 2011; 138:443-54. [PMID: 21205789 DOI: 10.1242/dev.055178] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, haploinsufficiency of either SOX2 or PAX6 is associated with microphthalmia, anophthalmia or aniridia. In this study, through the genetic spatiotemporal specific ablation of SOX2 on both wild-type and Pax6-haploinsufficent backgrounds in the mouse, we have uncovered a transcriptionally distinct and developmentally transient stage of eye development. We show that genetic ablation of SOX2 in the optic cup results in complete loss of neural competence and eventual cell fate conversion to non-neurogenic ciliary epithelium. This cell fate conversion is associated with a striking increase in PAX6, and genetically ablating SOX2 on a Pax6-haploinsufficient background partially rescues the Sox2-mutant phenotype. Collectively, these results demonstrate that precise regulation of the ratio of SOX2 to PAX6 is necessary to ensure accurate progenitor cell specification, and place SOX2 as a decisive factor of neural competence in the retina.
Collapse
Affiliation(s)
- Danielle Matsushima
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
20
|
Holland LZ, Short S. Alternative splicing in development and function of chordate endocrine systems: a focus on Pax genes. Integr Comp Biol 2010; 50:22-34. [PMID: 21558185 DOI: 10.1093/icb/icq048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genome sequencing has facilitated an understanding of gene networks but has also shown that they are only a small part of the answer to the question of how genes translate into a functional organism. Much of the answer lies in epigenetics-heritable traits not directly encoded by the genome. One such phenomenon is alternative splicing, which affects over 75% of protein coding genes and greatly amplifies the number of proteins. Although it was postulated that alternative splicing and gene duplication are inversely proportional and, therefore, have similar effects on the size of the proteome, for ancient duplications such as occurred in the Pax family of transcription factors, that is not necessarily so. The importance of alternative splicing in development and physiology is only just coming to light. However, several techniques for studying isoform functions both in vitro and in vivo have been recently developed. As examples of what is known and what is yet to be discovered, this review focuses on the evolution and roles of the Pax family of transcription factors in development and on alternative splicing of endocrine genes and the factors that regulate them.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
21
|
Ramaesh T, Williams SE, Paul C, Ramaesh K, Dhillon B, West JD. Histopathological characterisation of effects of the mouse Pax6Leca4 missense mutation on eye development. Exp Eye Res 2009; 89:263-73. [DOI: 10.1016/j.exer.2009.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/06/2009] [Accepted: 03/23/2009] [Indexed: 02/02/2023]
|
22
|
Relationship of Pax6 activity levels to the extent of eye development in the mouse, Mus musculus. Genetics 2008; 179:1345-55. [PMID: 18562673 DOI: 10.1534/genetics.108.088591] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study we extend the mouse Pax6 mutant allelic series to include a homozygous and hemizygous viable hypomorph allele. The Pax6(132-14Neu) allele is a Phe272Ile missense mutation within the third helix of the homeodomain. The mutant Pax6 homeodomain shows greatly reduced binding activity to the P3 DNA binding target. Glucagon-promoter activation by the entire mutant Pax6 product of a reporter gene driven by the G1 paired and homeodomain DNA binding target was slightly increased. We constructed mutant Pax6 genotypes such that Pax6 activity ranged between 100 and 0% and show that the extent of eye development is progressively reduced as Pax6 activity decreased. Two apparent thresholds identify three groups in which the extent of eye development abruptly shifted from complete eye at the highest levels of Pax6 to a rudimentary eye at intermediate levels of Pax6 to very early termination of eye development at the lowest levels of Pax6. Of the two Pax6-positive regions that participate in eye development, the surface ectoderm, which develops into the lens vesicle and the cornea, is more sensitive to reduced levels of Pax6 activity than the optic vesicle, which develops into the inner and outer retinal layers.
Collapse
|
23
|
Osumi N, Shinohara H, Numayama-Tsuruta K, Maekawa M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 2008; 26:1663-72. [PMID: 18467663 DOI: 10.1634/stemcells.2007-0884] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pax6 is a highly conserved transcription factor among vertebrates and is important in various developmental processes in the central nervous system (CNS), including patterning of the neural tube, migration of neurons, and formation of neural circuits. In this review, we focus on the role of Pax6 in embryonic and postnatal neurogenesis, namely, production of new neurons from neural stem/progenitor cells, because Pax6 is intensely expressed in these cells from the initial stage of CNS development and in neurogenic niches (the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricle) throughout life. Pax6 is a multifunctional player regulating proliferation and differentiation through the control of expression of different downstream molecules in a highly context-dependent manner.
Collapse
Affiliation(s)
- Noriko Osumi
- Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|