1
|
Shi Y, Qin B, Fan X, Li Y, Wang Y, Yuan W, Jiang Z, Zhu P, Chen J, Chen Y, Li F, Wan Y, Wu X, Zhuang J. Novel biphasic mechanism of the canonical Wnt signalling component PYGO2 promotes cardiomyocyte differentiation from hUC-MSCs. Cell Tissue Res 2023:10.1007/s00441-023-03774-6. [PMID: 37233752 DOI: 10.1007/s00441-023-03774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are used to regenerate the myocardium during cardiac repair after myocardial infarction. However, the regulatory mechanism underlying their ability to form mesodermal cells and differentiate into cardiomyocytes remains unclear. Here, we established a human-derived MSCs line isolated from healthy umbilical cords and established a cell model of the natural state to examine the differentiation of hUC-MSCs into cardiomyocytes. Quantitative RT-PCR, western blotting, immunofluorescence, flow cytometry, RNA Seq, and inhibitors of canonical Wnt signalling were used to detect the germ-layer markers T and MIXL1; the markers of cardiac progenitor cells MESP1, GATA4, and NKX2.5 and the cardiomyocyte-marker cTnT to identify the molecular mechanism associated with PYGO2, a key component of the canonical Wnt signalling pathway that regulates the formation of cardiomyocyte-like cells. We demonstrated that PYGO2 promotes the formation of mesodermal-like cells and their differentiation into cardiomyocytes through the hUC-MSC-dependent canonical Wnt signalling by promoting the early-stage entry of β-catenin into the nucleus. Surprisingly, PYGO2 did not alter the expression of the canonical-Wnt, NOTCH, or BMP signalling pathways during the middle-late stages. In contrast, PI3K-Akt signalling promoted hUC-MSCs formation and their differentiation into cardiomyocyte-like cells. To the best of our knowledge, this is the first study to demonstrate that PYGO2 uses a biphasic mechanism to promote cardiomyocyte formation from hUC-MSCs.
Collapse
Affiliation(s)
- Yan Shi
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Bin Qin
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Xiongwei Fan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yongqing Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Zhigang Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Yu Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Fang Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China
| | - Yongqi Wan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Hunan, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
2
|
Ghezelayagh Z, Zabihi M, Kazemi Ashtiani M, Ghezelayagh Z, Lynn FC, Tahamtani Y. Recapitulating pancreatic cell-cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell Mol Life Sci 2021; 78:7107-7132. [PMID: 34613423 PMCID: PMC11072828 DOI: 10.1007/s00018-021-03951-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell-cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells' impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell-cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.
Collapse
Affiliation(s)
- Zahra Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Zabihi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeinab Ghezelayagh
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery and School of Biomedical Engineering , University of British Columbia, Vancouver, BC, Canada
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BYH, Ma M, Cooper WN, Vidal-Puig A, Ozanne SE, Medina-Gómez G, Constância M. Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 2020; 16:e1009069. [PMID: 33057429 PMCID: PMC7678979 DOI: 10.1371/journal.pgen.1009069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/20/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023] Open
Abstract
The genetic mechanisms that determine the size of the adult pancreas are poorly understood. Imprinted genes, which are expressed in a parent-of-origin-specific manner, are known to have important roles in development, growth and metabolism. However, our knowledge regarding their roles in the control of pancreatic growth and function remains limited. Here we show that many imprinted genes are highly expressed in pancreatic mesenchyme-derived cells and explore the role of the paternally-expressed insulin-like growth factor 2 (Igf2) gene in mesenchymal and epithelial pancreatic lineages using a newly developed conditional Igf2 mouse model. Mesenchyme-specific Igf2 deletion results in acinar and beta-cell hypoplasia, postnatal whole-body growth restriction and maternal glucose intolerance during pregnancy, suggesting that the mesenchyme is a developmental reservoir of IGF2 used for paracrine signalling. The unique actions of mesenchymal IGF2 are demonstrated by the absence of any discernible growth or functional phenotypes upon Igf2 deletion in the developing pancreatic epithelium. Additionally, increased IGF2 levels specifically in the mesenchyme, through conditional Igf2 loss-of-imprinting or Igf2r deletion, leads to pancreatic acinar overgrowth. Furthermore, ex-vivo exposure of primary acinar cells to exogenous IGF2 activates AKT, a key signalling node, and increases their number and amylase production. Based on these findings, we propose that mesenchymal Igf2, and perhaps other imprinted genes, are key developmental regulators of adult pancreas size and function.
Collapse
Affiliation(s)
- Constanze M. Hammerle
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gemma V. Brierley
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Nicola M. Smith
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Warren E. Zimmer
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Ilona Zvetkova
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Haydn M. Prosser
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, United Kingdom
| | - Yoichi Sekita
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Brian Y. H. Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Marcella Ma
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Wendy N. Cooper
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Susan E. Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922-Alcorcón, Madrid, Spain
| | - Miguel Constância
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans 2020; 48:1781-1794. [PMID: 32677664 DOI: 10.1042/bst20200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
Pygo is a nuclear protein containing two conserved domains, NHD and PHD, which play important roles in embryonic development and carcinogenesis. Pygo was first identified as a core component of the Wnt/β-catenin signalling pathway. However, it has also been reported that the function of Pygo is not always Wnt/β-catenin signalling dependent. In this review, we summarise the functions of both domains of Pygo and show that their functions are synergetic. The PHD domain mainly combines with transcription co-factors, including histone 3 and Bcl9/9l. The NHD domain mainly recruits histone methyltransferase/acetyltransferase (HMT/HAT) to modify lysine 4 of the histone 3 tail (H3K4) and interacts with Chip/LIM-domain DNA-binding proteins (ChiLS) to form enhanceosomes to regulate transcriptional activity. Furthermore, we summarised chromatin modification differences of Pygo in Drosophila (dPygo) and vertebrates, and found that Pygo displayes a chromatin silencing function in Drosophila, while in vertebates, Pygo has a chromatin-activating function due to the two substitution of two amino acid residues. Next, we confirmed the relationship between Pygo and Bcl9/9l and found that Pygo-Bcl/9l are specifically partnered both in the nucleus and in the cytoplasm. Finally, we discuss whether transcriptional activity of Pygo is Wnt/β-catenin dependent during embryonic development. Available information indications that the transcriptional activity of Pygo in embryonic development is either Wnt/β-catenin dependent or independent in both tissue-specific and cell-specific-modes.
Collapse
|
5
|
Sakhneny L, Khalifa-Malka L, Landsman L. Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 2019; 92:89-96. [DOI: 10.1016/j.semcdb.2018.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
|
6
|
Ndlovu R, Deng LC, Wu J, Li XK, Zhang JS. Fibroblast Growth Factor 10 in Pancreas Development and Pancreatic Cancer. Front Genet 2018; 9:482. [PMID: 30425728 PMCID: PMC6219204 DOI: 10.3389/fgene.2018.00482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
The tenacious prevalence of human pancreatic diseases such as diabetes mellitus and adenocarcinoma has prompted huge research interest in better understanding of pancreatic organogenesis. The plethora of signaling pathways involved in pancreas development is activated in a highly coordinated manner to assure unmitigated development and morphogenesis in vertebrates. Therefore, a complex mesenchymal-epithelial signaling network has been implicated to play a pivotal role in organogenesis through its interactions with other germ layers, specifically the endoderm. The Fibroblast Growth Factor Receptor FGFR2-IIIb splicing isoform (FGFR2b) and its high affinity ligand Fibroblast Growth Factor 10 (FGF10) are expressed in the epithelium and mesenchyme, respectively, and therefore are well positioned to transmit mesenchymal to epithelial signaling. FGF10 is a typical paracrine FGF and chiefly mediates biological responses by activating FGFR2b with heparin/heparan sulfate (HS) as cofactor. A substantial number of studies using genetically engineered mouse models have demonstrated an essential role of FGF10 in the development of many organs and tissues including the pancreas. During mouse embryonic development, FGF10 signaling is crucial for epithelial cell proliferation, maintenance of progenitor cell fate and branching morphogenesis in the pancreas. FGF10 is also implicated in pancreatic cancer, and that overexpression of FGFR2b is associated with metastatic invasion. A thorough understanding of FGF10 signaling machinery and its crosstalk with other pathways in development and pathological states may provide novel opportunities for pancreatic cancer targeted therapy and regenerative medicine.
Collapse
Affiliation(s)
- Rodrick Ndlovu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Lian-Cheng Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jin Wu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Xiao-Kun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| | - Jin-San Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Centre for Precision Medicine, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiao-Kun Li, Jin-San Zhang, ;
| |
Collapse
|
7
|
Liu X, Pitarresi JR, Cuitiño MC, Kladney RD, Woelke SA, Sizemore GM, Nayak SG, Egriboz O, Schweickert PG, Yu L, Trela S, Schilling DJ, Halloran SK, Li M, Dutta S, Fernandez SA, Rosol TJ, Lesinski GB, Shakya R, Ludwig T, Konieczny SF, Leone G, Wu J, Ostrowski MC. Genetic ablation of Smoothened in pancreatic fibroblasts increases acinar-ductal metaplasia. Genes Dev 2016; 30:1943-55. [PMID: 27633013 PMCID: PMC5066238 DOI: 10.1101/gad.283499.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
Liu et al. show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased acinar-to-ductal metaplasia (ADM). Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfα) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The contribution of the microenvironment to pancreatic acinar-to-ductal metaplasia (ADM), a preneoplastic transition in oncogenic Kras-driven pancreatic cancer progression, is currently unclear. Here we show that disruption of paracrine Hedgehog signaling via genetic ablation of Smoothened (Smo) in stromal fibroblasts in a KrasG12D mouse model increased ADM. Smo-deleted fibroblasts had higher expression of transforming growth factor-α (Tgfa) mRNA and secreted higher levels of TGFα, leading to activation of EGFR signaling in acinar cells and increased ADM. The mechanism involved activation of AKT and noncanonical activation of the GLI family transcription factor GLI2. GLI2 was phosphorylated at Ser230 in an AKT-dependent fashion and directly regulated Tgfa expression in fibroblasts lacking Smo. Additionally, Smo-deleted fibroblasts stimulated the growth of KrasG12D/Tp53R172H pancreatic tumor cells in vivo and in vitro. These results define a non-cell-autonomous mechanism modulating KrasG12D-driven ADM that is balanced by cross-talk between Hedgehog/SMO and AKT/GLI2 pathways in stromal fibroblasts.
Collapse
Affiliation(s)
- Xin Liu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitiño
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarah A Woelke
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gina M Sizemore
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sunayana G Nayak
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick G Schweickert
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lianbo Yu
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stefan Trela
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Daniel J Schilling
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shannon K Halloran
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maokun Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shourik Dutta
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Soledad A Fernandez
- Department of Biomedical Informatics' Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gregory B Lesinski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas Ludwig
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephen F Konieczny
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA; the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA; the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gustavo Leone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jinghai Wu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Cancer Biology and Genetics Department, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 2016; 18:238-45. [PMID: 26911907 DOI: 10.1038/ncb3309] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell replacement in adult organs can be achieved through stem cell differentiation or the replication or transdifferentiation of existing cells. In the adult liver and pancreas, stem cells have been proposed to replace tissue cells, particularly following injury. Here we review how specialized cell types are produced in the adult liver and pancreas. Based on current evidence, we propose that the plasticity of differentiated cells, rather than stem cells, accounts for tissue repair in both organs.
Collapse
Affiliation(s)
- Janel L Kopp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Markus Grompe
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, Pediatric Diabetes Research Center, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093-0695, USA
| |
Collapse
|
9
|
Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas. Sci Rep 2016; 6:19223. [PMID: 26771085 PMCID: PMC4725895 DOI: 10.1038/srep19223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.
Collapse
|
10
|
Larsen BM, Hrycaj SM, Newman M, Li Y, Wellik DM. Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development 2015; 142:3859-68. [PMID: 26450967 DOI: 10.1242/dev.126888] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
Despite significant advances in our understanding of pancreatic endocrine cell development, the function of the pancreatic mesodermal niche in this process is poorly understood. Here we report a novel role for mouse Hox6 genes in pancreatic organogenesis. Hox6 genes are expressed exclusively in the mesoderm of the developing pancreas. Genetic loss of all three Hox6 paralogs (Hoxa6, Hoxb6 and Hoxc6) leads to a dramatic loss of endoderm-derived endocrine cells, including insulin-secreting β-cells, and to mild delays and disruptions in pancreatic branching and exocrine differentiation. Ngn3-expressing pan-endocrine progenitor cells are specified normally in Hox6 mutant pancreata, but fail to mature into hormone-producing cells. Reduced expression of Wnt5a is observed in mutant pancreatic mesenchyme, leading to subsequent loss of expression of the crucial Wnt inhibitors Sfrp3 and Dkk1 in endocrine progenitor cells. These results reveal a key role for Hox6 genes in establishing Wnt mesenchymal-epithelial crosstalk in pancreatic development.
Collapse
Affiliation(s)
- Brian M Larsen
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Steven M Hrycaj
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Micaleah Newman
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109-2200, USA Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
11
|
Greggio C, De Franceschi F, Grapin-Botton A. Concise reviews: In vitro-produced pancreas organogenesis models in three dimensions: self-organization from few stem cells or progenitors. Stem Cells 2015; 33:8-14. [PMID: 25185771 DOI: 10.1002/stem.1828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023]
Abstract
Three-dimensional models of organ biogenesis have recently flourished. They promote a balance between stem/progenitor cell expansion and differentiation without the constraints of flat tissue culture vessels, allowing for autonomous self-organization of cells. Such models allow the formation of miniature organs in a dish and are emerging for the pancreas, starting from embryonic progenitors and adult cells. This review focuses on the currently available systems and how these allow new types of questions to be addressed. We discuss the expected advancements including their potential to study human pancreas development and function as well as to develop diabetes models and therapeutic cells.
Collapse
Affiliation(s)
- Chiara Greggio
- Ecole Polytechnique Fédérale de Lausanne, Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland; Département de Physiologie, Université de Lausanne, Rue du Bugnon 7, Lausanne, Switzerland
| | | | | |
Collapse
|
12
|
Afelik S, Pool B, Schmerr M, Penton C, Jensen J. Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol 2015; 399:204-17. [DOI: 10.1016/j.ydbio.2014.12.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
|
13
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
14
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
15
|
Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 2012; 139:3363-72. [PMID: 22874919 DOI: 10.1242/dev.078733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.
Collapse
Affiliation(s)
- Philip A Seymour
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Signaling pathways regulating murine pancreatic development. Semin Cell Dev Biol 2012; 23:663-72. [DOI: 10.1016/j.semcdb.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
|
17
|
Landsman L, Nijagal A, Whitchurch TJ, VanderLaan RL, Zimmer WE, MacKenzie TC, Hebrok M. Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 2011; 9:e1001143. [PMID: 21909240 PMCID: PMC3167782 DOI: 10.1371/journal.pbio.1001143] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 07/28/2011] [Indexed: 01/10/2023] Open
Abstract
Genetic disruption of the pancreatic mesenchyme reveals that it is critical for the expansion of epithelial progenitors and for the proliferation of insulin-producing beta cells. The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT) at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR) in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an essential mediator of this process. These results have implications for developing strategies to expand pancreas progenitors and β-cells for clinical transplantation. Embryonic development is a highly complex process that requires tight orchestration of cellular proliferation, differentiation, and migration as cells grow within loosely aggregated mesenchyme and more organized epithelial sheets to form organs and tissues. In addition to intrinsic cell-autonomous signals, these events are further regulated by environmental cues provided by neighboring cells. Prior work demonstrated a critical role for the surrounding mesenchyme in guiding epithelial growth during the early stages of pancreas development. However, it remained unclear whether the mesenchyme also guided the later stages of pancreas organogenesis when the functional exocrine and endocrine cells are formed. Here, we show that specific genetic ablation of the mesenchyme at distinct developmental stages in vivo results in the formation of a smaller, misshapen pancreas. Loss of the mesenchyme profoundly impairs the expansion of both endocrine and exocrine pancreatic progenitors, as well as the proliferative capacity of maturing cells, including insulin-producing beta-cells. Thus, our studies reveal unappreciated roles for the mesenchyme in guiding the formation of the epithelial pancreas throughout development. The results suggest that identifying the specific mesenchymal signals might help to optimize cell culture protocols that aim to achieve the differentiation of stem cells into insulin-producing beta cells.
Collapse
Affiliation(s)
- Limor Landsman
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Amar Nijagal
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Theresa J. Whitchurch
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Renee L. VanderLaan
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Warren E. Zimmer
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center, College Station, Texas, United States of America
| | - Tippi C. MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Affiliation(s)
- Philip A Seymour
- Department of Pediatrics, The University of California San Diego Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
19
|
Kennedy MW, Cha SW, Tadjuidje E, Andrews PG, Heasman J, Kao KR. A co-dependent requirement of xBcl9 and Pygopus for embryonic body axis development in Xenopus. Dev Dyn 2010; 239:271-83. [PMID: 19877304 DOI: 10.1002/dvdy.22133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Wnt/beta-catenin transcriptional activation complex requires the adapter protein Pygopus (Pygo), which links the basal transcription machinery to beta-catenin, by its association with legless (Lgs)/ B-cell lymphoma-9 (Bcl9). Pygo was shown to be required for development in vertebrates, but the role of Lgs/Bcl9 is unknown. We identified an amphibian orthologue of Lgs/Bcl9, XBcl9, which interacted biochemically with Xbeta-catenin and XPygo2. The body axis promoting ability of Xbeta-catenin was diminished when residues required for its interaction with XBcl9 were mutated. In blastula embryos, XBcl9 was transiently preferentially expressed in nuclei of dorsoanterior cells and ectopically expressed XBcl9 required XPygo2 to localize to nuclei. Furthermore, while neither XBcl9 nor XPygo2 alone affected development when ectopically expressed, both were required to induce supernumerary axis and dorsal gene activation. Like XPygo2, depletion of maternal XBcl9 alone caused dorsal defects. These results indicated an essential role of the Pygo-Bcl9 duet in vertebrate body axis formation.
Collapse
Affiliation(s)
- Mark W Kennedy
- The Terry Fox Cancer Research Labs, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | | | | | | | | | | |
Collapse
|