1
|
Li C, Yoon B, Stefani G, Slack FJ. Lipid kinase PIP5K1A regulates let-7 microRNA biogenesis through interacting with nuclear export protein XPO5. Nucleic Acids Res 2023; 51:9849-9862. [PMID: 37655623 PMCID: PMC10570020 DOI: 10.1093/nar/gkad709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs first discovered in Caenorhabditis elegans. The let-7 miRNA is highly conserved in sequence, biogenesis and function from C. elegans to humans. During miRNA biogenesis, XPO5-mediated nuclear export of pre-miRNAs is a rate-limiting step and, therefore, might be critical for the quantitative control of miRNA levels, yet little is known about how this is regulated. Here we show a novel role for lipid kinase PPK-1/PIP5K1A (phosphatidylinositol-4-phosphate 5-kinase) in regulating miRNA levels. We found that C. elegans PPK-1 functions in the lin-28/let-7 heterochronic pathway, which regulates the strict developmental timing of seam cells. In C. elegans and human cells, PPK-1/PIP5K1A regulates let-7 miRNA levels. We investigated the mechanism further in human cells and show that PIP5K1A interacts with nuclear export protein XPO5 in the nucleus to regulate mature miRNA levels by blocking the binding of XPO5 to pre-let-7 miRNA. Furthermore, we demonstrate that this role for PIP5K1A is kinase-independent. Our study uncovers the novel finding of a direct connection between PIP5K1A and miRNA biogenesis. Given that miRNAs are implicated in multiple diseases, including cancer, this new finding might lead to a novel therapeutic opportunity.
Collapse
Affiliation(s)
- Chun Li
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bohyung Yoon
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Giovanni Stefani
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
2
|
Wang Y, Zhao J, Chen S, Li D, Yang J, Zhao X, Qin M, Guo M, Chen C, He Z, Zhou Y, Xu L. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge. Biomolecules 2022; 12:1070. [PMID: 36008964 PMCID: PMC9406090 DOI: 10.3390/biom12081070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
The abnormal regulation and expression of microRNA (miRNA) are closely related to the aging process and the occurrence and development of aging-related diseases. Lethal-7 (let-7) was discovered in Caenorhabditis elegans (C. elegans) and plays an important role in development by regulating cell fate regulators. Accumulating evidence has shown that let-7 is elevated in aging tissues and participates in multiple pathways that regulate the aging process, including affecting tissue stem cell function, body metabolism, and various aging-related diseases (ARDs). Moreover, recent studies have found that let-7 plays an important role in the senescence of B cells, suggesting that let-7 may also participate in the aging process by regulating immune function. Therefore, these studies show the diversity and complexity of let-7 expression and regulatory functions during aging. In this review, we provide a detailed overview of let-7 expression regulation as well as its role in different tissue aging and aging-related diseases, which may provide new ideas for enriching the complex expression regulation mechanism and pathobiological function of let-7 in aging and related diseases and ultimately provide help for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China; (Y.W.); (J.Z.); (S.C.); (D.L.); (J.Y.); (X.Z.); (M.Q.); (M.G.); (C.C.)
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Mohammadi AH, Seyedmoalemi S, Moghanlou M, Akhlagh SA, Talaei Zavareh SA, Hamblin MR, Jafari A, Mirzaei H. MicroRNAs and Synaptic Plasticity: From Their Molecular Roles to Response to Therapy. Mol Neurobiol 2022; 59:5084-5102. [PMID: 35666404 DOI: 10.1007/s12035-022-02907-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Synaptic plasticity is the ability of synapses to weaken or strengthen over time, in response to changes in the activity of the neurons. It is orchestrated by a variety of genes, proteins, and external and internal factors, especially epigenetic factors. MicroRNAs (miRNAs) are well-acknowledged epigenetic modulators that regulate the translation and degradation of target genes in the nervous system. Increasing evidence has suggested that a number of miRNAs play important roles in modulating various aspects of synaptic plasticity. The deregulation of miRNAs could be associated with pathological alterations in synaptic plasticity, which could lead to different CNS-related diseases. Herein, we provide an update on the role of miRNAs in governing synaptic plasticity. In addition, we also summarize recent researches on the role of miRNAs in drug addiction, and their targets and mechanism of action. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel biomarkers and new therapeutic strategies for the diagnosis and treatment of plasticity-related diseases and drug addiction.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyedvahid Seyedmoalemi
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Moghanlou
- Department of Psychiatry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Network analysis in aged C. elegans reveals candidate regulatory genes of ageing. Biogerontology 2021; 22:345-367. [PMID: 33871732 DOI: 10.1007/s10522-021-09920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Ageing is a biological process guided by genetic and environmental factors that ultimately lead to adverse outcomes for organismal lifespan and healthspan. Determination of molecular pathways that are affected with age and increase disease susceptibility is crucial. The gene expression profile of the ideal ageing model, namely the nematode Caenorhabditis elegans mapped with the microarray technology initially led to the identification of age-dependent gene expression alterations that characterize the nematode's ageing process. The list of differentially expressed genes was then utilized to construct a network of molecular interactions with their first neighbors/interactors using the interactions listed in the WormBase database. The subsequent network analysis resulted in the unbiased selection of 110 candidate genes, among which well-known ageing regulators appeared. More importantly, our approach revealed candidates that have never been linked to ageing before, thus suggesting promising potential targets/ageing regulators.
Collapse
|
5
|
Li QS, Cai D. Integrated miRNA-Seq and mRNA-Seq Study to Identify miRNAs Associated With Alzheimer's Disease Using Post-mortem Brain Tissue Samples. Front Neurosci 2021; 15:620899. [PMID: 33833661 PMCID: PMC8021900 DOI: 10.3389/fnins.2021.620899] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD), the leading form of dementia, is associated with abnormal tau and β-amyloid accumulation in the brain. We conducted a miRNA-seq study to identify miRNAs associated with AD in the post-mortem brain from the inferior frontal gyrus (IFG, n = 69) and superior temporal gyrus (STG, n = 81). Four and 64 miRNAs were differentially expressed (adjusted p-value < 0.05) in AD compared to cognitively normal controls in the IFG and STG, respectively. We observed down-regulation of several miRNAs that have previously been implicated in AD, including hsa-miR-212-5p and hsa-miR-132-5p, in AD samples across both brain regions, and up-regulation of hsa-miR-146a-5p, hsa-miR-501-3p, hsa-miR-34a-5p, and hsa-miR-454-3p in the STG. The differentially expressed miRNAs were previously implicated in the formation of amyloid-β plaques, the dysregulation of tau, and inflammation. We have also observed differential expressions for dozens of other miRNAs in the STG, including hsa-miR-4446-3p, that have not been described previously. Putative targets of these miRNAs (adjusted p-value < 0.1) were found to be involved in Wnt signaling pathway, MAPK family signaling cascades, sphingosine 1-phosphate (S1P) pathway, adaptive immune system, innate immune system, and neurogenesis. Our results support the finding of dysregulated miRNAs previously implicated in AD and propose additional miRNAs that appear to be dysregulated in AD for experimental follow-up.
Collapse
Affiliation(s)
- Qingqin S. Li
- Neuroscience, Janssen Research & Development, LLC, Titusville, NJ, United States
| | | |
Collapse
|
6
|
Varma-Doyle AV, Lukiw WJ, Zhao Y, Lovera J, Devier D. A hypothesis-generating scoping review of miRs identified in both multiple sclerosis and dementia, their protein targets, and miR signaling pathways. J Neurol Sci 2021; 420:117202. [PMID: 33183778 DOI: 10.1016/j.jns.2020.117202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Cognitive impairment (CI) is a frequent complication affecting people with multiple sclerosis (MS). The causes of CI in MS are not fully understood. Besides MRI measures, few other biomarkers exist to help us predict the development of CI and understand its biology. MicroRNAs (miRs) are relatively stable, non-coding RNA molecules about 22 nucleotides in length that can serve as biomarkers and possible therapeutic targets in several autoimmune and neurodegenerative diseases, including the dementias. In this review, we identify dysregulated miRs in MS that overlap with dysregulated miRs in cognitive disorders and dementia and explore how these overlapping miRs play a role in CI in MS. MiR-15, miR-21, miR-128, miR-132, miR-138, miR-142, miR-146a, miR-155, miR-181, miR-572, and let-7 are known to contribute to various forms of dementia and show abnormal expression in MS. These overlapping miRs are involved in pathways related to apoptosis, neuroinflammation, glutamate toxicity, astrocyte activation, microglial burst activity, synaptic dysfunction, and remyelination. The mechanisms of action suggest that these miRs may be related to CI in MS. From our review, we also delineated miRs that could be neuroprotective in MS, namely miR-23a, miR-219, miR-214, and miR-22. Further studies can help clarify if these miRs are responsible for CI in MS, leading to potential therapeutic targets.
Collapse
Affiliation(s)
- Aditi Vian Varma-Doyle
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America
| | - Walter J Lukiw
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Ophthalmology, United States of America
| | - Yuhai Zhao
- Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America; Louisiana State University Health Sciences Center - New Orleans Neuroscience Center, United States of America
| | - Jesus Lovera
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America.
| | - Deidre Devier
- Louisiana State University Health Sciences Center -New Orleans School of Medicine, Department of Neurology, New Orleans, United States of America; Louisiana State University Health Sciences Center - New Orleans Department of Cell Biology and Anatomy, United States of America.
| |
Collapse
|
7
|
Godini R, Pocock R, Fallahi H. Caenorhabditis elegans hub genes that respond to amyloid beta are homologs of genes involved in human Alzheimer's disease. PLoS One 2019; 14:e0219486. [PMID: 31291334 PMCID: PMC6619800 DOI: 10.1371/journal.pone.0219486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
The prominent characteristic of Alzheimer’s disease (AD) is the accumulation of amyloid beta (Abeta) proteins in the form of plaques that cause molecular and cellular alterations in the brain. Due to the paucity of brain samples of early-stage Abeta aggregation, animal models have been developed to study early events in AD. Caenorhabditis elegans is a genetically tractable animal model for AD. Here, we used transcriptomic data, network-based protein-protein interactions and weighted gene co-expression network analysis (WGCNA), to detect modules and their gene ontology in response to Abeta aggregation in C. elegans. Additionally, hub genes and their orthologues in human and mouse were identified to study their relation to AD. We also found several transcription factors (TFs) responding to Abeta accumulation. Our results show that Abeta expression in C. elegans relates to general processes such as molting cycle, locomotion, and larval development plus AD-associated processes, including protein phosphorylation, and G-protein coupled receptor-regulated pathways. We reveal that many hub genes and TFs including ttbk-2, daf-16, and unc-49 have human and mouse orthologues that are directly or potentially associated with AD and neural development. In conclusion, using systems biology we identified important genes and biological processes in C. elegans that respond to Abeta aggregation, which could be used as potential diagnostic or therapeutic targets. In addition, because of evolutionary relationship to AD in human, we suggest that C. elegans is a useful model for studying early molecular events in AD.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
- * E-mail:
| |
Collapse
|
8
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Griñán-Ferré C, Corpas R, Puigoriol-Illamola D, Palomera-Ávalos V, Sanfeliu C, Pallàs M. Understanding Epigenetics in the Neurodegeneration of Alzheimer's Disease: SAMP8 Mouse Model. J Alzheimers Dis 2019; 62:943-963. [PMID: 29562529 PMCID: PMC5870033 DOI: 10.3233/jad-170664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetics is emerging as the missing link among genetic inheritance, environmental influences, and body and brain health status. In the brain, specific changes in nucleic acids or their associated proteins in neurons and glial cells might imprint differential patterns of gene activation that will favor either cognitive enhancement or cognitive loss for more than one generation. Furthermore, derangement of age-related epigenetic signaling is appearing as a significant risk factor for illnesses of aging, including neurodegeneration and Alzheimer’s disease (AD). In addition, better knowledge of epigenetic mechanisms might provide hints and clues in the triggering and progression of AD. Intense research in experimental models suggests that molecular interventions for modulating epigenetic mechanisms might have therapeutic applications to promote cognitive maintenance through an advanced age. The SAMP8 mouse is a senescence model with AD traits in which the study of epigenetic alterations may unveil epigenetic therapies against the AD.
Collapse
Affiliation(s)
- Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Dolors Puigoriol-Illamola
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Verónica Palomera-Ávalos
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC, IDIBAPS and CIBERESP, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry (Pharmacology Section) and Institute of Neuroscience, University of Barcelona and CIBERNED, Barcelona, Spain
| |
Collapse
|
10
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Griffin EF, Caldwell KA, Caldwell GA. Genetic and Pharmacological Discovery for Alzheimer's Disease Using Caenorhabditis elegans. ACS Chem Neurosci 2017; 8:2596-2606. [PMID: 29022701 DOI: 10.1021/acschemneuro.7b00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The societal burden presented by Alzheimer's disease warrants both innovative and expedient means by which its underlying molecular causes can be both identified and mechanistically exploited to discern novel therapeutic targets and strategies. The conserved characteristics, defined neuroanatomy, and advanced technological application of Caenorhabditis elegans render this metazoan an unmatched tool for probing neurotoxic factors. In addition, its short lifespan and importance in the field of aging make it an ideal organism for modeling age-related neurodegenerative disease. As such, this nematode system has demonstrated its value in predicting functional modifiers of human neurodegenerative disorders. Here, we review how C. elegans has been utilized to model Alzheimer's disease. Specifically, we present how the causative neurotoxic peptides, amyloid-β and tau, contribute to disease-like neurodegeneration in C. elegans and how they translate to human disease. Furthermore, we describe how a variety of transgenic animal strains, each with distinct utility, have been used to identify both genetic and pharmacological modifiers of toxicity in C. elegans. As technological advances improve the prospects for intervention, the rapidity, unparalleled accuracy, and scale that C. elegans offers researchers for defining functional modifiers of neurodegeneration should speed the discovery of improved therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward F. Griffin
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kim A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Departments
of Neurology and Neurobiology, Center for Neurodegeneration and Experimental
Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
13
|
Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z. MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens. Metab Brain Dis 2017; 32:1767-1783. [PMID: 28681200 DOI: 10.1007/s11011-017-0061-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023]
Abstract
Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.
Collapse
Affiliation(s)
- Maw Shin Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tomoko Soga
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Bandar Sunway, 47500, Selangor, Malaysia
| | - Vijayapandi Pandy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yuan Seng Wu
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University, Bandar Sunway, 47500, Selangor, Malaysia
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Metheetrairut C, Ahuja Y, Slack FJ. acn-1, a C. elegans homologue of ACE, genetically interacts with the let-7 microRNA and other heterochronic genes. Cell Cycle 2017; 16:1800-1809. [PMID: 28933985 DOI: 10.1080/15384101.2017.1344798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The heterochronic pathway in C. elegans controls the relative timing of cell fate decisions during post-embryonic development. It includes a network of microRNAs (miRNAs), such as let-7, and protein-coding genes, such as the stemness factors, LIN-28 and LIN-41. Here we identified the acn-1 gene, a homologue of mammalian angiotensin-converting enzyme (ACE), as a new suppressor of the stem cell developmental defects of let-7 mutants. Since acn-1 null mutants die during early larval development, we used RNAi to characterize the role of acn-1 in C. elegans seam cell development, and determined its interaction with heterochronic factors, including let-7 and its downstream interactors - lin-41, hbl-1, and apl-1. We demonstrate that although RNAi knockdown of acn-1 is insufficient to cause heterochronic defects on its own, loss of acn-1 suppresses the retarded phenotypes of let-7 mutants and enhances the precocious phenotypes of hbl-1, though not lin-41, mutants. Conversely, the pattern of acn-1 expression, which oscillates during larval development, is disrupted by lin-41 mutants but not by hbl-1 mutants. Finally, we show that acn-1(RNAi) enhances the let-7-suppressing phenotypes caused by loss of apl-1, a homologue of the Alzheimer's disease-causing amyloid precursor protein (APP), while significantly disrupting the expression of apl-1 during the L4 larval stage. In conclusion, acn-1 interacts with heterochronic genes and appears to function downstream of let-7 and its target genes, including lin-41 and apl-1.
Collapse
Affiliation(s)
- Chanatip Metheetrairut
- a Department of Molecular, Cellular, and Developmental Biology , Yale University , New Haven , CT , USA
| | - Yuri Ahuja
- a Department of Molecular, Cellular, and Developmental Biology , Yale University , New Haven , CT , USA
| | - Frank J Slack
- a Department of Molecular, Cellular, and Developmental Biology , Yale University , New Haven , CT , USA
| |
Collapse
|
15
|
Zhao J, Yue D, Zhou Y, Jia L, Wang H, Guo M, Xu H, Chen C, Zhang J, Xu L. The Role of MicroRNAs in Aβ Deposition and Tau Phosphorylation in Alzheimer's Disease. Front Neurol 2017; 8:342. [PMID: 28769871 PMCID: PMC5513952 DOI: 10.3389/fneur.2017.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/30/2017] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD), with main clinical features of progressive impairment in cognitive and behavioral functions, is the most common degenerative disease of the central nervous system. Recent evidence showed that microRNAs (miRNAs) played important roles in the pathological progression of AD. In this article, we reviewed the promising role of miRNAs in both Aβ deposition and Tau phosphorylation, two key pathological characters in the pathological progression of AD, which might be helpful for the understanding of pathogenesis and the development of new strategies of clinical diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Dongxu Yue
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, China
| | - Li Jia
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hairong Wang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
16
|
Role of miRNAs in development and disease: Lessons learnt from small organisms. Life Sci 2017; 185:8-14. [PMID: 28728902 DOI: 10.1016/j.lfs.2017.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/16/2017] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) constitute a class of small (18-22 nucleotides) non-coding RNAs that regulate gene expression at the post-transcriptional level. Caenorhabditis elegans, Drosophila melanogaster, and many other small organisms have been instrumental in deciphering the biological functions of miRNAs. While some miRNAs from small organisms are highly conserved across the taxa, others are organism specific. The miRNAs are known to play a crucial role during development and in various cellular functions such as cell survival, cell proliferation, and differentiation. The miRNAs associated with fragile X syndrome, Parkinson's disease, Alzheimer's disease, diabetes, cancer, malaria, infectious diseases and several other human diseases have been identified from small organisms. These organisms have been used as platforms in deciphering the functions of miRNAs in the pathogenesis of human diseases and to study miRNA biogenesis. Small organisms have also been used in the development of miRNA-based diagnostic, prognostic and therapeutic strategies. The molecular techniques such as genome sequencing, northern blot analysis, and quantitative RT-PCR, have been used in deciphering the functions of miRNAs in small organisms. How miRNAs from small organisms especially those from Drosophila and C. elegans regulate development and disease pathogenesis is the focus of this review. The outstanding questions raised by our current understanding are discussed.
Collapse
|
17
|
MicroRNA-34 directly targets pair-rule genes and cytoskeleton component in the honey bee. Sci Rep 2017; 7:40884. [PMID: 28098233 PMCID: PMC5241629 DOI: 10.1038/srep40884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are key regulators of developmental processes, such as cell fate determination and differentiation. Previous studies showed Dicer knockdown in honeybee embryos disrupt the processing of functional mature miRNAs and impairs embryo patterning. Here we investigated the expression profiles of miRNAs in honeybee embryogenesis and the role of the highly conserved miR-34-5p in the regulation of genes involved in insect segmentation. A total of 221 miRNAs were expressed in honey bee embryogenesis among which 97 mature miRNA sequences have not been observed before. Interestingly, we observed a switch in dominance between the 5-prime and 3-prime arm of some miRNAs in different embryonic stages; however, most miRNAs present one dominant arm across all stages of embryogenesis. Our genome-wide analysis of putative miRNA-target networks and functional pathways indicates miR-34-5p is one of the most conserved and connected miRNAs associated with the regulation of genes involved in embryonic patterning and development. In addition, we experimentally validated that miR-34-5p directly interacts to regulatory elements in the 3'-untranslated regions of pair-rule (even-skipped, hairy, fushi-tarazu transcription factor 1) and cytoskeleton (actin5C) genes. Our study suggests that miR-34-5p may regulate the expression of pair-rule and cytoskeleton genes during early development and control insect segmentation.
Collapse
|
18
|
Abstract
Many studies have recently focused on extracellular vesicles. Extracellular vesicles including exosomes are nanosized vesicles that are produced and secreted by cells. Extracellular vesicles contain various types of nucleic acid biomarkers, including microRNAs (miRNAs ) from their parent cells. As high concentrations of extracellular vesicles are found in most body fluids, miRNA detection of exosomes in body fluids, including blood and urine, enables early and easy disease diagnosis. In this context, the in situ detection method of extracellular vesicles miRNA using molecular beacons is described here.
Collapse
Affiliation(s)
- Won Jong Rhee
- Division of Bioengineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon, 406-772, South Korea.
| | - Seunga Jeong
- Division of Bioengineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon, 406-772, South Korea
| |
Collapse
|
19
|
Neault M, Couteau F, Bonneau É, De Guire V, Mallette FA. Molecular Regulation of Cellular Senescence by MicroRNAs: Implications in Cancer and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:27-98. [DOI: 10.1016/bs.ircmb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
|
21
|
Ewald CY, Marfil V, Li C. Alzheimer-related protein APL-1 modulates lifespan through heterochronic gene regulation in Caenorhabditis elegans. Aging Cell 2016; 15:1051-1062. [PMID: 27557896 PMCID: PMC5114704 DOI: 10.1111/acel.12509] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age‐associated disease. Mutations in the amyloid precursor protein (APP) may be causative or protective of AD. The presence of two functionally redundant APP‐like genes (APLP1/2) has made it difficult to unravel the biological function of APP during aging. The nematode Caenorhabditis elegans contains a single APP family member, apl‐1. Here, we assessed the function of APL‐1 on C. elegans’ lifespan and found tissue‐specific effects on lifespan by overexpression of APL‐1. Overexpression of APL‐1 in neurons causes lifespan reduction, whereas overexpression of APL‐1 in the hypodermis causes lifespan extension by repressing the function of the heterochronic transcription factor LIN‐14 to preserve youthfulness. APL‐1 lifespan extension also requires signaling through the FOXO transcription factor DAF‐16, heat‐shock factor HSF‐1, and vitamin D‐like nuclear hormone receptor DAF‐12. We propose that reinforcing APL‐1 expression in the hypodermis preserves the regulation of heterochronic lin‐14 gene network to improve maintenance of somatic tissues via DAF‐16/FOXO and HSF‐1 to promote healthy aging. Our work reveals a mechanistic link of how a conserved APP‐related protein modulates aging.
Collapse
Affiliation(s)
- Collin Y. Ewald
- Graduate Center City University of New York New York NY USA
- Department of Biology City College of New York New York NY USA
| | - Vanessa Marfil
- Department of Biology City College of New York New York NY USA
| | - Chris Li
- Graduate Center City University of New York New York NY USA
- Department of Biology City College of New York New York NY USA
| |
Collapse
|
22
|
van Harten AC, Mulders J, Scheltens P, van der Flier WM, Oudejans CBM. Differential Expression of microRNA in Cerebrospinal Fluid as a Potential Novel Biomarker for Alzheimer's Disease. J Alzheimers Dis 2016; 47:243-52. [PMID: 26402772 DOI: 10.3233/jad-140075] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE The need to find a better reflection of Alzheimer's disease (AD) pathophysiology led us to investigate differential expression of microRNA (miRNA) in cerebrospinal fluid (CSF) of AD patients compared to matched controls, using a genome-wide data-driven approach. METHODS From the Amsterdam Dementia Cohort, we selected 19 AD patients with CSF indicative of AD pathophysiology and 19 age and gender-matched controls without CSF evidence of AD (67 ± 6 years old, 20 [53%] female). We measured 754 miRNA in CSF using qRT-PCR (Taqman Array MicroRNA cards A and B, v3.0) according to the Megaplex Taqman protocol. Hierarchical cluster analysis was performed and groups were compared using Linear Models for Microarray Data, a modified t-test. We performed validation analysis using qRT-PCR single assays. RESULTS 144 ± 66 miRNA could be detected using Megaplex array analysis (19% ). Mean Ct (average 32.4 ± 0.5) was correlated to age (r = 0.52, p = 0.001). Five miRNA were differentially expressed in CSF of AD patients. None of these could be replicated. After stratification by age, seven miRNA showed differential expression in late-onset AD, of which lower abundance of let-7a was replicated (log10RQ -1.46, p < 0.05). In early-onset AD, twelve miRNA were differentially expressed of which lower abundance of miRNA-532-3p remained borderline significant (log10RQ -1.27, p = 0.05). CONCLUSION Although we could not consistently separate AD patients and controls in the whole group, we have found indications miRNA in CSF are able to reflect aging and perhaps also heterogeneity in AD. Further investigation requires optimizing RNA input, while maintaining strict age matching.
Collapse
Affiliation(s)
- Argonde C van Harten
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joyce Mulders
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands.,Departments of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.,Department of Epidemiology/Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Cees B M Oudejans
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
24
|
Lardenoije R, Iatrou A, Kenis G, Kompotis K, Steinbusch HWM, Mastroeni D, Coleman P, Lemere CA, Hof PR, van den Hove DLA, Rutten BPF. The epigenetics of aging and neurodegeneration. Prog Neurobiol 2015; 131:21-64. [PMID: 26072273 PMCID: PMC6477921 DOI: 10.1016/j.pneurobio.2015.05.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022]
Abstract
Epigenetics is a quickly growing field encompassing mechanisms regulating gene expression that do not involve changes in the genotype. Epigenetics is of increasing relevance to neuroscience, with epigenetic mechanisms being implicated in brain development and neuronal differentiation, as well as in more dynamic processes related to cognition. Epigenetic regulation covers multiple levels of gene expression; from direct modifications of the DNA and histone tails, regulating the level of transcription, to interactions with messenger RNAs, regulating the level of translation. Importantly, epigenetic dysregulation currently garners much attention as a pivotal player in aging and age-related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, where it may mediate interactions between genetic and environmental risk factors, or directly interact with disease-specific pathological factors. We review current knowledge about the major epigenetic mechanisms, including DNA methylation and DNA demethylation, chromatin remodeling and non-coding RNAs, as well as the involvement of these mechanisms in normal aging and in the pathophysiology of the most common neurodegenerative diseases. Additionally, we examine the current state of epigenetics-based therapeutic strategies for these diseases, which either aim to restore the epigenetic homeostasis or skew it to a favorable direction to counter disease pathology. Finally, methodological challenges of epigenetic investigations and future perspectives are discussed.
Collapse
Affiliation(s)
- Roy Lardenoije
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Artemis Iatrou
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015 Lausanne-Dorigny, Switzerland
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
| | - Diego Mastroeni
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Paul Coleman
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, 10515 W. Santa Fe Drive, Sun City, AZ 85351, USA
| | - Cynthia A Lemere
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg, Germany
| | - Bart P F Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
25
|
Lee JH, Kim JA, Kwon MH, Kang JY, Rhee WJ. In situ single step detection of exosome microRNA using molecular beacon. Biomaterials 2015; 54:116-25. [DOI: 10.1016/j.biomaterials.2015.03.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
|
26
|
Rizos E, Siafakas N, Katsantoni E, Skourti E, Salpeas V, Rizos I, Tsoporis JN, Kastania A, Filippopoulou A, Xiros N, Margaritis D, Parker TG, Papageorgiou C, Zoumpourlis V. Let-7, mir-98 and mir-183 as biomarkers for cancer and schizophrenia [corrected]. PLoS One 2015; 10:e0123522. [PMID: 25856466 PMCID: PMC4391828 DOI: 10.1371/journal.pone.0123522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 02/20/2015] [Indexed: 11/18/2022] Open
Abstract
Recent evidence supports a role of microRNAs in cancer and psychiatric disorders such as schizophrenia and bipolar disorder, through their regulatory role on the expression of multiple genes. The rather rare co-morbidity of cancer and schizophrenia is an old hypothesis which needs further research on microRNAs as molecules that might exert their oncosuppressive or oncogenic activity in the context of their role in psychiatric disorders. The expression pattern of a variety of different microRNAs was investigated in patients (N = 6) suffering from schizophrenia termed control, patients with a solid tumor (N = 10) and patients with both schizophrenia and tumor (N = 8). miRNA profiling was performed on whole blood samples using the miRCURY LNA microRNA Array technology (6th & 7th generation). A subset of 3 microRNAs showed a statistically significant differential expression between the control and the study groups. Specifically, significant down-regulation of the let-7p-5p, miR-98-5p and of miR-183-5p in the study groups (tumor alone and tumorand schizophrenia) was observed (p<0.05). The results of the present study showed that let-7, miR-98 and miR-183 may play an important oncosuppressive role through their regulatory impact in gene expression irrespective of the presence of schizophrenia, although a larger sample size is required to validate these results. Nevertheless, further studies are warranted in order to highlight a possible role of these and other micro-RNAs in the molecular pathways of schizophrenia.
Collapse
Affiliation(s)
- Emmanouil Rizos
- National and Kapodistrian University of Athens, Medical School, 2nd Department of Psychiatry, University “ATTIKON” General Hospital, Athens, Greece
- * E-mail:
| | - Nikolaos Siafakas
- National and Kapodistrian University of Athens, Medical School, Microbiology Laboratory, University “ATTIKON” General Hospital, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Hematology-Oncology Division, Athens, Greece
| | - Eleni Skourti
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Vassilios Salpeas
- National & Kapodistrian University of Athens, 2nd Cardiology Department, University General Hospital “ATTIKON”, Athens, Greece
| | - Ioannis Rizos
- National & Kapodistrian University of Athens, 2nd Cardiology Department, University General Hospital “ATTIKON”, Athens, Greece
| | - James N. Tsoporis
- Keenan Research Centre. Li Ka Shing Knowledge Institute for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Anastasia Kastania
- Department of Informatics, Athens University of Economics and Business, Athens, Greece
| | - Anastasia Filippopoulou
- National and Kapodistrian University of Athens, Medical School, 2nd Department of Psychiatry, University “ATTIKON” General Hospital, Athens, Greece
- Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Department of Psychiatry, Alexandroupolis, Greece
| | - Nikolaos Xiros
- Second Department of Propaedeutic Internal Medicine, Oncology Unit, Attikon University Hospital, Athens, Greece
| | - Demetrios Margaritis
- National and Kapodistrian University of Athens, Medical School, 2nd Department of Psychiatry, University “ATTIKON” General Hospital, Athens, Greece
| | - Thomas G. Parker
- Keenan Research Centre. Li Ka Shing Knowledge Institute for Biomedical Science, St. Michael’s Hospital, Toronto, Canada
| | - Charalabos Papageorgiou
- National and Kapodistrian University of Athens, Medical School, 2nd Department of Psychiatry, University “ATTIKON” General Hospital, Athens, Greece
| | - Vassilios Zoumpourlis
- Unit of Biomedical Applications, Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
27
|
Shamsuzzama, Kumar L, Haque R, Nazir A. Role of MicroRNA Let-7 in Modulating Multifactorial Aspect of Neurodegenerative Diseases: an Overview. Mol Neurobiol 2015; 53:2787-2793. [PMID: 25823513 DOI: 10.1007/s12035-015-9145-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
The multifactorial aspect of neurodegenerative diseases has posed challenges in terms of understanding various mechanistic cues behind these ailments. The fact that single microRNA (miRNA) molecules can regulate multiple genes and associated pathways makes these molecules interesting for studies within the area of age-associated neurodegenerative diseases. miRNAs are endogenous, evolutionarily conserved, 20-23 nucleotide non-coding RNAs, which were first discovered in Caenorhabditis elegans. They play a key role in gene regulation and are known to be deregulated in many disease conditions. Steady regulations of miRNAs are required for normal biological processes. One of the crucial miRNA molecules let-7 is highly conserved and is known to be required for development and viability. It acts as a regulator for oncogenes and insulin-PI3K-mTOR pathway genes. Upregulation of let-7 impairs glucose homeostasis and results in degeneration of neurons, while its downregulation leads to cancer. Maturation of let-7 in cancer subjects is inhibited by lin-28, an RNA-binding protein inhibitor. This highlights the importance of let-7 miRNAs in various diseases and developmental processes. This article provides an overview on the functions of let-7 and its probable association with various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shamsuzzama
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, UP, 226 031, India
| | - Lalit Kumar
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, UP, 226 031, India
| | - Rizwanul Haque
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, UP, 226 031, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, UP, 226 031, India.
| |
Collapse
|
28
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
29
|
Perales R, King DM, Aguirre-Chen C, Hammell CM. LIN-42, the Caenorhabditis elegans PERIOD homolog, negatively regulates microRNA transcription. PLoS Genet 2014; 10:e1004486. [PMID: 25032706 PMCID: PMC4102445 DOI: 10.1371/journal.pgen.1004486] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
During C. elegans development, microRNAs (miRNAs) function as molecular switches that define temporal gene expression and cell lineage patterns in a dosage-dependent manner. It is critical, therefore, that the expression of miRNAs be tightly regulated so that target mRNA expression is properly controlled. The molecular mechanisms that function to optimize or control miRNA levels during development are unknown. Here we find that mutations in lin-42, the C. elegans homolog of the circadian-related period gene, suppress multiple dosage-dependent miRNA phenotypes including those involved in developmental timing and neuronal cell fate determination. Analysis of mature miRNA levels in lin-42 mutants indicates that lin-42 functions to attenuate miRNA expression. Through the analysis of transcriptional reporters, we show that the upstream cis-acting regulatory regions of several miRNA genes are sufficient to promote highly dynamic transcription that is coupled to the molting cycles of post-embryonic development. Immunoprecipitation of LIN-42 complexes indicates that LIN-42 binds the putative cis-regulatory regions of both non-coding and protein-coding genes and likely plays a role in regulating their transcription. Consistent with this hypothesis, analysis of miRNA transcriptional reporters in lin-42 mutants indicates that lin-42 regulates miRNA transcription. Surprisingly, strong loss-of-function mutations in lin-42 do not abolish the oscillatory expression patterns of lin-4 and let-7 transcription but lead to increased expression of these genes. We propose that lin-42 functions to negatively regulate the transcriptional output of multiple miRNAs and mRNAs and therefore coordinates the expression levels of genes that dictate temporal cell fate with other regulatory programs that promote rhythmic gene expression. MicroRNAs play pervasive roles in controlling gene expression throughout animal development. Given that individual microRNAs are predicted to regulate hundreds of mRNAs and that most mRNA transcripts are microRNA targets, it is essential that the expression levels of microRNAs be tightly regulated. With the goal of unveiling factors that regulate the expression of microRNAs that control developmental timing, we identified lin-42, the C. elegans homolog of the human and Drosophila period gene implicated in circadian gene regulation, as a negative regulator of microRNA expression. By analyzing the transcriptional expression patterns of representative microRNAs, we found that the transcription of many microRNAs is normally highly dynamic and coupled aspects of post-embryonic growth and behavior. We suggest that lin-42 functions to modulate the transcriptional output of temporally-regulated microRNAs and mRNAs in order to maintain optimal expression of these genes throughout development.
Collapse
Affiliation(s)
- Roberto Perales
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Dana M. King
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Cristina Aguirre-Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Christopher M. Hammell
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Circulating miRNAs as biomarkers for neurodegenerative disorders. Molecules 2014; 19:6891-910. [PMID: 24858274 PMCID: PMC6271879 DOI: 10.3390/molecules19056891] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and frontotemporal dementias (FTD), are considered distinct entities, however, there is increasing evidence of an overlap from the clinical, pathological and genetic points of view. All neurodegenerative diseases are characterized by neuronal loss and death in specific areas of the brain, for example, hippocampus and cortex for AD, midbrain for PD, frontal and temporal lobes for FTD. Loss of neurons is a relatively late event in the progression of neurodegenerative diseases that is typically preceded by other events such as metabolic changes, synaptic dysfunction and loss, neurite retraction, and the appearance of other abnormalities, such as axonal transport defects. The brain’s ability to compensate for these dysfunctions occurs over a long period of time and results in late clinical manifestation of symptoms, when successful pharmacological intervention is no longer feasible. Currently, diagnosis of AD, PD and different forms of dementia is based primarily on analysis of the patient’s cognitive function. It is therefore important to find non-invasive diagnostic methods useful to detect neurodegenerative diseases during early, preferably asymptomatic stages, when a pharmacological intervention is still possible. Altered expression of microRNAs (miRNAs) in many disease states, including neurodegeneration, and increasing relevance of miRNAs in biofluids in different pathologies has prompted the study of their possible application as neurodegenerative diseases biomarkers in order to identify new therapeutic targets. Here, we review what is known about the role of miRNAs in the pathogenesis of neurodegeneration and the possibilities and challenges of using these small RNA molecules as a signature for neurodegenerative conditions.
Collapse
|
31
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
32
|
Wang J, Yu JT, Tan MS, Jiang T, Tan L. Epigenetic mechanisms in Alzheimer's disease: implications for pathogenesis and therapy. Ageing Res Rev 2013; 12:1024-41. [PMID: 23688931 DOI: 10.1016/j.arr.2013.05.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | | | | | | | | |
Collapse
|
33
|
Liu J, Yang B, Ai J. Advance in research of microRNA in Caenorhabditis elegans. J Cell Biochem 2013; 114:994-1000. [PMID: 23161250 DOI: 10.1002/jcb.24448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022]
Abstract
microRNA (miRNA) is a family of small, non-coding RNA first discovered as an important regulator of development in Caenorhabditis elegans (C. elegans). Numerous miRNAs have been found in C. elegans, and some of them are well conserved in many organisms. Though, the biologic function of miRNAs in C. elegans was largely unknown, more and more studies support the idea that miRNA is an important molecular for C. elegans. In this review, we revisit the research progress of miRNAs in C. elegans related with development, aging, cancer, and neurodegenerative diseases and compared the function of miRNAs between C. elegans and human.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education) Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, China
| | | | | |
Collapse
|
34
|
Jung HJ, Suh Y. MicroRNA in Aging: From Discovery to Biology. Curr Genomics 2013; 13:548-57. [PMID: 23633914 PMCID: PMC3468887 DOI: 10.2174/138920212803251436] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/11/2012] [Accepted: 07/25/2012] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate gene expression of their targets at the post-transcriptional levels. A single miRNA can target up to several hundred mRNAs, thus capable of significantly altering gene expression regulatory networks. In-depth study and characterization of miRNAs has elucidated their critical functions in development, homeostasis, and disease. A link between miRNAs and longevity has been demonstrated in C. elegans, implicating their role in regulation of lifespan and in the aging process. Recent years have witnessed unprecedented technological advances in studies of miRNAs, including ultra-high throughput sequencing technologies that allow comprehensive discovery of miRNAs and their targets. Here we review the latest experimental approaches from the perspective of understanding miRNA gene expression regulatory networks in aging. We provide a methodological work flow that can be employed to discover aging-related miRNAs and their targets, and to functionally validate their roles in aging. Finally, we review the links between miRNAs known to act in the conserved pathways of aging and major aging-related diseases. Taken together, we hope to provide a focused review to facilitate future endeavor of uncovering the functional role of miRNA in aging.
Collapse
Affiliation(s)
- Hwa Jin Jung
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, Bronx, USA
| | | |
Collapse
|
35
|
Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med 2013; 5:180-90. [PMID: 23339066 PMCID: PMC3569636 DOI: 10.1002/emmm.201201986] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/03/2012] [Accepted: 12/13/2012] [Indexed: 12/20/2022] Open
Abstract
Aging is a complex process that is linked to an increased incidence of major diseases such as cardiovascular and neurodegenerative disease, but also cancer and immune disorders. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally control gene expression by inhibiting translation or inducing degradation of targeted mRNAs. MiRNAs target up to hundreds of mRNAs, thereby modulating gene expression patterns. Many miRNAs appear to be dysregulated during cellular senescence, aging and disease. However, only few miRNAs have been so far linked to age-related changes in cellular and organ functions. The present article will discuss these findings, specifically focusing on the cardiovascular and neurological systems.
Collapse
Affiliation(s)
- Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
36
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
37
|
|
38
|
Bekenstein U, Soreq H. Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles. Mol Cell Neurosci 2012; 56:436-46. [PMID: 23247072 DOI: 10.1016/j.mcn.2012.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 12/14/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of conserved nuclear proteins that associate with nascent RNA polymerase II transcripts to yield hnRNP particles, playing key roles in mRNA metabolism, DNA-related functions and microRNA biogenesis. HnRNPs accompany transcripts from stages of transcriptional regulation through splicing and post-transcriptional regulation, and are believed to affect the majority of expressed genes in mammals. Most hnRNP mRNA transcripts undergo alternative splicing and post-translational modifications, to yield a remarkable diversity of proteins with numerous functional elements that work in concert in their multiple functions. Therefore, mis-regulation of hnRNPs leads to different maladies. Here, we focus on the role of one of the best-known members of this protein family, hnRNP A1 in RNA metabolism, and address recent works that note its multileveled involvement in several neurodegenerative disorders. Initially discovered as a DNA binding protein, hnRNP A1 includes two RNA recognition motifs, and post-translational modifications of these and other regions in this multifunctional protein alter both its nuclear pore shuttling properties and its RNA interactions and affect transcription, mRNA splicing and microRNA biogenesis. HnRNP A1 plays several key roles in neuronal functioning and its depletion, either due to debilitated cholinergic neurotransmission or under autoimmune reactions causes drastic changes in RNA metabolism. Consequently, hnRNP A1 decline contributes to the severity of symptoms in several neurodegenerative diseases, including Alzheimer's disease (AD), spinal muscular atrophy (SMA), fronto-temporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), hereditary spastic paraparesis (HSP) and HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). At the translational level, these properties of hnRNP A1 led to massive research efforts aimed at developing RNA-targeted therapeutic tools such as splicing-modulating oligonucleotides with promising pharmaceutical potential. HnRNP A1 thus presents an intriguing example for the complexity and importance of heteronuclear ribonucleoproteins in health and disease. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Uriya Bekenstein
- Dept of Biological Chemistry, The Life Sciences Institute and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 91904, Israel
| | | |
Collapse
|
39
|
Schonrock N, Götz J. Decoding the non-coding RNAs in Alzheimer's disease. Cell Mol Life Sci 2012; 69:3543-59. [PMID: 22955374 PMCID: PMC11114718 DOI: 10.1007/s00018-012-1125-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 01/28/2023]
Abstract
Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Nicole Schonrock
- Victor Chang Cardiac Research Institute (VCCRI), Darlinghurst, NSW 2010, Australia.
| | | |
Collapse
|
40
|
Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory, gustatory, and touch plasticity in Caenorhabditis elegans. J Neurosci 2012; 32:10156-69. [PMID: 22836251 DOI: 10.1523/jneurosci.0495-12.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patients with Alzheimer's disease show age-related cognitive decline. Postmortem autopsy of their brains shows the presence of large numbers of senile plaques, whose major component is the β-amyloid peptide. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP). In addition to the neurodegeneration associated with β-amyloid aggregation in Alzheimer's disease patients, mutations in APP in mammalian model organisms have also been shown to disrupt several behaviors independent of visible amyloid plaque formation. However, the pathways in which APP function are unknown and difficult to unravel in mammals. Here we show that pan-neuronal expression of APL-1, the Caenorhabditis elegans ortholog of APP, disrupts several behaviors, such as olfactory and gustatory learning behavior and touch habituation. These behaviors are mediated by distinct neural circuits, suggesting a broad impact of APL-1 on sensory plasticity in C. elegans. Furthermore, we found that disruption of these three behaviors requires activity of the TGFβ pathway and reduced activity of the insulin pathway. These results suggest pathways and molecular components that may underlie behavioral plasticity in mammals and in patients with Alzheimer's disease.
Collapse
|
41
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
42
|
APL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics 2012; 191:493-507. [PMID: 22466039 DOI: 10.1534/genetics.112.138768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer's disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development.
Collapse
|
43
|
Abstract
The importance of various classes of regulatory non-protein-coding RNA molecules (ncRNAs) in the normal functioning of the CNS is becoming increasingly evident. ncRNAs are involved in neuronal cell specification and patterning during development, but also in higher cognitive processes, such as structural plasticity and memory formation in the adult brain. We discuss advances in understanding of the function of ncRNAs in the CNS, with a focus on the potential involvement of specific species, such as microRNAs, endogenous small interfering RNAs, long intergenic non-coding RNAs, and natural antisense transcripts, in various neurodegenerative disorders. This emerging field is anticipated to profoundly affect clinical research, diagnosis, and therapy in neurology.
Collapse
|
44
|
The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer's disease. Toxicol Lett 2012; 209:94-105. [DOI: 10.1016/j.toxlet.2011.11.032] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
|
45
|
Martinez-Finley EJ, Chakraborty S, Caito S, Fretham S, Aschner M. C. elegans and Neurodegeneration In Caenorhabditis Elegans: Anatomy, Life Cycles and Biological Functions. ADVANCES IN MEDICINE AND BIOLOGY 2012; 44:1-46. [PMID: 32346495 PMCID: PMC7188451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Ebany J. Martinez-Finley
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Sudipta Chakraborty
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Sam Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Stephanie Fretham
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael Aschner
- Division of Clinical Pharmacology and Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN
- Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, TN
- The Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
46
|
MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer's disease. J Neurosci 2011; 31:14820-30. [PMID: 21994399 DOI: 10.1523/jneurosci.3883-11.2011] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The contribution of mutations in amyloid precursor protein (APP) and presenilin (PSEN) to familial Alzheimer's disease (AD) is well established. However, little is known about the molecular mechanisms leading to amyloid β (Aβ) generation in sporadic AD. Increased brain ceramide levels have been associated with sporadic AD, and are a suggested risk factor. Serine palmitoyltransferase (SPT) is the first rate-limiting enzyme in the de novo ceramide synthesis. However, the regulation of SPT is not yet understood. Evidence suggests that it may be posttranscriptionally regulated. Therefore, we investigated the role of miRNAs in the regulation of SPT and amyloid β (Aβ) generation. We show that SPT is upregulated in a subgroup of sporadic AD patient brains. This is further confirmed in mouse model studies of risk factors associated with AD. We identified that the loss of miR-137, -181c, -9, and 29a/b-1 increases SPT and in turn Aβ levels, and provides a mechanism for the elevated risk of AD associated with age, high-saturated-fat diet, and gender. Finally, these results suggest SPT and the respective miRNAs may be potential therapeutic targets for sporadic AD.
Collapse
|
47
|
Schonrock N, Matamales M, Ittner LM, Götz J. MicroRNA networks surrounding APP and amyloid-β metabolism--implications for Alzheimer's disease. Exp Neurol 2011; 235:447-54. [PMID: 22119426 DOI: 10.1016/j.expneurol.2011.11.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that function as "fine-tuning" tools of gene expression in development and tissue homeostasis. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer's disease (AD) that is characterized by both amyloid-β (Aβ) and tau deposition in brain. A key challenge remains in determining how changes in miRNA profiles translate into biological function in a physiological and pathological context. The key lies in identifying specific target genes for deregulated miRNAs and understanding which pathogenic factors trigger their deregulation. Here we review the literature about the intricate network of miRNAs surrounding the regulation of the amyloid precursor protein (APP) from which Aβ is derived by proteolytic cleavage. Normal brain function is highly sensitive to any changes in APP metabolism and miRNAs function at several steps to ensure that the correct APP end product is produced and in the right form and abundance. Disruptions in this miRNA regulatory network may therefore alter Aβ production, which in turn can affect miRNA expression.
Collapse
Affiliation(s)
- Nicole Schonrock
- Stem Cell and Developmental Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
| | | | | | | |
Collapse
|
48
|
Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2011; 97:173-89. [PMID: 22079416 DOI: 10.1016/j.pneurobio.2011.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/06/2011] [Accepted: 10/27/2011] [Indexed: 02/09/2023]
Abstract
The expression, processing, transport and activities of both coding and non-coding RNAs play critical roles in normal neuronal function and differentiation. Over the past decade, these same pathways have come under scrutiny as potential contributors to neurodegenerative disease. Here we focus broadly on the roles of RNA and RNA processing in neurodegeneration. We first discuss a set of "RNAopathies", where non-coding repeat expansions drive pathogenesis through a surprisingly diverse set of mechanisms. We next explore an emerging class of "RNA binding proteinopathies" where redistribution and aggregation of the RNA binding proteins TDP-43 or FUS contribute to a potentially broad range of neurodegenerative disorders. Lastly, we delve into the potential contributions of alterations in both short and long non-coding RNAs to neurodegenerative illness.
Collapse
Affiliation(s)
- Abigail J Renoux
- Department of Molecular and Integrative Physiology, University of Michigan, 4005 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
49
|
Caenorhabditis elegans as a model organism to study APP function. Exp Brain Res 2011; 217:397-411. [PMID: 22038715 DOI: 10.1007/s00221-011-2905-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 12/20/2022]
Abstract
The brains of Alzheimer's disease patients show an increased number of senile plaques compared with normal patients. The major component of the plaques is the β-amyloid peptide, a cleavage product of the amyloid precursor protein (APP). Although the processing of APP has been well-described, the physiological functions of APP and its cleavage products remain unclear. This article reviews the multifunctional roles of an APP orthologue, the C. elegans APL-1. Understanding the function of APL-1 may provide insights into the functions and signaling pathways of human APP. In addition, the physiological effects of introducing human β-amyloid peptide into C. elegans are also reviewed. The C. elegans system provides a powerful genetic model to identify genes regulating the molecular mechanisms underlying intracellular β-amyloid peptide accumulation.
Collapse
|
50
|
Maes OC, Chertkow HM, Wang E, Schipper HM. MicroRNA: Implications for Alzheimer Disease and other Human CNS Disorders. Curr Genomics 2011; 10:154-68. [PMID: 19881909 PMCID: PMC2705849 DOI: 10.2174/138920209788185252] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 02/18/2009] [Accepted: 03/11/2009] [Indexed: 02/06/2023] Open
Abstract
Understanding complex diseases such as sporadic Alzheimer disease (AD) has been a major challenge. Unlike the familial forms of AD, the genetic and environmental risks factors identified for sporadic AD are extensive. MicroRNAs are one of the major noncoding RNAs that function as negative regulators to silence or suppress gene expression via translational inhibition or message degradation. Their discovery has evoked great excitement in biomedical research for their promise as potential disease biomarkers and therapeutic targets. Key microRNAs have been identified as essential for a variety of cellular events including cell lineage determination, proliferation, apoptosis, DNA repair, and cytoskeletal organization; most, if not all, acting to fine-tune gene expression at the post-transcriptional level in a host of cellular signaling networks. Dysfunctional microRNA-mediated regulation has been implicated in the pathogenesis of many disease states. Here, the current understanding of the role of miRNAs in the central nervous system is reviewed with emphasis on their impact on the etiopathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Olivier C Maes
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Canada
| | | | | | | |
Collapse
|