1
|
Segura RC, Cabernard C. Live-Cell Imaging of Drosophila melanogaster Third Instar Larval Brains. J Vis Exp 2023:10.3791/65538. [PMID: 37427933 PMCID: PMC10655794 DOI: 10.3791/65538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
Drosophila neural stem cells (neuroblasts, NBs hereafter) undergo asymmetric divisions, regenerating the self-renewing neuroblast, while also forming a differentiating ganglion mother cell (GMC), which will undergo one additional division to give rise to two neurons or glia. Studies in NBs have uncovered the molecular mechanisms underlying cell polarity, spindle orientation, neural stem cell self-renewal, and differentiation. These asymmetric cell divisions are readily observable via live-cell imaging, making larval NBs ideally suited for investigating the spatiotemporal dynamics of asymmetric cell division in living tissue. When properly dissected and imaged in nutrient-supplemented medium, NBs in explant brains robustly divide for 12-20 h. Previously described methods are technically difficult and may be challenging to those new to the field. Here, a protocol is described for the preparation, dissection, mounting, and imaging of live third-instar larval brain explants using fat body supplements. Potential problems are also discussed, and examples are provided for how this technique can be used.
Collapse
|
2
|
Camuglia J, Chanet S, Martin AC. Morphogenetic forces planar polarize LGN/Pins in the embryonic head during Drosophila gastrulation. eLife 2022; 11:e78779. [PMID: 35796436 PMCID: PMC9262390 DOI: 10.7554/elife.78779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 01/03/2023] Open
Abstract
Spindle orientation is often achieved by a complex of Partner of Inscuteable (Pins)/LGN, Mushroom Body Defect (Mud)/Nuclear Mitotic Apparatus (NuMa), Gαi, and Dynein, which interacts with astral microtubules to rotate the spindle. Cortical Pins/LGN recruitment serves as a critical step in this process. Here, we identify Pins-mediated planar cell polarized divisions in several of the mitotic domains of the early Drosophila embryo. We found that neither planar cell polarity pathways nor planar polarized myosin localization determined division orientation; instead, our findings strongly suggest that Pins planar polarity and force generated from mesoderm invagination are important. Disrupting Pins polarity via overexpression of a myristoylated version of Pins caused randomized division angles. We found that disrupting forces through chemical inhibitors, depletion of an adherens junction protein, or blocking mesoderm invagination disrupted Pins planar polarity and spindle orientation. Furthermore, directional ablations that separated mesoderm from mitotic domains disrupted spindle orientation, suggesting that forces transmitted from mesoderm to mitotic domains can polarize Pins and orient division during gastrulation. To our knowledge, this is the first in vivo example where mechanical force has been shown to polarize Pins to mediate division orientation.
Collapse
Affiliation(s)
- Jaclyn Camuglia
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| | - Soline Chanet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSLParisFrance
| | - Adam C Martin
- Biology Department, Massachusetts Institute of TechnologyCambridge, MAUnited States
| |
Collapse
|
3
|
Penisson M, Jin M, Wang S, Hirotsune S, Francis F, Belvindrah R. Lis1 mutation prevents basal radial glia-like cell production in the mouse. Hum Mol Genet 2021; 31:942-957. [PMID: 34635911 DOI: 10.1093/hmg/ddab295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/26/2023] Open
Abstract
Human cerebral cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Progenitor cells include apical radial glia, intermediate progenitors and basal (or outer) radial glia (bRGs or oRGs). bRGs are few in number in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 (coding for a RAB-GAP protein) at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 expression in wild-type (WT) brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, using the same approach, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Indeed, we observe perturbation of the ventricular zone (VZ) in the mutant. Lis1 depletion altered adhesion proteins and mitotic spindle orientations at the ventricular surface and increased the proportion of abventricular mitoses. Progenitor outcome could not be further altered by TBC1D3. We conclude that disruption of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis.
Collapse
Affiliation(s)
- Maxime Penisson
- INSERM U 1270, Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Mingyue Jin
- Osaka City University Graduate School of Medicine, Genetic Disease Research, Asahi-machi 1-4-3, Osaka, JP 545-8585
| | - Shengming Wang
- Osaka City University Graduate School of Medicine, Genetic Disease Research, Asahi-machi 1-4-3, Osaka, JP 545-8585
| | - Shinji Hirotsune
- Osaka City University Graduate School of Medicine, Genetic Disease Research, Asahi-machi 1-4-3, Osaka, JP 545-8585
| | - Fiona Francis
- INSERM U 1270, Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Richard Belvindrah
- INSERM U 1270, Paris, France.,Sorbonne University, UMR-S 1270, F-75005 Paris, France.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
4
|
Abstract
AbstractIn the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.
Collapse
Affiliation(s)
- Francesca Froldi
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Milán Szuperák
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| | - Louise Y. Cheng
- Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
5
|
Bostock MP, Prasad AR, Chaouni R, Yuen AC, Sousa-Nunes R, Amoyel M, Fernandes VM. An Immobilization Technique for Long-Term Time-Lapse Imaging of Explanted Drosophila Tissues. Front Cell Dev Biol 2020; 8:590094. [PMID: 33117817 PMCID: PMC7576353 DOI: 10.3389/fcell.2020.590094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Time-lapse imaging is an essential tool to study dynamic biological processes that cannot be discerned from fixed samples alone. However, imaging cell- and tissue-level processes in intact animals poses numerous challenges if the organism is opaque and/or motile. Explant cultures of intact tissues circumvent some of these challenges, but sample drift remains a considerable obstacle. We employed a simple yet effective technique to immobilize tissues in medium-bathed agarose. We applied this technique to study multiple Drosophila tissues from first-instar larvae to adult stages in various orientations and with no evidence of anisotropic pressure or stress damage. Using this method, we were able to image fine features for up to 18 h and make novel observations. Specifically, we report that fibers characteristic of quiescent neuroblasts are inherited by their basal daughters during reactivation; that the lamina in the developing visual system is assembled roughly 2-3 columns at a time; that lamina glia positions are dynamic during development; and that the nuclear envelopes of adult testis cyst stem cells do not break down completely during mitosis. In all, we demonstrate that our protocol is well-suited for tissue immobilization and long-term live imaging, enabling new insights into tissue and cell dynamics in Drosophila.
Collapse
Affiliation(s)
- Matthew P. Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R. Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Chaouni
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Dev Biol 2020; 465:89-99. [PMID: 32687894 DOI: 10.1016/j.ydbio.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
7
|
Montcouquiol M, Kelley MW. Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a033266. [PMID: 30617059 DOI: 10.1101/cshperspect.a033266] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the mammalian cochlea, sensory hair cells and supporting cells are aligned in curvilinear rows that extend along the length of the tonotopic axis. In addition, all of the cells within the epithelium are uniformly polarized across the orthogonal neural-abneural axis. Finally, each hair cell is intrinsically polarized as revealed by the presence of an asymmetrically shaped and apically localized stereociliary bundle. It has been known for some time that many of the developmental processes that regulate these patterning events are mediated, to some extent, by the core planar cell polarity (PCP) pathway. This article will review more recent work demonstrating how components of the PCP pathway interact with cytoskeletal motor proteins to regulate cochlear outgrowth. Finally, a signaling pathway originally identified for its role in asymmetric cell divisions has recently been shown to mediate several aspects of intrinsic hair cell polarity, including kinocilia migration, bundle shape, and elongation.
Collapse
Affiliation(s)
- Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, F-33077 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33077 Bordeaux, France
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Abstract
Cells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a systems-level approach is required that integrates cell biological, genetic, developmental, and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern among the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous, whereby the vegetal half divides before the animal half, thus creating 24-, 32-, 44-, and then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. We propose that dynamic cell shape changes propagate throughout the embryo via cell-cell contacts to create the ascidian-specific invariant cleavage pattern.
Collapse
|
9
|
Brehar FM, Dragomir MP, Petrescu GED, Gorgan RM. Fighting Cancer Stem Cell Fate by Targeting LIS1 a WD40 Repeat Protein. Front Oncol 2019; 9:1142. [PMID: 31750243 PMCID: PMC6843031 DOI: 10.3389/fonc.2019.01142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most frequent and devastating diseases. Previous reports have shown that radio and chemo-resistant cancer stem cell (CSC) population is primarily responsible for cancer recurrences after radiotherapy and chemotherapy. Other studies demonstrated that Lissencephaly-1 (LIS1) protein, also known as platelet activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1), a dynein-binding protein involved in neural stem cell division, plays a crucial role in maintaining CSC population in hematological malignancies. Moreover, one recent report demonstrated that LIS1 gene is preferentially expressed in CD133+ glioblastoma cells and may have also an important role in regulating CD133+ CSC in glioblastoma. The hypothesis of this paper is that LIS1 plays a key role in maintaining CD133+ CSC population in various solid cancers by orientating the cell division plane through an interaction with dynein and therefore controlling the stem cell fate regulatory mechanism. As CD133+ CSC population is responsible for radio- and chemo-resistance, which finally determines the cancer recurrences and metastases, identifying the molecular mechanisms which regulate the CD133+ CSC population represents a major target for cancer research. Given the structure of LIS1, which contains WD40 repeat domain, small peptide inhibitors could be used to alter its function. Therefore, the impact of confirming this hypothesis is significant because LIS1 may become an important molecular target for future adjuvant anticancer therapies directed against radio- and chemo-resistant CSC population.
Collapse
Affiliation(s)
- Felix M. Brehar
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, Bucharest, Romania
| | - Mihnea P. Dragomir
- Department of Surgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George E. D. Petrescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, Bucharest, Romania
| | - Radu M. Gorgan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Neurosurgery, “Bagdasar-Arseni” Clinical Emergency Hospital, Bucharest, Romania
| |
Collapse
|
10
|
van Leen EV, di Pietro F, Bellaïche Y. Oriented cell divisions in epithelia: from force generation to force anisotropy by tension, shape and vertices. Curr Opin Cell Biol 2019; 62:9-16. [PMID: 31509787 DOI: 10.1016/j.ceb.2019.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Mitotic spindle orientation has been linked to asymmetric cell divisions, tissue morphogenesis and homeostasis. The canonical pathway to orient the mitotic spindle is composed of the cortical recruitment factor NuMA and the molecular motor dynein, which exerts pulling forces on astral microtubules to orient the spindle. Recent work has defined a novel role for NuMA as a direct contributor to force generation. In addition, the exploration of geometrical and physical cues combined with the study of classical polarity pathways has led to deeper insights into the upstream regulation of spindle orientation. Here, we focus on how cell shape, junctions and mechanical tension act to orient spindle pulling forces in epithelia, and discuss different roles for spindle orientation in epithelia.
Collapse
Affiliation(s)
- Eric Victor van Leen
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Florencia di Pietro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France.
| |
Collapse
|
11
|
Venkei ZG, Yamashita YM. Emerging mechanisms of asymmetric stem cell division. J Cell Biol 2018; 217:3785-3795. [PMID: 30232100 PMCID: PMC6219723 DOI: 10.1083/jcb.201807037] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
Venkei and Yamashita summarize recent advances in our understanding of asymmetric stem cell division in tissue homeostasis. The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI .,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Rust K, Tiwari MD, Mishra VK, Grawe F, Wodarz A. Myc and the Tip60 chromatin remodeling complex control neuroblast maintenance and polarity in Drosophila. EMBO J 2018; 37:embj.201798659. [PMID: 29997178 DOI: 10.15252/embj.201798659] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/04/2023] Open
Abstract
Stem cells establish cortical polarity and divide asymmetrically to simultaneously maintain themselves and generate differentiating offspring cells. Several chromatin modifiers have been identified as stemness factors in mammalian pluripotent stem cells, but whether these factors control stem cell polarity and asymmetric division has not been investigated so far. We addressed this question in Drosophila neural stem cells called neuroblasts. We identified the Tip60 chromatin remodeling complex and its interaction partner Myc as regulators of genes required for neuroblast maintenance. Knockdown of Tip60 complex members results in loss of cortical polarity, symmetric neuroblast division, and premature differentiation through nuclear entry of the transcription factor Prospero. We found that aPKC is the key target gene of Myc and the Tip60 complex subunit Domino in regulating neuroblast polarity. Our transcriptome analysis further showed that Domino regulates the expression of mitotic spindle genes previously identified as direct Myc targets. Our findings reveal an evolutionarily conserved functional link between Myc, the Tip60 complex, and the molecular network controlling cell polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Katja Rust
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy and OB-GYN/RS, University of California, San Francisco, San Francisco, CA, USA
| | - Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany.,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| | - Vivek Kumar Mishra
- Department of Dermatology and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ferdi Grawe
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany .,Cluster of Excellence-Cellular Stress Response in Aging-Associated Diseases (CECAD), Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
14
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
15
|
Shohayeb B, Lim NR, Ho U, Xu Z, Dottori M, Quinn L, Ng DCH. The Role of WD40-Repeat Protein 62 (MCPH2) in Brain Growth: Diverse Molecular and Cellular Mechanisms Required for Cortical Development. Mol Neurobiol 2017; 55:5409-5424. [DOI: 10.1007/s12035-017-0778-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022]
|
16
|
Kobayashi T, Miyashita T, Murayama T, Toyoshima YY. Dynactin has two antagonistic regulatory domains and exerts opposing effects on dynein motility. PLoS One 2017; 12:e0183672. [PMID: 28850609 PMCID: PMC5574551 DOI: 10.1371/journal.pone.0183672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
Dynactin is a dynein-regulating protein that increases the processivity of dynein movement on microtubules. Recent studies have shown that a tripartite complex of dynein–dynactin–Bicaudal D2 is essential for highly processive movement. To elucidate the regulation of dynein motility by dynactin, we focused on two isoforms (A and B) of dynactin 1 (DCTN1), the largest subunit of dynactin that contains both microtubule- and dynein-binding domains. The only difference between the primary structures of the two isoforms is that DCTN1B lacks the K-rich domain, a cluster of basic residues. We measured dynein motility by single molecule observation of recombinant dynein and dynactin. Whereas the tripartite complex containing DCTN1A exhibited highly processive movement, the complex containing DCTN1B dissociated from microtubules with no apparent processive movement. This inhibitory effect of DCTN1B was caused by reductions of the microtubule-binding affinities of both dynein and dynactin, which was attributed to the coiled-coil 1 domain of DCTN1. In DCTN1A, the K-rich domain antagonized these inhibitory effects. Therefore, dynactin has two antagonistic domains and promotes or suppresses dynein motility to accomplish correct localization and functions of dynein within a cell.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takuya Miyashita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoko Y. Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
17
|
di Pietro F, Valon L, Li Y, Goïame R, Genovesio A, Morin X. An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation. Curr Biol 2017; 27:2452-2464.e8. [PMID: 28803871 DOI: 10.1016/j.cub.2017.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/06/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris, France
| | - Léo Valon
- Laboratoire Physico-Chimie, Institut Curie, PSL Research University, CNRS, UPMC Université Paris 06, 75005 Paris, France
| | - Yingbo Li
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Rosette Goïame
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
18
|
Dewey EB, Johnston CA. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity. Mol Biol Cell 2017; 28:2555-2568. [PMID: 28747439 PMCID: PMC5597327 DOI: 10.1091/mbc.e17-04-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/19/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Shortstop (Shot), an actin–microtubule cross-linking protein, interacts with the Dynactin component Arp-1 to control mitotic spindle assembly and positioning in Drosophila. Shot is important for proper chromosome congression and segregation. Loss of Shot in epithelial tissue leads to significant apoptosis, which when blocked leads to epithelial–mesenchymal transition-like changes. Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation.
Collapse
Affiliation(s)
- Evan B Dewey
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | | |
Collapse
|
19
|
Brehar FM, Gafencu AV, Trusca VG, Fuior EV, Arsene D, Amaireh M, Giovani A, Gorgan MR. Preferential Association of Lissencephaly-1 Gene Expression with CD133+ Glioblastoma Cells. J Cancer 2017; 8:1284-1291. [PMID: 28607604 PMCID: PMC5463444 DOI: 10.7150/jca.17635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Lissencephaly-1 (Lis1) protein is a dynein-binding protein involved in neural stem cell division, morphogenesis and motility. To determine whether Lis1 is a key factor in glioblastoma, we evaluated its expression and function in CD133+ glioblastoma cells. Global, Lis1 gene expression is similar in glioblastoma and normal samples. Interestingly, immunohistochemistry data indicate increased Lis1 expression colocalized with CD133 in a subset of glioma cells, including the tumor cells with perivascular localization. Lis1 gene expression is increased up to 60-fold in CD133 positive cells isolated from primary cultures of glioblastoma and U87 glioblastoma cell line as compared to CD133 negative cells. To investigate the potential role of Lis1 in CD133+ glioblastoma cells, we silenced Lis1 gene in U87 cell line obtaining shLis1-U87 cells. In shLis1-U87 cell culture we noticed a significant decrease of CD133+ cells fraction as compared with control cells and also, CD133+ cells isolated from shLis1-U87 were two times less adhesive, migratory and proliferative, as compared with control transfected U87 CD133+ cells. Moreover, Lis1 silencing decreased the proliferative capacity of irradiated U87 cells, an effect attributable to the lower percentage of CD133+ cells. This is the first report showing a preferential expression of Lis1 gene in CD133+ glioblastoma cells. Our data suggest a role of Lis1 in regulating CD133+ glioblastoma cells function.
Collapse
Affiliation(s)
- Felix Mircea Brehar
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Anca Violeta Gafencu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Violeta Georgeta Trusca
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Valeria Fuior
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu", 8 B. P. Hasdeu Street, 050568 Bucharest, Romania
| | - Dorel Arsene
- " Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 055096 Bucharest, Romania
| | - Mirela Amaireh
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Andrei Giovani
- "Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| | - Mircea Radu Gorgan
- "Carol Davila" University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania.,"Bagdasar-Arseni" Clinical Hospital, Neurosurgery Clinic, 10-12 Berceni Street, 041915 Bucharest, Romania
| |
Collapse
|
20
|
Estrem C, Fees CP, Moore JK. Dynein is regulated by the stability of its microtubule track. J Cell Biol 2017; 216:2047-2058. [PMID: 28572117 PMCID: PMC5496616 DOI: 10.1083/jcb.201611105] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/24/2017] [Accepted: 05/04/2017] [Indexed: 12/23/2022] Open
Abstract
How dynein motors accurately move cargoes is an important question. In budding yeast, dynein moves the mitotic spindle to the predetermined site of cytokinesis by pulling on astral microtubules. In this study, using high-resolution imaging in living cells, we discover that spindle movement is regulated by changes in microtubule plus-end dynamics that occur when dynein generates force. Mutants that increase plus-end stability increase the frequency and duration of spindle movements, causing positioning errors. We find that dynein plays a primary role in regulating microtubule dynamics by destabilizing microtubules. In contrast, the dynactin complex counteracts dynein and stabilizes microtubules through a mechanism involving the shoulder subcomplex and the cytoskeletal-associated protein glycine-rich domain of Nip100/p150glued Our results support a model in which dynein destabilizes its microtubule substrate by using its motility to deplete dynactin from the plus end. We propose that interplay among dynein, dynactin, and the stability of the microtubule substrate creates a mechanism that regulates accurate spindle positioning.
Collapse
Affiliation(s)
- Cassi Estrem
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Colby P Fees
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
21
|
Cao S, Lu X, Wang L, Qian X, Jin G, Ma H. The functional polymorphisms of LIS1 are associated with acute myeloid leukemia risk in a Han Chinese population. Leuk Res 2017; 54:7-11. [DOI: 10.1016/j.leukres.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 12/29/2022]
|
22
|
Doyle SE, Pahl MC, Siller KH, Ardiff L, Siegrist SE. Neuroblast niche position is controlled by Phosphoinositide 3-kinase-dependent DE-Cadherin adhesion. Development 2017; 144:820-829. [PMID: 28126840 DOI: 10.1242/dev.136713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Correct positioning of stem cells within their niche is essential for tissue morphogenesis and homeostasis. How stem cells acquire and maintain niche position remains largely unknown. Here, we show that a subset of brain neuroblasts (NBs) in Drosophila utilize Phosphoinositide 3-kinase (PI3-kinase) and DE-cadherin to build adhesive contact for NB niche positioning. NBs remain within their native microenvironment when levels of PI3-kinase activity and DE-cadherin are elevated in NBs. This occurs through PI3-kinase-dependent regulation of DE-Cadherin-mediated cell adhesion between NBs and neighboring cortex glia, and between NBs and their ganglion mother cell daughters. When levels of PI3-kinase activity and/or DE-Cadherin are reduced in NBs, NBs lose niche position and relocate to a non-native brain region that is rich in neurosecretory neurons, including those that secrete some of the Drosophila insulin-like peptides. Linking levels of PI3-kinase activity to the strength of adhesive attachment could provide cancer stem cells and hematopoietic stem cells with a means to cycle from trophic-poor to trophic-rich microenvironments.
Collapse
Affiliation(s)
- Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Matthew C Pahl
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Karsten H Siller
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lindsay Ardiff
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
23
|
Drosophila melanogaster Neuroblasts: A Model for Asymmetric Stem Cell Divisions. Results Probl Cell Differ 2017; 61:183-210. [PMID: 28409305 DOI: 10.1007/978-3-319-53150-2_8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Asymmetric cell division (ACD) is a fundamental mechanism to generate cell diversity, giving rise to daughter cells with different developmental potentials. ACD is manifested in the asymmetric segregation of proteins or mRNAs, when the two daughter cells differ in size or are endowed with different potentials to differentiate into a particular cell type (Horvitz and Herskowitz, Cell 68:237-255, 1992). Drosophila neuroblasts, the neural stem cells of the developing fly brain, are an ideal system to study ACD since this system encompasses all of these characteristics. Neuroblasts are intrinsically polarized cells, utilizing polarity cues to orient the mitotic spindle, segregate cell fate determinants asymmetrically, and regulate spindle geometry and physical asymmetry. The neuroblast system has contributed significantly to the elucidation of the basic molecular mechanisms underlying ACD. Recent findings also highlight its usefulness to study basic aspects of stem cell biology and tumor formation. In this review, we will focus on what has been learned about the basic mechanisms underlying ACD in fly neuroblasts.
Collapse
|
24
|
Abstract
Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell-substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance.
Collapse
|
25
|
Ananthanarayanan V. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation. Bioessays 2016; 38:514-25. [PMID: 27143631 DOI: 10.1002/bies.201600002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell.
Collapse
|
26
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
27
|
Moffat JJ, Ka M, Jung EM, Kim WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015; 8:72. [PMID: 26541977 PMCID: PMC4635534 DOI: 10.1186/s13041-015-0164-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/31/2015] [Indexed: 01/05/2023] Open
Abstract
Neuronal positioning is a fundamental process during brain development. Abnormalities in this process cause several types of brain malformations and are linked to neurodevelopmental disorders such as autism, intellectual disability, epilepsy, and schizophrenia. Little is known about the pathogenesis of developmental brain malformations associated with abnormal neuron positioning, which has hindered research into potential treatments. However, recent advances in neurogenetics provide clues to the pathogenesis of aberrant neuronal positioning by identifying causative genes. This may help us form a foundation upon which therapeutic tools can be developed. In this review, we first provide a brief overview of neural development and migration, as they relate to defects in neuronal positioning. We then discuss recent progress in identifying genes and brain malformations associated with aberrant neuronal positioning during human brain development.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE, 68198-5960, USA.
| |
Collapse
|
28
|
Rabinovich D, Mayseless O, Schuldiner O. Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 2015; 9:327. [PMID: 26379498 PMCID: PMC4547045 DOI: 10.3389/fncel.2015.00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) γ neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB γ neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.
Collapse
Affiliation(s)
- Dana Rabinovich
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| |
Collapse
|
29
|
Bezanilla M, Gladfelter AS, Kovar DR, Lee WL. Cytoskeletal dynamics: a view from the membrane. ACTA ACUST UNITED AC 2015; 209:329-37. [PMID: 25963816 PMCID: PMC4427793 DOI: 10.1083/jcb.201502062] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Many aspects of cytoskeletal assembly and dynamics can be recapitulated in vitro; yet, how the cytoskeleton integrates signals in vivo across cellular membranes is far less understood. Recent work has demonstrated that the membrane alone, or through membrane-associated proteins, can effect dynamic changes to the cytoskeleton, thereby impacting cell physiology. Having identified mechanistic links between membranes and the actin, microtubule, and septin cytoskeletons, these studies highlight the membrane’s central role in coordinating these cytoskeletal systems to carry out essential processes, such as endocytosis, spindle positioning, and cellular compartmentalization.
Collapse
Affiliation(s)
- Magdalena Bezanilla
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wei-Lih Lee
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
30
|
Integrin-linked kinase links dynactin-1/dynactin-2 with cortical integrin receptors to orient the mitotic spindle relative to the substratum. Sci Rep 2015; 5:8389. [PMID: 25669897 PMCID: PMC4323648 DOI: 10.1038/srep08389] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/19/2015] [Indexed: 01/15/2023] Open
Abstract
Cells must divide strictly along a plane to form an epithelial layer parallel to the basal lamina. The axis of cell division is primarily governed by the orientation of the mitotic spindle and spindle misorientation pathways have been implicated in cancer initiation. While β1-Integrin and the Dynein/Dynactin complex are known to be involved, the pathways linking these complexes in positioning mitotic spindles relative to the basal cortex and extracellular matrix remain to be elucidated. Here, we show that Integrin-Linked Kinase (ILK) and α-Parvin regulate mitotic spindle orientation by linking Dynactin-1 and Dynactin-2 subunits of the Dynein/Dynactin complex to Integrin receptors at the basal cortex of mitotic cells. ILK and α-Parvin are required for spindle orientation. ILK interacts with Dynactin-1 and Dynactin-2 and ILK siRNA attenuates Dynactin-2 localization to the basal cortex. Furthermore we show that Dynactin-2 can no longer colocalize or interact with Integrins when ILK is absent, suggesting mechanistically that ILK is acting as a linking protein. Finally we demonstrate that spindle orientation and cell proliferation are disrupted in intestinal epithelial cells in vivo using tissue-specific ILK knockout mice. These data demonstrate that ILK is a linker between Integrin receptors and the Dynactin complex to regulate mitotic spindle orientation.
Collapse
|
31
|
Mishra-Gorur K, Çağlayan AO, Schaffer AE, Chabu C, Henegariu O, Vonhoff F, Akgümüş GT, Nishimura S, Han W, Tu S, Baran B, Gümüş H, Dilber C, Zaki MS, Hossni HAA, Rivière JB, Kayserili H, Spencer EG, Rosti RÖ, Schroth J, Per H, Çağlar C, Çağlar Ç, Dölen D, Baranoski JF, Kumandaş S, Minja FJ, Erson-Omay EZ, Mane SM, Lifton RP, Xu T, Keshishian H, Dobyns WB, Chi NC, Šestan N, Louvi A, Bilgüvar K, Yasuno K, Gleeson JG, Günel M. Mutations in KATNB1 cause complex cerebral malformations by disrupting asymmetrically dividing neural progenitors. Neuron 2014; 84:1226-39. [PMID: 25521378 PMCID: PMC5024344 DOI: 10.1016/j.neuron.2014.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Exome sequencing analysis of over 2,000 children with complex malformations of cortical development identified five independent (four homozygous and one compound heterozygous) deleterious mutations in KATNB1, encoding the regulatory subunit of the microtubule-severing enzyme Katanin. Mitotic spindle formation is defective in patient-derived fibroblasts, a consequence of disrupted interactions of mutant KATNB1 with KATNA1, the catalytic subunit of Katanin, and other microtubule-associated proteins. Loss of KATNB1 orthologs in zebrafish (katnb1) and flies (kat80) results in microcephaly, recapitulating the human phenotype. In the developing Drosophila optic lobe, kat80 loss specifically affects the asymmetrically dividing neuroblasts, which display supernumerary centrosomes and spindle abnormalities during mitosis, leading to cell cycle progression delays and reduced cell numbers. Furthermore, kat80 depletion results in dendritic arborization defects in sensory and motor neurons, affecting neural architecture. Taken together, we provide insight into the mechanisms by which KATNB1 mutations cause human cerebral cortical malformations, demonstrating its fundamental role during brain development.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ahmet Okay Çağlayan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ashleigh E Schaffer
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chiswili Chabu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Octavian Henegariu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fernando Vonhoff
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Gözde Tuğce Akgümüş
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wenqi Han
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shu Tu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Burçin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hakan Gümüş
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Cengiz Dilber
- Division of Pediatric Neurology, Department of Pediatrics, Sütcü Imam University Medical Faculty, Kahramanmaraş 46100, Turkey
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo 12311, Egypt
| | - Heba A A Hossni
- Department of Neurology, National Institute of Neuromotor System, Cairo 12311, Egypt
| | - Jean-Baptiste Rivière
- Equipe Génétique des Anomalies du Développement, EA 4271, Université de Bourgogne, 21078 Dijon, France
| | - Hülya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul 34093, Turkey
| | - Emily G Spencer
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rasim Ö Rosti
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jana Schroth
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hüseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Caner Çağlar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Çağri Çağlar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Duygu Dölen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jacob F Baranoski
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sefer Kumandaş
- Division of Pediatric Neurology, Department of Pediatrics, Erciyes University Medical Faculty, Kayseri 38039, Turkey
| | - Frank J Minja
- Department of Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shrikant M Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tian Xu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT 06510, USA
| | - Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - William B Dobyns
- Departments of Pediatrics and Neurology, University of Washington and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98105, USA
| | - Neil C Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nenad Šestan
- Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kaya Bilgüvar
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph G Gleeson
- Neurogenetics Laboratory, Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
32
|
Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, Walch A, Grant SGN, Lickert H. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. eLife 2014; 3:e03842. [PMID: 25296022 PMCID: PMC4221739 DOI: 10.7554/elife.03842] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/29/2022] Open
Abstract
Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division.
Collapse
Affiliation(s)
- Moritz Gegg
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Anika Böttcher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Ingo Burtscher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Stefan Hasenoeder
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Claude Van Campenhout
- Genetique du Developpement, L'Institut de biologie et de médecine moléculaires, Université libre de Bruxelles, Gosselies, Belgium
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, Univeristy of Edinburgh, Cambridge, United Kingdom
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
- For correspondence:
| |
Collapse
|
33
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
34
|
Abstract
Stem cells divide asymmetrically to generate two progeny cells with unequal fate potential: a self-renewing stem cell and a differentiating cell. Given their relevance to development and disease, understanding the mechanisms that govern asymmetric stem cell division has been a robust area of study. Because they are genetically tractable and undergo successive rounds of cell division about once every hour, the stem cells of the Drosophila central nervous system, or neuroblasts, are indispensable models for the study of stem cell division. About 100 neural stem cells are located near the surface of each of the two larval brain lobes, making this model system particularly useful for live imaging microscopy studies. In this work, we review several approaches widely used to visualize stem cell divisions, and we address the relative advantages and disadvantages of those techniques that employ dissociated versus intact brain tissues. We also detail our simplified protocol used to explant whole brains from third instar larvae for live cell imaging and fixed analysis applications.
Collapse
Affiliation(s)
- Dorothy A Lerit
- National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Karen M Plevock
- National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health;
| |
Collapse
|
35
|
Zigman M, Laumann-Lipp N, Titus T, Postlethwait J, Moens CB. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis. Development 2014; 141:639-49. [PMID: 24449840 PMCID: PMC3899817 DOI: 10.1242/dev.098731] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo.
Collapse
Affiliation(s)
- Mihaela Zigman
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 329, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Zimdahl B, Ito T, Blevins A, Bajaj J, Konuma T, Weeks J, Koechlein CS, Kwon HY, Arami O, Rizzieri D, Broome HE, Chuah C, Oehler VG, Sasik R, Hardiman G, Reya T. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nat Genet 2014; 46:245-52. [PMID: 24487275 PMCID: PMC4267534 DOI: 10.1038/ng.2889] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/09/2014] [Indexed: 01/08/2023]
Abstract
Cell fate can be controlled through asymmetric division and segregation of protein determinants, but the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein-binding protein Lis1 is critically required for hematopoietic stem cell function and leukemogenesis. Conditional deletion of Lis1 (also known as Pafah1b1) in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality. Further, real-time imaging revealed that loss of Lis1 caused defects in spindle positioning and inheritance of cell fate determinants, triggering accelerated differentiation. Finally, deletion of Lis1 blocked the propagation of myeloid leukemia and led to a marked improvement in survival, suggesting that Lis1 is also required for oncogenic growth. These data identify a key role for Lis1 in hematopoietic stem cells and mark its directed control of asymmetric division as a critical regulator of normal and malignant hematopoietic development.
Collapse
Affiliation(s)
- Bryan Zimdahl
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710
| | - Takahiro Ito
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Allen Blevins
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Jeevisha Bajaj
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Takaaki Konuma
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Joi Weeks
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Claire S. Koechlein
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Hyog Young Kwon
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - Omead Arami
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
| | - David Rizzieri
- Division of Cell Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, 27710
| | - H. Elizabeth Broome
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, 92093
| | - Charles Chuah
- Department of Haematology, Singapore General Hospital, Singapore
| | - Vivian G. Oehler
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Roman Sasik
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093
| | - Gary Hardiman
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, 92093
| | - Tannishtha Reya
- Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, CA, 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710
- Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, 92093
| |
Collapse
|
37
|
Almonacid M, Terret MÉ, Verlhac MH. Actin-based spindle positioning: new insights from female gametes. J Cell Sci 2014; 127:477-83. [PMID: 24413163 DOI: 10.1242/jcs.142711] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Asymmetric divisions are essential in metazoan development, where they promote the emergence of cell lineages. The mitotic spindle has astral microtubules that contact the cortex, which act as a sensor of cell geometry and as an integrator to orient cell division. Recent advances in live imaging revealed novel pools and roles of F-actin in somatic cells and in oocytes. In somatic cells, cytoplasmic F-actin is involved in spindle architecture and positioning. In starfish and mouse oocytes, newly discovered meshes of F-actin control chromosome gathering and spindle positioning. Because oocytes lack centrosomes and astral microtubules, F-actin networks are key players in the positioning of spindles by transmitting forces over long distances. Oocytes also achieve highly asymmetric divisions, and thus are excellent models to study the roles of these newly discovered F-actin networks in spindle positioning. Moreover, recent studies in mammalian oocytes provide a further understanding of the organisation of F-actin networks and their biophysical properties. In this Commentary, we present examples of the role of F-actin in spindle positioning and asymmetric divisions, with an emphasis on the most up-to-date studies from mammalian oocytes. We also address specific technical issues in the field, namely live imaging of F-actin networks and stress the need for interdisciplinary approaches.
Collapse
Affiliation(s)
- Maria Almonacid
- CIRB, Collège de France, CNRS-UMR7241, INSERM-U1050, 75231 Paris, Cedex 05, France
| | | | | |
Collapse
|
38
|
Cabernard C, Doe CQ. Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold Spring Harb Protoc 2013; 2013:970-977. [PMID: 24086057 DOI: 10.1101/pdb.prot078162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neuroblasts are the precursors of the Drosophila central nervous system and undergo repeated physical and molecular asymmetric cell divisions. Live imaging of neuroblast lineages within intact Drosophila larval brains has dramatically improved our current understanding of basic cellular processes such as the establishment of cell polarity, spindle orientation, and cytokinesis. The analysis of mutant phenotypes using live imaging can enlarge our understanding of asymmetric neuroblast division and self-renewal. Although much live neuroblast imaging is performed using green fluorescent protein only, the generation of improved fluorescent proteins has led to an increase in the use of two-color imaging. Here we present a simple protocol for isolating and imaging larval brain neuroblasts. We describe procedures for the dissection and mounting of brains from third-instar Drosophila larvae in explant solution and their subsequent live imaging. The method provides a close approximation to the in vivo environment and produces data with high temporal and spatial resolutions. We also discuss potential problems and pitfalls and provide examples of how this technique is used.
Collapse
|
39
|
Dix CI, Soundararajan HC, Dzhindzhev NS, Begum F, Suter B, Ohkura H, Stephens E, Bullock SL. Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs. J Cell Biol 2013; 202:479-94. [PMID: 23918939 PMCID: PMC3734092 DOI: 10.1083/jcb.201211052] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 06/19/2013] [Indexed: 11/22/2022] Open
Abstract
Microtubule-based transport mediates the sorting and dispersal of many cellular components and pathogens. However, the mechanisms by which motor complexes are recruited to and regulated on different cargos remain poorly understood. Here we describe a large-scale biochemical screen for novel factors associated with RNA localization signals mediating minus end-directed mRNA transport during Drosophila development. We identified the protein Lissencephaly-1 (Lis1) and found that minus-end travel distances of localizing transcripts are dramatically reduced in lis1 mutant embryos. Surprisingly, given its well-documented role in regulating dynein mechanochemistry, we uncovered an important requirement for Lis1 in promoting the recruitment of dynein and its accessory complex dynactin to RNA localization complexes. Furthermore, we provide evidence that Lis1 levels regulate the overall association of dynein with dynactin. Our data therefore reveal a critical role for Lis1 within the mRNA localization machinery and suggest a model in which Lis1 facilitates motor complex association with cargos by promoting the interaction of dynein with dynactin.
Collapse
Affiliation(s)
- Carly I. Dix
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | | | - Nikola S. Dzhindzhev
- The Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Farida Begum
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Beat Suter
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Hiroyuki Ohkura
- The Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Elaine Stephens
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
40
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
41
|
Pan Z, Zhu J, Shang Y, Wei Z, Jia M, Xia C, Wen W, Wang W, Zhang M. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs. Structure 2013; 21:1007-17. [PMID: 23665171 DOI: 10.1016/j.str.2013.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/11/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.
Collapse
Affiliation(s)
- Zhu Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen S, Lewallen M, Xie T. Adhesion in the stem cell niche: biological roles and regulation. Development 2013; 140:255-65. [PMID: 23250203 DOI: 10.1242/dev.083139] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated.
Collapse
Affiliation(s)
- Shuyi Chen
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
43
|
Noatynska A, Gotta M, Meraldi P. Mitotic spindle (DIS)orientation and DISease: cause or consequence? ACTA ACUST UNITED AC 2013; 199:1025-35. [PMID: 23266953 PMCID: PMC3529530 DOI: 10.1083/jcb.201209015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Correct alignment of the mitotic spindle during cell division is crucial for cell fate determination, tissue organization, and development. Mutations causing brain diseases and cancer in humans and mice have been associated with spindle orientation defects. These defects are thought to lead to an imbalance between symmetric and asymmetric divisions, causing reduced or excessive cell proliferation. However, most of these disease-linked genes encode proteins that carry out multiple cellular functions. Here, we discuss whether spindle orientation defects are the direct cause for these diseases, or just a correlative side effect.
Collapse
Affiliation(s)
- Anna Noatynska
- Department of Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
44
|
Lai SL, Miller MR, Robinson KJ, Doe CQ. The Snail family member Worniu is continuously required in neuroblasts to prevent Elav-induced premature differentiation. Dev Cell 2013; 23:849-57. [PMID: 23079601 DOI: 10.1016/j.devcel.2012.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/17/2012] [Accepted: 09/12/2012] [Indexed: 11/17/2022]
Abstract
Snail family transcription factors are best known for regulating epithelial-mesenchymal transition (EMT). The Drosophila Snail family member Worniu is specifically transcribed in neural progenitors (neuroblasts) throughout their lifespan, and worniu mutants show defects in neuroblast delamination (a form of EMT). However, the role of Worniu in neuroblasts beyond their formation is unknown. We performed RNA-seq on worniu mutant larval neuroblasts and observed reduced cell-cycle transcripts and increased neural differentiation transcripts. Consistent with these genomic data, worniu mutant neuroblasts showed a striking delay in prophase/metaphase transition by live imaging and increased levels of the conserved neuronal differentiation splicing factor Elav. Reducing Elav levels significantly suppressed the worniu mutant phenotype. We conclude that Worniu is continuously required in neuroblasts to maintain self-renewal by promoting cell-cycle progression and inhibiting premature differentiation.
Collapse
Affiliation(s)
- Sen-Lin Lai
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
45
|
Sousa-Nunes R, Somers WG. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:79-102. [PMID: 23696353 DOI: 10.1007/978-94-007-6621-1_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila central nervous system develops from polarised asymmetric divisions of precursor cells, called neuroblasts. Decades of research on neuroblasts have resulted in a substantial understanding of the factors and molecular events responsible for fate decisions of neuroblasts and their progeny. Furthermore, the cell-cycle dependent mechanisms responsible for asymmetric cortical protein localisation, resulting in the unequal partitioning between daughters, are beginning to be exposed. Disruption to the appropriate partitioning of proteins between neuroblasts and differentiation-committed daughters can lead to supernumerary neuroblast-like cells and the formation of tumours. Many of the factors responsible for regulating asymmetric division of Drosophila neuroblasts are evolutionarily conserved and, in many cases, have been shown to play a functionally conserved role in mammalian neurogenesis. Recent genome-wide studies coupled with advancements in live-imaging technologies have opened further avenues of research into neuroblast biology. We review our current understanding of the molecular mechanisms regulating neuroblast divisions, a powerful system to model mammalian neurogenesis and tumourigenesis.
Collapse
Affiliation(s)
- Rita Sousa-Nunes
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK.
| | | |
Collapse
|
46
|
Kelsom C, Lu W. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis. Cell Biosci 2012; 2:38. [PMID: 23151376 PMCID: PMC3524031 DOI: 10.1186/2045-3701-2-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/05/2012] [Indexed: 12/14/2022] Open
Abstract
Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.
Collapse
Affiliation(s)
- Corey Kelsom
- Department of Biochemistry and Molecular Biology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90033, USA.
| | | |
Collapse
|
47
|
Sugioka K, Sawa H. Formation and functions of asymmetric microtubule organization in polarized cells. Curr Opin Cell Biol 2012; 24:517-25. [DOI: 10.1016/j.ceb.2012.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/23/2012] [Indexed: 01/20/2023]
|
48
|
Collins ES, Balchand SK, Faraci JL, Wadsworth P, Lee WL. Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol Biol Cell 2012; 23:3380-90. [PMID: 22809624 PMCID: PMC3431930 DOI: 10.1091/mbc.e12-02-0109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence is presented for dynamic cortical association of dynein and dynactin in mammalian cells and its regulation by Plk1, astral microtubules, and the cell cycle. The asymmetric spindle positioning in LLC-Pk1 cells and its correction by dynein and dynactin provide a new system for analysis of spindle position and symmetric cell division. In cultured mammalian cells, how dynein/dynactin contributes to spindle positioning is poorly understood. To assess the role of cortical dynein/dynactin in this process, we generated mammalian cell lines expressing localization and affinity purification (LAP)–tagged dynein/dynactin subunits from bacterial artificial chromosomes and observed asymmetric cortical localization of dynein and dynactin during mitosis. In cells with asymmetrically positioned spindles, dynein and dynactin were both enriched at the cortex distal to the spindle. NuMA, an upstream targeting factor, localized asymmetrically along the cell cortex in a manner similar to dynein and dynactin. During spindle motion toward the distal cortex, dynein and dynactin were locally diminished and subsequently enriched at the new distal cortex. At anaphase onset, we observed a transient increase in cortical dynein, followed by a reduction in telophase. Spindle motion frequently resulted in cells entering anaphase with an asymmetrically positioned spindle. These cells gave rise to symmetric daughter cells by dynein-dependent differential spindle pole motion in anaphase. Our results demonstrate that cortical dynein and dynactin dynamically associate with the cell cortex in a cell cycle–regulated manner and are required to correct spindle mispositioning in LLC-Pk1 epithelial cells.
Collapse
|
49
|
Sitaram P, Anderson MA, Jodoin JN, Lee E, Lee LA. Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 2012; 139:2945-54. [PMID: 22764052 DOI: 10.1242/dev.077511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
50
|
Cowles MW, Hubert A, Zayas RM. A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 2012; 241:901-10. [PMID: 22411224 DOI: 10.1002/dvdy.23775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Planarians are renowned for their capacity to replace lost tissues from adult pluripotent stem cells (neoblasts). Here we report that Lissencephaly-1 (lis1), which has roles in cellular processes such as mitotic spindle apparatus orientation and in signal regulation required for stem cell self-renewal, is required for stem cell maintenance in the planarian Schmidtea mediterranea. RESULTS In planarians, lis1 is expressed in differentiated tissues and stem cells. lis1 RNAi leads to head regression, ventral curling, and death by lysis. By labeling the neoblasts and proliferating cells, we found lis1 knockdown animals show a dramatic increase in the number of mitotic cells, followed by depletion of the stem cell pool. Analysis of the mitotic spindles in dividing neoblasts revealed that defective spindle positioning is correlated with cells arrested at metaphase. In addition, we show that inhibiting a planarian homologue of nudE, predicted to encode a LIS-1 interacting protein, also leads to cell cycle progression defects. CONCLUSIONS Our results provide evidence for a conserved role of LIS1 and NUDE in regulating the function of the mitotic spindle apparatus in a representative Lophotrochozoan and that planarians will be useful organisms in which to investigate LIS1 regulation of signaling events underlying stem cell self-renewal.
Collapse
Affiliation(s)
- Martis W Cowles
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|