1
|
Tracicaru MP, Tracicaru RV, Hînganu D, Hînganu MV. The Etiology of Moebius Syndrome-Making the Case for Animal Models. Int J Mol Sci 2025; 26:4217. [PMID: 40362454 PMCID: PMC12072003 DOI: 10.3390/ijms26094217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Moebius syndrome (MBS) is a rare disease consisting of uni-/bilateral palsy of CN VI and VII without impairment of vertical eye movements. Its uncommon nature means that the etiology is still uncertain. It is thought to be caused by vascular lesions leading to infarction in the nuclei of cranial nerves VI and VII on the posterior aspect of the pons. However, several genes have also been discussed as possibly causative. We performed a literature search in the PUBMED database and on the Science Direct platform with terms related to the pathology and to each etiology individually. Included were original papers and review articles published in peer-reviewed international journals and reference books and databases on the subjects discussed. We excluded articles not published in English, conference communications, dissertations, monographs, and other non-peer-reviewed forms of publication. The total number of publications thus included was 62. This review discusses the functions of the three most related genes found in recent research (PLXND1, REV3L, TUBB3) and the results of animal studies focusing on their mutations. We note that the PLXND1 and REV3L mutations have been most associated with MBS and that the current studies on their function suggest histological lesions similar to the target disease, albeit without clear phenotypic expression. We ascertain that TUBB3 mutations are mostly related to CEFOM3, which is a differential diagnosis for MBS. Regarding the vascular etiology, we review the types of lesions involved and discuss their timing in relation to embryologic stages. We also highlight the main investigation methods available. A multitude of the factors discussed might be causative of MBS, and we thus consider it necessary to attempt the development of an animal model for the disease. To this end, we propose the development of transgenic mice models containing the single nucleotide mutations documented in human patients, and we discuss the use of the chick embryo model for the vascular etiology.
Collapse
Affiliation(s)
| | - Rareș-Vasile Tracicaru
- Department of Morphofunctional Sciences, Anatomy and Embryology, Grigore T. Popa University of Medicine and Pharmacy Iași, University Street No 16, 700115 Iași, Romania; (M.-P.T.); (D.H.); (M.V.H.)
| | | | | |
Collapse
|
2
|
Toghani D, Gupte S, Zeng S, Mahammadov E, Crosse EI, Seyedhassantehrani N, Burns C, Gravano D, Radtke S, Kiem HP, Rodriguez S, Carlesso N, Pradeep A, Georgiades A, Lucas F, Wilson NK, Kinston SJ, Göttgens B, Zong L, Beerman I, Park B, Janssens DH, Jones D, Toghani A, Nerlov C, Pietras EM, Mesnieres M, Maes C, Kumanogoh A, Worzfeld T, Cheong JG, Josefowicz SZ, Kharchenko P, Scadden DT, Scialdone A, Spencer JA, Silberstein L. Niche-derived Semaphorin 4A safeguards functional identity of myeloid-biased hematopoietic stem cells. NATURE AGING 2025; 5:558-575. [PMID: 39881190 PMCID: PMC12025894 DOI: 10.1038/s43587-024-00798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, Semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress. We show that, in the absence of Sema4A, myHSC inflammatory hyper-responsiveness in young mice drives excessive myHSC expansion, myeloid bias and profound loss of regenerative function with age. Mechanistically, Sema4A is mainly produced by neutrophils, signals via a cell surface receptor, Plexin D1, and safeguards the myHSC epigenetic state. Our study shows that, by selectively protecting a distinct stem cell subset, an extrinsic factor preserves functional diversity of somatic stem cell pool throughout organismal lifespan.
Collapse
Affiliation(s)
- Dorsa Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sanika Gupte
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon Zeng
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Edie I Crosse
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - David Gravano
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Stefan Radtke
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sonia Rodriguez
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Nadia Carlesso
- Department of Stem Cell Biology & Regenerative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Amogh Pradeep
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alexis Georgiades
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fabienne Lucas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicola K Wilson
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Le Zong
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Aging Unit, National Institute of Aging, Baltimore, MD, USA
| | - Derek H Janssens
- Department of Epigenetics, Van Del Institute, Grand Rapids, MI, USA
| | - Daniel Jones
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ali Toghani
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Claus Nerlov
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eric M Pietras
- Department of Medicine-Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marion Mesnieres
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Christa Maes
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, University of Osaka, Osaka, Japan
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - Jin-Gyu Cheong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Steven Z Josefowicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kharchenko
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum Muenchen, Munich, Germany
| | - Joel A Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, USA
| | - Lev Silberstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Li C, Niu Y, Chen J, Geng S, Wu P, Dai L, Dong C, Liu R, Shi Y, Wang X, Gao Z, Liu X, Yang X, Gao S. Plexin D1 negatively regulates macrophage-derived foam cell migration via the focal adhesion kinase/Paxillin pathway. Biochem Biophys Res Commun 2024; 725:150236. [PMID: 38897039 DOI: 10.1016/j.bbrc.2024.150236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.
Collapse
Affiliation(s)
- Chenlei Li
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yan Niu
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Jie Chen
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Shijia Geng
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Peng Wu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Lina Dai
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Chongyang Dong
- Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Rujin Liu
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Yuanjia Shi
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaomeng Wang
- Graduate School of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, 010110, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Zhanfeng Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xiaoyu Liu
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Xi Yang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| | - Shang Gao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China; Medical Experiments Center, Inner Mongolia Medical University, Hohhot, 010110, PR China.
| |
Collapse
|
4
|
Shan L, Matloubi M, Okwor I, Kung S, Almiski MS, Basu S, Halayko A, Koussih L, Gounni AS. CD11c+ dendritic cells PlexinD1 deficiency exacerbates airway hyperresponsiveness, IgE and mucus production in a mouse model of allergic asthma. PLoS One 2024; 19:e0309868. [PMID: 39213301 PMCID: PMC11364237 DOI: 10.1371/journal.pone.0309868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Dendritic cells (DCs) are pivotal in regulating allergic asthma. Our research has shown that the absence of Sema3E worsens asthma symptoms in acute and chronic asthma models. However, the specific role of PlexinD1 in these processes, particularly in DCs, remains unclear. This study investigates the role of PlexinD1 in CD11c+ DCs using a house dust mite (HDM) model of asthma. We generated CD11c+ DC-specific PlexinD1 knockout (CD11cPLXND1 KO) mice and subjected them, alongside wild-type controls (PLXND1fl/fl), to an HDM allergen protocol. Airway hyperresponsiveness (AHR) was measured using FlexiVent, and immune cell populations were analyzed via flow cytometry. Cytokine levels and immunoglobulin concentrations were assessed using mesoscale and ELISA, while collagen deposition and mucus production were examined through Sirius-red and periodic acid Schiff (PAS) staining respectively. Our results indicate that CD11cPLXND1 KO mice exhibit significantly exacerbated AHR, characterized by increased airway resistance and tissue elastance. Enhanced mucus production and collagen gene expression were observed in these mice compared to wild-type counterparts. Flow cytometry revealed higher CD11c+ MHCIIhigh CD11b+ cell recruitment into the lungs, and elevated total and HDM-specific serum IgE levels in CD11cPLXND1 KO mice. Mechanistically, co-cultures of B cells with DCs from CD11cPLXND1 KO mice showed significantly increased IgE production compared to wild-type mice.These findings highlight the critical regulatory role of the plexinD1 signaling pathway in CD11c+ DCs in modulating asthma features.
Collapse
Affiliation(s)
- Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojdeh Matloubi
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ifeoma Okwor
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam Kung
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohamed Sadek Almiski
- Department of Anatomy, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Halayko
- Depertment of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Experimental Biology, Université de Saint-Boniface, Winnipeg, Manitoba
| | - Abdelilah S. Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Zhang Y, Shen X, Deng S, Chen Q, Xu B. Neural Regulation of Vascular Development: Molecular Mechanisms and Interactions. Biomolecules 2024; 14:966. [PMID: 39199354 PMCID: PMC11353022 DOI: 10.3390/biom14080966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
As a critical part of the circulatory system, blood vessels transport oxygen and nutrients to every corner of the body, nourishing each cell, and also remove waste and toxins. Defects in vascular development and function are closely associated with many diseases, such as heart disease, stroke, and atherosclerosis. In the nervous system, the nervous and vascular systems are intricately connected in both development and function. First, peripheral blood vessels and nerves exhibit parallel distribution patterns. In the central nervous system (CNS), nerves and blood vessels form a complex interface known as the neurovascular unit. Second, the vascular system employs similar cellular and molecular mechanisms as the nervous system for its development. Third, the development and function of CNS vasculature are tightly regulated by CNS-specific signaling pathways and neural activity. Additionally, vascular endothelial cells within the CNS are tightly connected and interact with pericytes, astrocytes, neurons, and microglia to form the blood-brain barrier (BBB). The BBB strictly controls material exchanges between the blood and brain, maintaining the brain's microenvironmental homeostasis, which is crucial for the normal development and function of the CNS. Here, we comprehensively summarize research on neural regulation of vascular and BBB development and propose directions for future research.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xinyu Shen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Shunze Deng
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qiurong Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Bing Xu
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
He J, Blazeski A, Nilanthi U, Menéndez J, Pirani SC, Levic DS, Bagnat M, Singh MK, Raya JG, García-Cardeña G, Torres-Vázquez J. Plxnd1-mediated mechanosensing of blood flow controls the caliber of the Dorsal Aorta via the transcription factor Klf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576555. [PMID: 38328196 PMCID: PMC10849625 DOI: 10.1101/2024.01.24.576555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.
Collapse
Affiliation(s)
- Jia He
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Uthayanan Nilanthi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
| | - Javier Menéndez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Samuel C. Pirani
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Manvendra K. Singh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Bhat GP, Maurizio A, Motta A, Podini P, Diprima S, Malpighi C, Brambilla I, Martins L, Badaloni A, Boselli D, Bianchi F, Pellegatta M, Genua M, Ostuni R, Del Carro U, Taveggia C, de Pretis S, Quattrini A, Bonanomi D. Structured wound angiogenesis instructs mesenchymal barrier compartments in the regenerating nerve. Neuron 2024; 112:209-229.e11. [PMID: 37972594 DOI: 10.1016/j.neuron.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Organ injury stimulates the formation of new capillaries to restore blood supply raising questions about the potential contribution of neoangiogenic vessel architecture to the healing process. Using single-cell mapping, we resolved the properties of endothelial cells that organize a polarized scaffold at the repair site of lesioned peripheral nerves. Transient reactivation of an embryonic guidance program is required to orient neovessels across the wound. Manipulation of this structured angiogenic response through genetic and pharmacological targeting of Plexin-D1/VEGF pathways within an early window of repair has long-term impact on configuration of the nerve stroma. Neovessels direct nerve-resident mesenchymal cells to mold a provisionary fibrotic scar by assembling an orderly system of stable barrier compartments that channel regenerating nerve fibers and shield them from the persistently leaky vasculature. Thus, guided and balanced repair angiogenesis enables the construction of a "bridge" microenvironment conducive for axon regrowth and homeostasis of the regenerated tissue.
Collapse
Affiliation(s)
- Ganesh Parameshwar Bhat
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessia Motta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Paola Podini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Santo Diprima
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Malpighi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Ilaria Brambilla
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Luis Martins
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Daniela Boselli
- FRACTAL-Flow cytometry Resource Advanced Cytometry Technical Applications Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Francesca Bianchi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marta Pellegatta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Carla Taveggia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Quattrini
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
8
|
Sawada M, Hamaguchi A, Mano N, Yoshida Y, Uemura A, Sawamoto K. PlexinD1 signaling controls domain-specific dendritic development in newborn neurons in the postnatal olfactory bulb. Front Neurosci 2023; 17:1143130. [PMID: 37534039 PMCID: PMC10393276 DOI: 10.3389/fnins.2023.1143130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Newborn neurons show immature bipolar morphology and continue to migrate toward their destinations. After the termination of migration, newborn neurons undergo spatially controlled dendrite formation and change into a complex morphology. The mechanisms of dendritic development of newborn neurons have not been fully understood. Here, we show that in the postnatal olfactory bulb (OB), the Sema3E-PlexinD1 signaling, which maintains bipolar morphology of newborn neurons, also regulates their dendritic development after the termination of migration in a dendritic domain-specific manner. Genetic ablation of Sema3E or PlexinD1 enhanced dendritic branching in the proximal domain of the apical dendrites of OB newborn granule cells, whereas PlexinD1 overexpression suppressed it in a Rho binding domain (RBD)-dependent manner. Furthermore, RhoJ, a small GTPase that directly binds to PlexinD1RBD in vascular endothelial cells, is expressed in migrating and differentiating newborn granule cells in the OB and is also involved in the suppression of proximal branching of their apical dendrites. These results suggest that the Sema3E-PlexinD1-RhoJ axis regulates domain-specific dendrite formation of newborn neurons in the postnatal OB.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| | - Ayato Hamaguchi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naomichi Mano
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| |
Collapse
|
9
|
Targeting the Semaphorin3E-plexinD1 complex in allergic asthma. Pharmacol Ther 2023; 242:108351. [PMID: 36706796 DOI: 10.1016/j.pharmthera.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Asthma is a heterogenous airway disease characterized by airway inflammation and remodeling. It affects more than 300 million people worldwide and poses a significant burden on society. Semaphorins, discovered initially as neural guidance molecules, are ubiquitously expressed in various organs and regulate multiple signaling pathways. Interestingly, Semaphorin3E is a critical molecule in lung pathophysiology through its role in both lung development and homeostasis. Semaphorin3E binds to plexinD1, mediating regulatory effects on cell migration, proliferation, and angiogenesis. Recent in vitro and in vivo studies have demonstrated that the Semaphorin3E-plexinD1 axis is implicated in asthma, impacting inflammatory and structural cells associated with airway inflammation, tissue remodeling, and airway hyperresponsiveness. This review details the Semaphorin3E-plexinD1 axis in various aspects of asthma and highlights future directions in research including its potential role as a therapeutic target in airway allergic diseases.
Collapse
|
10
|
Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples. Nat Commun 2023; 14:509. [PMID: 36720873 PMCID: PMC9889806 DOI: 10.1038/s41467-023-36071-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Spatially resolved transcriptomics has enabled precise genome-wide mRNA expression profiling within tissue sections. The performance of methods targeting the polyA tails of mRNA relies on the availability of specimens with high RNA quality. Moreover, the high cost of currently available spatial resolved transcriptomics assays requires a careful sample screening process to increase the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a workflow designed to improve mRNA recovery from fresh frozen specimens with moderate to low RNA quality. First, we provide a benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA quality samples represented by mouse brain and prostate cancer samples. Then, we test the RRST protocol on tissue sections collected from five challenging tissue types, including human lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections and demonstrate that RRST is a versatile, powerful, and reproducible protocol for fresh frozen specimens of different qualities and origins.
Collapse
|
11
|
Guimier A, de Pontual L, Braddock SR, Torti E, Pérez-Jurado LA, Muñoz-Cabello P, Arumí M, Monaghan KG, Lee H, Wang LK, Pluym ID, Lynch SA, Stals K, Ellard S, Muller C, Houyel L, Cohen L, Lyonnet S, Bajolle F, Amiel J, Gordon CT. Biallelic alterations in PLXND1 cause common arterial trunk and other cardiac malformations in humans. Hum Mol Genet 2023; 32:353-356. [PMID: 35396997 DOI: 10.1093/hmg/ddac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Anne Guimier
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France.,Service de Médecine Génomique des Maladies Rares, APHP.CUP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Loïc de Pontual
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France
| | - Stephen R Braddock
- Division of Medical Genetics, Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | - Luis A Pérez-Jurado
- Servicio de Genética, Hospital del Mar, Programa de Neurociencias, Instituto Hospital del Mar de Investigaciones Médicas (IMIM), 08003 Barcelona, Spain.,Unidad de Genética, Universitat Pompeu Fabra, 08002 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08003 Barcelona, Spain
| | - Patricia Muñoz-Cabello
- Servicio de Genética, Hospital del Mar, Programa de Neurociencias, Instituto Hospital del Mar de Investigaciones Médicas (IMIM), 08003 Barcelona, Spain
| | | | | | - Hane Lee
- Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lee-Kai Wang
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ilina D Pluym
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sally Ann Lynch
- Children's Health Ireland at Crumlin, Dublin D12 N512, Ireland
| | - Karen Stals
- Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Sian Ellard
- Genomic Laboratory, Royal Devon & Exeter NHS Foundation Trust, Exeter EX2 5DW, UK.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Cécile Muller
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France
| | - Lucile Houyel
- M3C-Necker, Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | | | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France.,Service de Médecine Génomique des Maladies Rares, APHP.CUP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Fanny Bajolle
- M3C-Necker, Centre de Référence Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Universitaire Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris, 75015 Paris, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France.,Service de Médecine Génomique des Maladies Rares, APHP.CUP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, INSERM U1163, Université de Paris, Institut Imagine, 75015 Paris, France
| |
Collapse
|
12
|
Martins LF, Brambilla I, Motta A, de Pretis S, Bhat GP, Badaloni A, Malpighi C, Amin ND, Imai F, Almeida RD, Yoshida Y, Pfaff SL, Bonanomi D. Motor neurons use push-pull signals to direct vascular remodeling critical for their connectivity. Neuron 2022; 110:4090-4107.e11. [PMID: 36240771 PMCID: PMC10316999 DOI: 10.1016/j.neuron.2022.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/06/2022]
Abstract
The nervous system requires metabolites and oxygen supplied by the neurovascular network, but this necessitates close apposition of neurons and endothelial cells. We find motor neurons attract vessels with long-range VEGF signaling, but endothelial cells in the axonal pathway are an obstacle for establishing connections with muscles. It is unclear how this paradoxical interference from heterotypic neurovascular contacts is averted. Through a mouse mutagenesis screen, we show that Plexin-D1 receptor is required in endothelial cells for development of neuromuscular connectivity. Motor neurons release Sema3C to elicit short-range repulsion via Plexin-D1, thus displacing endothelial cells that obstruct axon growth. When this signaling pathway is disrupted, epaxial motor neurons are blocked from reaching their muscle targets and concomitantly vascular patterning in the spinal cord is altered. Thus, an integrative system of opposing push-pull cues ensures detrimental axon-endothelial encounters are avoided while enabling vascularization within the nervous system and along peripheral nerves.
Collapse
Affiliation(s)
- Luis F Martins
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
| | - Ilaria Brambilla
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Stefano de Pretis
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy; Center for Omics Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Ganesh Parameshwar Bhat
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Aurora Badaloni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Chiara Malpighi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Neal D Amin
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramiro D Almeida
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA; Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines, La Jolla, CA 92037, USA.
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
13
|
Vieira JR, Shah B, Dupraz S, Paredes I, Himmels P, Schermann G, Adler H, Motta A, Gärtner L, Navarro-Aragall A, Ioannou E, Dyukova E, Bonnavion R, Fischer A, Bonanomi D, Bradke F, Ruhrberg C, Ruiz de Almodóvar C. Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development. Neuron 2022; 110:4074-4089.e6. [PMID: 36549270 PMCID: PMC9796814 DOI: 10.1016/j.neuron.2022.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
Collapse
Affiliation(s)
- José Ricardo Vieira
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Sebastian Dupraz
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Isidora Paredes
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Adler
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Lea Gärtner
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Ariadna Navarro-Aragall
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Dyukova
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Remy Bonnavion
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Division Vascular Signaling and Cancer, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
14
|
Britto DD, He J, Misa JP, Chen W, Kakadia PM, Grimm L, Herbert CD, Crosier KE, Crosier PS, Bohlander SK, Hogan BM, Hall CJ, Torres-Vázquez J, Astin JW. Plexin D1 negatively regulates zebrafish lymphatic development. Development 2022; 149:dev200560. [PMID: 36205097 PMCID: PMC9720674 DOI: 10.1242/dev.200560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.
Collapse
Affiliation(s)
- Denver D. Britto
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jia He
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - June P. Misa
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Wenxuan Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Purvi M. Kakadia
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Lin Grimm
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Caitlin D. Herbert
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S. Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Stefan K. Bohlander
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3010, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne 3010, Australia
| | - Christopher J. Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Jesús Torres-Vázquez
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan W. Astin
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
15
|
Li H, Zhou WY, Xia YY, Zhang JX. Endothelial Mechanosensors for Atheroprone and Atheroprotective Shear Stress Signals. J Inflamm Res 2022; 15:1771-1783. [PMID: 35300215 PMCID: PMC8923682 DOI: 10.2147/jir.s355158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells (ECs), derived from the mesoderm, form a single layer of squamous cells that covers the inner surface of blood vessels. In addition to being regulated by chemical signals from the extracellular matrix (ECM) and blood, ECs are directly confronted to complex hemodynamic environment. These physical inputs are translated into biochemical signals, dictating multiple aspects of cell behaviour and destination, including growth, differentiation, migration, adhesion, death and survival. Mechanosensors are initial responders to changes in mechanical environments, and the overwhelming majority of them are located on the plasma membrane. Physical forces affect plasma membrane fluidity and change of protein complexes on plasma membrane, accompanied by altering intercellular connections, cell-ECM adhesion, deformation of the cytoskeleton, and consequently, transcriptional responses in shaping specific phenotypes. Among the diverse forces exerted on ECs, shear stress (SS), defined as tangential friction force exerted by blood flow, has been extensively studied, from mechanosensing to mechanotransduction, as well as corresponding phenotypes. However, the precise mechanosensors and signalling pathways that determine atheroprone and atheroprotective phenotypes of arteries remain unclear. Moreover, it is worth to mention that some established mechanosensors of atheroprotective SS, endothelial glycocalyx, for example, might be dismantled by atheroprone SS. Therefore, we provide an overview of the current knowledge on mechanosensors in ECs for SS signals. We emphasize how these ECs coordinate or differentially participate in phenotype regulation induced by atheroprone and atheroprotective SS.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Correspondence: Jun-Xia Zhang, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China, Tel +86 15366155682, Email
| |
Collapse
|
16
|
Zhou WZ, Zeng Z, Shen H, Chen W, Li T, Ma B, Sun Y, Yang F, Zhang Y, Li W, Han B, Liu X, Yuan M, Zhang G, Yang Y, Liu X, Pang KJ, Li SJ, Zhou Z. Association of PLXND1 with a novel subtype of anomalous pulmonary venous return. Hum Mol Genet 2021; 31:1443-1452. [PMID: 34791216 DOI: 10.1093/hmg/ddab331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Anomalous pulmonary venous return (APVR) is a potentially lethal congenital heart disease. Elucidating the genetic etiology is crucial for understanding its pathogenesis and improving clinical practice, while its genetic basis remains largely unknown due to complex genetic etiology. We thus performed whole-exome sequencing for 144 APVR patients and 1636 healthy controls and report a comprehensive atlas of APVR-related rare genetic variants. Novel singleton, loss-of-function and deleterious missense variants (DVars) were enriched in patients, particularly for genes highly-expressed in the developing human heart at the critical time point for pulmonary veins draining into the left atrium. Notably, PLXND1, encoding a receptor for semaphorins, represents a strong candidate gene of APVR (adjusted P = 1.1e-03, OR: 10.9-69.3), accounting for 4.17% of APVR. We further validated this finding in an independent cohort consisting of 82 case-control pairs. In these two cohorts, eight DVars were identified in different patients, which convergently disrupt the GTPase-activating protein-related domain of PLXND1. All variant carriers displayed strikingly similar clinical features, in that all anomalous drainage of pulmonary vein(s) occurred on the right side and incorrectly connected to the right atrium, may representing a novel subtype of APVR for molecular diagnosis. Studies in Plxnd1 knockout mice further revealed the effects of PLXND1 deficiency on severe heart and lung defects and cellular abnormalities related to APVR such as abnormal migration and vascular formation of vascular endothelial cells. These findings indicate the important role of PLXND1 in APVR pathogenesis, providing novel insights into the genetic etiology and molecular subtyping for APVR.
Collapse
Affiliation(s)
- Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Ziyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Huayan Shen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Tianjiao Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yang Sun
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Fangfang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yujing Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Bianmei Han
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xuewen Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Meng Yuan
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | | | - Yang Yang
- Megagenomics Corporation, Beijing, 100875, China
| | - Xiaoshuang Liu
- Megagenomics Corporation, Beijing, 100875, China.,Ping An Healthcare Technology, Beijing, 100020, China
| | - Kun-Jing Pang
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shou-Jun Li
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
17
|
Chen DY, Sun NH, Chen X, Gong JJ, Yuan ST, Hu ZZ, Lu NN, Körbelin J, Fukunaga K, Liu QH, Lu YM, Han F. Endothelium-derived semaphorin 3G attenuates ischemic retinopathy by coordinating β-catenin-dependent vascular remodeling. J Clin Invest 2021; 131:135296. [PMID: 33586674 DOI: 10.1172/jci135296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormal angiogenesis and regression of the diseased retinal vasculature are key processes associated with ischemic retinopathies, but the underlying mechanisms that regulate vascular remodeling remain poorly understood. Here, we confirmed the specific expression of semaphorin 3G (Sema3G) in retinal endothelial cells (ECs), which was required for vascular remodeling and the amelioration of ischemic retinopathy. We found that Sema3G was elevated in the vitreous fluid of patients with proliferative diabetic retinopathy (PDR) and in the neovascularization regression phase of oxygen-induced retinopathy (OIR). Endothelial-specific Sema3G knockout mice exhibited decreased vessel density and excessive matrix deposition in the retinal vasculature. Moreover, loss of Sema3G aggravated pathological angiogenesis in mice with OIR. Mechanistically, we demonstrated that HIF-2α directly regulated Sema3G transcription in ECs under hypoxia. Sema3G coordinated the functional interaction between β-catenin and VE-cadherin by increasing β-catenin stability in the endothelium through the neuropilin-2 (Nrp2)/PlexinD1 receptor. Furthermore, Sema3G supplementation enhanced healthy vascular network formation and promoted diseased vasculature regression during blood vessel remodeling. Overall, we deciphered the endothelium-derived Sema3G-dependent events involved in modulating physiological vascular remodeling and regression of pathological blood vessels for reparative vascular regeneration. Our findings shed light on the protective effect of Sema3G in ischemic retinopathies.
Collapse
Affiliation(s)
- Dan-Yang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning-He Sun
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Chen
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Gong
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Song-Tao Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zi-Zhong Hu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nan-Nan Lu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jakob Körbelin
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Qing-Huai Liu
- Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying-Mei Lu
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China.,Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Vivekanandhan S, Madamsetty VS, Angom RS, Dutta SK, Wang E, Caulfield T, Pletnev AA, Upstill-Goddard R, Asmann YW, Chang D, Spaller MR, Mukhopadhyay D. Role of PLEXIND1/TGFβ Signaling Axis in Pancreatic Ductal Adenocarcinoma Progression Correlates with the Mutational Status of KRAS. Cancers (Basel) 2021; 13:cancers13164048. [PMID: 34439202 PMCID: PMC8393884 DOI: 10.3390/cancers13164048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Pancreatic cancer is among the most lethal cancers. The expression of PLEXIND1, a receptor, is upregulated in many cancers (including pancreatic cancer). Traditionally, PLEXIND1 is known to be involved in neuron development and mediate semaphorin signaling. However, its role and signaling in cancer is not fully understood. In our study, we present a new mechanism through which PLEXIND1 mediates its roles in cancer. For the first time, we demonstrate that it can function as a transforming growth factor beta coreceptor and modulate SMAD3 signaling. Around 90% of pancreatic cancer patients have mutant KRAS. Our work suggests that PLEXIND1 functions differently in pancreatic cancer cell lines, and the difference correlates with KRAS mutational status. Additionally, we demonstrate a novel peptide based therapeutic approach to target PLEXIND1 in cancer cells. Our work is valuable to both neuroscience and cancer fields, as it demonstrates an association between two previously unrelated signaling pathways. Abstract PLEXIND1 is upregulated in several cancers, including pancreatic ductal adenocarcinoma (PDAC). It is an established mediator of semaphorin signaling, and neuropilins are its known coreceptors. Herein, we report data to support the proposal that PLEXIND1 acts as a transforming growth factor beta (TGFβ) coreceptor, modulating cell growth through SMAD3 signaling. Our findings demonstrate that PLEXIND1 plays a pro-tumorigenic role in PDAC cells with oncogenic KRAS (KRASmut). We show in KRASmut PDAC cell lines (PANC-1, AsPC-1,4535) PLEXIND1 downregulation results in decreased cell viability (in vitro) and reduced tumor growth (in vivo). Conversely, PLEXIND1 acts as a tumor suppressor in the PDAC cell line (BxPC-3) with wild-type KRAS (KRASwt), as its reduced expression results in higher cell viability (in-vitro) and tumor growth (in vivo). Additionally, we demonstrate that PLEXIND1-mediated interactions can be selectively disrupted using a peptide based on its C-terminal sequence (a PDZ domain-binding motif), an outcome that may possess significant therapeutic implications. To our knowledge, this is the first report showing that (1) PLEXIND1 acts as a TGFβ coreceptor and mediates SMAD3 signaling, and (2) differential roles of PLEXIND1 in PDAC cell lines correlate with KRASmut and KRASwt status.
Collapse
Affiliation(s)
- Sneha Vivekanandhan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Vijay S. Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Thomas Caulfield
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
| | - Alexandre A. Pletnev
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA; (A.A.P.); (M.R.S.)
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G12 8QQ, UK; (R.U.-G.); (D.C.)
| | - Yan W. Asmann
- Health Sciences Research, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA;
| | - David Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate Switchback Road, Glasgow G12 8QQ, UK; (R.U.-G.); (D.C.)
| | - Mark R. Spaller
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA; (A.A.P.); (M.R.S.)
- Geisel School of Medicine at Dartmouth and Norris Cotton Cancer Center, Lebanon, NH 03756, USA
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA; (S.V.); (V.S.M.); (R.S.A.); (S.K.D.); (E.W.); (T.C.)
- Correspondence:
| |
Collapse
|
19
|
Vozzi F, Cecchettini A, Cabiati M, Mg F, Aretini P, Del Ry S, Rocchiccioli S, Pelosi G. Modulated molecular markers of restenosis and thrombosis by in-vitrovascular cells exposed to bioresorbable scaffolds. Biomed Mater 2021; 16. [PMID: 34020430 DOI: 10.1088/1748-605x/ac0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/21/2021] [Indexed: 01/06/2023]
Abstract
Drug-eluting bioresorbable vascular scaffolds (BVSs) have emerged as a potential breakthrough for the treatment of coronary artery stenosis, providing mechanical support and drug delivery followed by complete resorption. Restenosis and thrombosis remain the primary limitations in clinical use. The study aimed to identify potential markers of restenosis and thrombosis analyzing the vascular wall cell transcriptomic profile modulation triggered by BVS at different values of shear stress (SS). Human coronary artery endothelial cells and smooth muscle cells were cultured under SS (1 and 20 dyne cm-2) for 6 h without and with application of BVS and everolimus 600 nM. Cell RNA-Seq and bioinformatics analysis identified modulated genes by direct comparison of SS conditions and Gene Ontology (GO). The results of different experimental conditions and GO analysis highlighted the modulation of specific genes as semaphorin 3E, mesenchyme homeobox 2, bone morphogenetic protein 4, (heme oxygenase 1) and selectin E, with different roles in pathological evolution of disease. Transcriptomic analysis of dynamic vascular cell cultures identifies candidate genes related to pro-restenotic and pro-thrombotic mechanisms in anin-vitrosetting of BVS, which are not adequately contrasted by everolimus addition.
Collapse
Affiliation(s)
- F Vozzi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - A Cecchettini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, Pisa, Italy
| | - M Cabiati
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - Fornaro Mg
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - P Aretini
- Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini, 13, San Giuliano Terme, Italy
| | - S Del Ry
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - S Rocchiccioli
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| | - G Pelosi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, Pisa, Italy
| |
Collapse
|
20
|
Semaphorin3E/plexinD1 Axis in Asthma: What We Know So Far! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:205-213. [PMID: 34019271 DOI: 10.1007/978-3-030-68748-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Semaphorin3E belongs to the large family of semaphorin proteins. Semaphorin3E was initially identified as axon guidance cues in the neural system. It is universally expressed beyond the nervous system and contributes to regulating essential cell functions such as cell migration, proliferation, and adhesion. Binding of semaphorin3E to its receptor, plexinD1, triggers diverse signaling pathways involved in the pathogenesis of various diseases from cancer to autoimmune and allergic disorders. Here, we highlight the novel findings on the role of semaphorin3E in airway biology. In particular, we highlight our recent findings on the function and potential mechanisms by which semaphorin3E and its receptor, plexinD1, impact airway inflammation, airway hyperresponsiveness, and remodeling in the context of asthma.
Collapse
|
21
|
Zhang YF, Zhang Y, Jia DD, Yang HY, Cheng MD, Zhu WX, Xin H, Li PF, Zhang YF. Insights into the regulatory role of Plexin D1 signalling in cardiovascular development and diseases. J Cell Mol Med 2021; 25:4183-4194. [PMID: 33837646 PMCID: PMC8093976 DOI: 10.1111/jcmm.16509] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Plexin D1 (PLXND1), which was previously thought to mediate semaphorin signalling, belongs to the Plexin family of transmembrane proteins. PLXND1 cooperates mostly with the coreceptor neuropilin and participates in many aspects of axonal guidance. PLXND1 can also act as both a tumour promoter and a tumour suppressor. Emerging evidence suggests that mutations in PLXND1 or Semaphorin 3E, the canonical ligand of PLXND1, can lead to serious cardiovascular diseases, such as congenital heart defects, CHARGE syndrome and systemic sclerosis. Upon ligand binding, PLXND1 can act as a GTPase‐activating protein (GAP) and modulate integrin‐mediated cell adhesion, cytoskeletal dynamics and cell migration. These effects may play regulatory roles in the development of the cardiovascular system and disease. The cardiovascular effects of PLXND1 signalling have gradually been elucidated. PLXND1 was recently shown to detect physical forces and translate them into intracellular biochemical signals in the context of atherosclerosis. Therefore, the role of PLXND1 in cardiovascular development and diseases is gaining research interest because of its potential as a biomarker and therapeutic target. In this review, we describe the cardiac effects, vascular effects and possible molecular mechanisms of PLXND1 signalling.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hong-Yu Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Meng-Die Cheng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Xiu Zhu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, Singh MK, Uemura A, Matsuzaki F, Yoshida Y, Kurihara Y, Miyagawa-Tomita S, Kurihara H. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience 2021; 24:102305. [PMID: 33870127 PMCID: PMC8041864 DOI: 10.1016/j.isci.2021.102305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 01/15/2023] Open
Abstract
Blood and lymphatic vessels surrounding the heart develop through orchestrated processes from cells of different origins. In particular, cells around the outflow tract which constitute a primordial transient vasculature, referred to as aortic subepicardial vessels, are crucial for the establishment of coronary artery stems and cardiac lymphatic vessels. Here, we revealed that the epicardium and pericardium-derived Semaphorin 3E (Sema3E) and its receptor, PlexinD1, play a role in the development of the coronary stem, as well as cardiac lymphatic vessels. In vitro analyses demonstrated that Sema3E may demarcate areas to repel PlexinD1-expressing lymphatic endothelial cells, resulting in proper coronary and lymphatic vessel formation. Furthermore, inactivation of Sema3E-PlexinD1 signaling improved the recovery of cardiac function by increasing reactive lymphangiogenesis in an adult mouse model of myocardial infarction. These findings may lead to therapeutic strategies that target Sema3E-PlexinD1 signaling in coronary artery diseases.
Collapse
Affiliation(s)
- Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuaki Naemura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto, Kumamoto 860-0811, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Nagao
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Kenji Yoshihara
- Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, 8 College Road Singapore 169857, Singapore
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3, Minatojiima-Minamimachi, Chuou-ku, Kobe 650-0047, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Heart Center, Department of Pediatric Cardiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.,Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, 4-7-2 Minami-Osawa, Hachioji, Tokyo 192-0364, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Endothelial mechanotransduction in cardiovascular development and regeneration: emerging approaches and animal models. CURRENT TOPICS IN MEMBRANES 2021; 87:131-151. [PMID: 34696883 PMCID: PMC9113082 DOI: 10.1016/bs.ctm.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.
Collapse
|
24
|
Carvalheiro T, Rafael-Vidal C, Malvar-Fernandez B, Lopes AP, Pego-Reigosa JM, Radstake TRDJ, Garcia S. Semaphorin4A-Plexin D1 Axis Induces Th2 and Th17 While Represses Th1 Skewing in an Autocrine Manner. Int J Mol Sci 2020; 21:ijms21186965. [PMID: 32971928 PMCID: PMC7555002 DOI: 10.3390/ijms21186965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022] Open
Abstract
Semaphorin (Sema)4A is a transmembrane glycoprotein that is elevated in several autoimmune diseases such as systemic sclerosis, rheumatoid arthritis and multiple sclerosis. Sema4A has a key role in the regulation of Thelper Th1 and Th2 differentiation and we recently demonstrated that CD4+ T cell activation induces the expression of Sema4A. However, the autocrine role of Sema4A on Th cell differentiation remains unknown. Naïve Th cells from healthy controls were cell sorted and differentiated into Th1, Th2 and Th17 in the presence or absence of a neutralizing antibody against the Sema4A receptor PlexinD1. Gene expression was determined by quantitative PCR and protein expression by ELISA and flow cytometry. We found that the expression of Sema4A is induced during Th1, Th2 and Th17 differentiation. PlexinD1 neutralization induced the differentiation of Th1 cells, while reduced the Th2 and Th17 skewing. These effects were associated with an upregulation of the transcription factor T-bet by Th1 cells, and to downregulation of GATA3 and RORγt in Th2 cells and Th17 cells, respectively. Finally, PlexinD1 neutralization regulates the systemic sclerosis patients serum-induced cytokine production by CD4+ T cells. Therefore, the autocrine Sema4A-PlexinD1 signaling acts as a negative regulator of Th1 skewing but is a key mediator on Th2 and Th17 differentiation, suggesting that dysregulation of this axis might be implicated in the pathogenesis of CD4+ T cell-mediated diseases.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
| | - Beatriz Malvar-Fernandez
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Ana P. Lopes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Jose M. Pego-Reigosa
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
| | - Timothy R. D. J. Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
| | - Samuel Garcia
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands; (T.C.); (B.M.-F.); (A.P.L.); (T.R.D.J.R.)
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, 3508 GA Utrecht, The Netherlands
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain; (C.R.-V.); (J.M.P.-R.)
- Rheumatology Department, University Hospital Complex of Vigo, 36312 Vigo, Spain
- Correspondence: ; Tel.: +34-986-515-463
| |
Collapse
|
25
|
Hypoxia-induced downregulation of Sema3a and CXCL12/CXCR4 regulate the formation of the coronary artery stem at the proper site. J Mol Cell Cardiol 2020; 147:62-73. [PMID: 32777295 DOI: 10.1016/j.yjmcc.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/18/2020] [Accepted: 08/03/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND During the formation of the coronary artery stem, endothelial strands from the endothelial progenitor pool surrounding the conotruncus penetrate into the aortic wall. Vascular endothelial growth factors (VEGFs) as well as CXCL12/CXCR4 signaling are thought to play a role in the formation of the coronary stem. However, the mechanisms regulating how endothelial strands exclusively invade into the aorta remain unknown. METHODS AND RESULTS Immunohistochemistry showed that before the formation of endothelial strands, Sema3a was highly expressed in endothelial progenitors surrounding the great arteries. At the onset of/during invasion of endothelial strands into the aorta, Sema3a was downregulated and CXCR4 was upregulated in the endothelial strands. In situ hybridization showed that Cxcl12 was highly expressed in the aortic wall compared with in the pulmonary artery. Using avian embryonic hearts, we established two types of endothelial penetration assay, in which coronary endothelial strands preferentially invaded into the aorta in culture. Sema3a blocking peptide induced an excess number of endothelial strands penetrating into the pulmonary artery, whereas recombinant Sema3a inhibited the formation of endothelial strands. In cultured coronary endothelial progenitors, recombinant VEGF protein induced CXCR4-positive endothelial strands, which were capable of being attracted by CXCL12-impregnated beads. Monoazo rhodamine detected that hypoxia was predominant in aortic/subaortic region in ovo and hypoxic condition downregulated the expression of Sema3a in culture. CONCLUSION Results suggested that hypoxia in the aortic region downregulates the expression of Sema3a, thereby enhancing VEGF activity to induce the formation of CXCR4-positive endothelial strands, which are subsequently attracted into the Cxcl12-positive aortic wall to connect the aortic lumen.
Collapse
|
26
|
Mehta V, Pang KL, Rozbesky D, Nather K, Keen A, Lachowski D, Kong Y, Karia D, Ameismeier M, Huang J, Fang Y, Del Rio Hernandez A, Reader JS, Jones EY, Tzima E. The guidance receptor plexin D1 is a mechanosensor in endothelial cells. Nature 2020; 578:290-295. [PMID: 32025034 PMCID: PMC7025890 DOI: 10.1038/s41586-020-1979-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/05/2019] [Indexed: 01/09/2023]
Abstract
Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis1. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses2. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures3-5. However, a role for plexin proteins in mechanotransduction has not been examined. Here we show that plexin D1 (PLXND1) has a role in mechanosensation and mechanically induced disease pathogenesis. PLXND1 is required for the response of endothelial cells to shear stress in vitro and in vivo and regulates the site-specific distribution of atherosclerotic lesions. In endothelial cells, PLXND1 is a direct force sensor and forms a mechanocomplex with neuropilin-1 and VEGFR2 that is necessary and sufficient for conferring mechanosensitivity upstream of the junctional complex and integrins. PLXND1 achieves its binary functions as either a ligand or a force receptor by adopting two distinct molecular conformations. Our results establish a previously undescribed mechanosensor in endothelial cells that regulates cardiovascular pathophysiology, and provide a mechanism by which a single receptor can exhibit a binary biochemical nature.
Collapse
Affiliation(s)
- Vedanta Mehta
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar-Lai Pang
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel Rozbesky
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Katrin Nather
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam Keen
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dariusz Lachowski
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Youxin Kong
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dimple Karia
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Michael Ameismeier
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jianhua Huang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Armando Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - John S Reader
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol 2020; 32:295-305. [DOI: 10.1093/intimm/dxaa008] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
Abstract
The vast blood-vessel network of the circulatory system is crucial for maintaining bodily homeostasis, delivering essential molecules and blood cells, and removing waste products. Blood-vessel dysfunction and dysregulation of new blood-vessel formation are related to the onset and progression of many diseases including cancer, ischemic disease, inflammation and immune disorders. Endothelial cells (ECs) are fundamental components of blood vessels and their proliferation is essential for new vessel formation, making them good therapeutic targets for regulating the latter. New blood-vessel formation occurs by vasculogenesis and angiogenesis during development. Induction of ECs termed tip, stalk and phalanx cells by interactions between vascular endothelial growth factor A (VEGF-A) and its receptors (VEGFR1–3) and between Notch and Delta-like Notch ligands (DLLs) is crucial for regulation of angiogenesis. Although the importance of angiogenesis is unequivocal in the adult, vasculogenesis effected by endothelial progenitor cells (EPCs) may also contribute to post-natal vessel formation. However, the definition of these cells is ambiguous and they include several distinct cell types under the simple classification of ‘EPC’. Furthermore, recent evidence indicates that ECs within the intima show clonal expansion in some situations and that they may harbor vascular-resident endothelial stem cells. In this article, we summarize recent knowledge on vascular development and new blood-vessel formation in the adult. We also introduce concepts of EC heterogeneity and EC clonal expansion, referring to our own recent findings.
Collapse
Affiliation(s)
- Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Signal Transduction, World Premier Institute Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Mohammed A, Okwor I, Shan L, Onyilagha C, Uzonna JE, Gounni AS. Semaphorin 3E Regulates the Response of Macrophages to Lipopolysaccharide-Induced Systemic Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 204:128-136. [PMID: 31776203 DOI: 10.4049/jimmunol.1801514] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Semaphorin 3E (Sema3E) is a secreted protein that was initially discovered as a neuronal guidance cue. Recent evidence showed that Sema3E plays an essential role in regulating the activities of various immune cells. However, the exact role of Sema3E in macrophage function, particularly during inflammation, is not fully understood. We studied the impact of Sema3E gene deletion on macrophage function during the LPS-induced acute inflammatory response. We found that Sema3E-deficient (Sema3e-/- ) mice were better protected from LPS-induced acute inflammation as exemplified by their superior clinical score and effective temperature control compared with their wild-type littermates. This superior control of inflammatory response in Sema3e-/- mice was associated with significantly lower phosphorylation of ERK1/2, AKT, STAT3, and NF-κB, and a concomitant reduction in inducible NO synthase expression and production of TNF and IL-6 compared with their Sema3e+/+ littermates. Sema3e-/- mice also contained significantly higher numbers of activated macrophages compared with their Sema3e+/+ littermates at both baselines and after LPS challenge. In vivo-specific deletion of the Sema3E high-affinity receptor, plexinD1, on macrophages led to the improvement in clinical disease following exposure to a lethal dose of LPS. Collectively, our data show that Sema3E plays an essential role in dampening the early inflammatory response to LPS by regulating macrophage function, suggesting an essential role of this pathway in macrophage inflammatory response.
Collapse
Affiliation(s)
- Ashfaque Mohammed
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Ifeoma Okwor
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| |
Collapse
|
29
|
Sandireddy R, Cibi DM, Gupta P, Singh A, Tee N, Uemura A, Epstein JA, Singh MK. Semaphorin 3E/PlexinD1 signaling is required for cardiac ventricular compaction. JCI Insight 2019; 4:125908. [PMID: 31434798 DOI: 10.1172/jci.insight.125908] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
Left ventricular noncompaction (LVNC) is one of the most common forms of genetic cardiomyopathy characterized by excessive trabeculation and impaired myocardial compaction during fetal development. Patients with LVNC are at higher risk of developing left/right ventricular failure or both. Although the key regulators for cardiac chamber development are well studied, the role of semaphorin (Sema)/plexin signaling in this process remains poorly understood. In this article, we demonstrate that genetic deletion of Plxnd1, a class-3 Sema receptor in endothelial cells, leads to severe cardiac chamber defects. They were characterized by excessive trabeculation and noncompaction similar to patients with LVNC. Loss of Plxnd1 results in decreased expression of extracellular matrix proteolytic genes, leading to excessive deposition of cardiac jelly. We demonstrate that Plxnd1 deficiency is associated with an increase in Notch1 expression and its downstream target genes. In addition, inhibition of the Notch signaling pathway partially rescues the excessive trabeculation and noncompaction phenotype present in Plxnd1 mutants. Furthermore, we demonstrate that Semaphorin 3E (Sema3E), one of PlexinD1's known ligands, is expressed in the developing heart and is required for myocardial compaction. Collectively, our study uncovers what we believe to be a previously undescribed role of the Sema3E/PlexinD1 signaling pathway in myocardial trabeculation and the compaction process.
Collapse
Affiliation(s)
- Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Priyanka Gupta
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Jonathan A Epstein
- Penn Cardiovascular Institute, Department of Medicine, Department of Cell and Developmental Biology, and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Center Singapore, Singapore
| |
Collapse
|
30
|
Inman KE, Caiaffa CD, Melton KR, Sandell LL, Achilleos A, Kume T, Trainor PA. Foxc2 is required for proper cardiac neural crest cell migration, outflow tract septation, and ventricle expansion. Dev Dyn 2019; 247:1286-1296. [PMID: 30376688 DOI: 10.1002/dvdy.24684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Proper development of the great vessels of the heart and septation of the cardiac outflow tract requires cardiac neural crest cells. These cells give rise to the parasympathetic cardiac ganglia, the smooth muscle layer of the great vessels, some cardiomyocytes, and the conotruncal cushions and aorticopulmonary septum of the outflow tract. Ablation of cardiac neural crest cells results in defective patterning of each of these structures. Previous studies have shown that targeted deletion of the forkhead transcription factor C2 (Foxc2), results in cardiac phenotypes similar to that derived from cardiac neural crest cell ablation. RESULTS We report that Foxc2-/- embryos on the 129s6/SvEv inbred genetic background display persistent truncus arteriosus and hypoplastic ventricles before embryonic lethality. Foxc2 loss-of-function resulted in perturbed cardiac neural crest cell migration and their reduced contribution to the outflow tract as evidenced by lineage tracing analyses together with perturbed expression of the neural crest cell markers Sox10 and Crabp1. Foxc2 loss-of-function also resulted in alterations in PlexinD1, Twist1, PECAM1, and Hand1/2 expression in association with vascular and ventricular defects. CONCLUSIONS Our data indicate Foxc2 is required for proper migration of cardiac neural crest cells, septation of the outflow tract, and development of the ventricles. Developmental Dynamics 247:1286-1296, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kimberly E Inman
- Department of Natural Sciences, Shawnee State University, Portsmouth, Ohio
| | | | - Kristin R Melton
- Section of Neonatology, Pulmonary and Perinatal Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Lisa L Sandell
- Department of Oral Immunology & Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
31
|
Vivekanadhan S, Mukhopadhyay D. Divergent roles of Plexin D1 in cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:103-110. [PMID: 31152824 DOI: 10.1016/j.bbcan.2019.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 11/18/2022]
Abstract
Plexin D1 belongs to a family of transmembrane proteins called plexins. It was characterized as a receptor for semaphorins and is known to be essential for axonal guidance and vascular patterning. Mutations in Plexin D1 have been implicated in pathologic conditions such as truncus arteriosus and Möbius syndrome. Emerging data show that expression of Plexin D1 is deregulated in several cancers; it can support tumor development by aiding in tumor metastasis and EMT; and conversely, it can act as a dependence receptor and stimulate cell death in the absence of its canonical ligand, semaphorin 3E. The role of Plexin D1 in tumor development and progression is thereby garnering research interest for its potential as a biomarker and as a therapeutic target. In this review, we describe its discovery, structure, mutations, role(s) in cancer, and therapeutic potential.
Collapse
Affiliation(s)
- Sneha Vivekanadhan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | | |
Collapse
|
32
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
33
|
Wu JH, Li Y, Zhou YF, Haslam J, Elvis ON, Mao L, Xia YP, Hu B. Semaphorin-3E attenuates neointimal formation via suppressing VSMCs migration and proliferation. Cardiovasc Res 2018; 113:1763-1775. [PMID: 29016743 DOI: 10.1093/cvr/cvx190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Aims The migration and proliferation of vascular smooth muscle cells (VSMCs) are crucial events in the neointimal formation, a hallmark of atherosclerosis and restenosis. Semaphorin3E (Sema3E) has been found to be a critical regulator of cell migration and proliferation in many scenarios. However, its role on VSMCs migration and proliferation is unclear. This study aimed to investigate the effect of Sema3E on VSMCs migration, proliferation and neointimal formation, and explore possible mechanisms. Methods and results We found that the expression of Sema3E was progressively decreased during neointimal formation in a carotid ligation model. H&E-staining showed lentivirus-mediated overexpression of Sema3E in carotid ligation area attenuated neointimal formation. Immunofluorescence staining showed that the receptor (PlexinD1) of Sema3E was expressed in vascular walls. In cultured mouse VSMCs, Sema3E inhibited VSMCs migration and proliferation via plexinD1 receptor. The inhibitory effect was mediated, at least in part, by inactivating Rap1-AKT signalling pathways in VSMCs. Moreover, we found that PDGFBB down-regulated the expression of Sema3E in VSMCs and Sema3E notably inhibited the expression of PDGFB in endothelial cells. In addition, the number of Sema3E-positive VSMCs was diminished in plaques of atherosclerotic patients. Results from a public GEO microarray database showed a negative correlation between Sema3E and PDGFB transcriptional levels in the human plaques examined. Conclusion Our study demonstrates that Sema3E/plexinD1 inhibits proliferation and migration of VSMCs via inactivation of Rap1-AKT signalling pathways. The mutual inhibition between PDGF-BB and Sema3E after vascular injury plays a critical role in the process of neointimal formation.
Collapse
Affiliation(s)
- Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - James Haslam
- Swansea College of Medicine, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Opoku Nana Elvis
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Rademacher S, Verheijen BM, Hensel N, Peters M, Bora G, Brandes G, Vieira de Sá R, Heidrich N, Fischer S, Brinkmann H, van der Pol WL, Wirth B, Pasterkamp RJ, Claus P. Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA). Hum Mol Genet 2018; 26:3946-3959. [PMID: 29016853 DOI: 10.1093/hmg/ddx282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Cytoskeletal rearrangement during axon growth is mediated by guidance receptors and their ligands which act either as repellent, attractant or both. Regulation of the actin cytoskeleton is disturbed in Spinal Muscular Atrophy (SMA), a devastating neurodegenerative disease affecting mainly motoneurons, but receptor-ligand interactions leading to the dysregulation causing SMA are poorly understood. In this study, we analysed the role of the guidance receptor PlexinD1 in SMA pathogenesis. We showed that PlexinD1 is cleaved by metalloproteases in SMA and that this cleavage switches its function from an attractant to repellent. Moreover, we found that the PlexinD1 cleavage product binds to actin rods, pathological aggregate-like structures which had so far been described for age-related neurodegenerative diseases. Our data suggest a novel disease mechanism for SMA involving formation of actin rods as a molecular sink for a cleaved PlexinD1 fragment leading to dysregulation of receptor signaling.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Bert M Verheijen
- Department of Translational Neuroscience & MIND Facility, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Niko Hensel
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Miriam Peters
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, and Institute of Genetics, University of Cologne, 50931 Cologne, Germany
| | - Gamze Bora
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Renata Vieira de Sá
- Department of Translational Neuroscience & MIND Facility, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Natascha Heidrich
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Fischer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Hella Brinkmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany
| | - W Ludo van der Pol
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases Cologne, and Institute of Genetics, University of Cologne, 50931 Cologne, Germany
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience & MIND Facility, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany.,Niedersachsen-Research Network on Neuroinfectiology (N-RENNT), Germany.,Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
35
|
Liu L, Wang J, Song X, Zhu Q, Shen S, Zhang W. Semaphorin 3A promotes osteogenic differentiation in human alveolar bone marrow mesenchymal stem cells. Exp Ther Med 2018; 15:3489-3494. [PMID: 29545873 DOI: 10.3892/etm.2018.5813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
The aim of the present study was to investigate the role of Semaphorin 3A (Sema3A) in the osteogenic differentiation of human alveolar bone marrow mesenchymal stem cells (hABMMSCs). To investigate whether Sema3A affects hABMMSC proliferation and osteogenic differentiation, a stable Sema3A-overexpression cell line was generated by infection with the pAdCMV-SEMA3A-MCS-EGFP vector. Cell counting kit-8 and clone formation assays were performed to determine the proliferation ability of hABMMSCs, while cell osteogenic differentiation was assayed using Alizarin Red S staining. In addition, reverse transcription-quantitative polymerase chain reaction was employed to detect the mRNA expression level of osteogenesis-associated genes, Runt-related transcription factor 2 (Runx2), osteopontin (Opn) and osteocalcin (Ocn), during the osteogenic differentiation. The results revealed that, compared with the normal control group, the cell morphology of the infected cells was stable and no significant alterations were observed. Overexpression of Sema3A in hABMMSCs significantly increased the cell proliferation ability compared with the control group. Furthermore, the Alizarin Red S staining assay results indicated that the ossification process of hABMMSCs overexpressing Sema3A was evidently faster in comparison with that of the control group cells. Overexpression of Sema3A by pAdCMV-SEMA3A-MCS-EGFP infection also significantly increased the mRNA expression levels of the osteogenic marker genes Runx2, Opn and Ocn. In conclusion, Sema3A was observed to be a key positive regulator in hABMMSC osteogenic differentiation.
Collapse
Affiliation(s)
- Li Liu
- Department of Prosthodontics, Shanghai Stomatological Hospital, Shanghai 200000, P.R. China
| | - Jue Wang
- Department of Prosthodontics, Shanghai Stomatological Hospital, Shanghai 200000, P.R. China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Qingping Zhu
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Shuping Shen
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Department of Very Important People (VIP), Research Institute of Stomatology, Nanjing Medical University, Stomatological Hospital of Jiangsu Province, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
36
|
Sawada M, Ohno N, Kawaguchi M, Huang SH, Hikita T, Sakurai Y, Bang Nguyen H, Quynh Thai T, Ishido Y, Yoshida Y, Nakagawa H, Uemura A, Sawamoto K. PlexinD1 signaling controls morphological changes and migration termination in newborn neurons. EMBO J 2018; 37:embj.201797404. [PMID: 29348324 DOI: 10.15252/embj.201797404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Mitsuyasu Kawaguchi
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Hikita
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youmei Sakurai
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yuri Ishido
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidehiko Nakagawa
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan .,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
37
|
Post-endocytic sorting of Plexin-D1 controls signal transduction and development of axonal and vascular circuits. Nat Commun 2017; 8:14508. [PMID: 28224988 PMCID: PMC5322531 DOI: 10.1038/ncomms14508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes. This sorting process promotes colocalization of Plexin-D1 with vesicular pools of active R-ras, leading to its inactivation. In the absence of interaction with GIPC1, missorting of Plexin-D1 results in loss of signalling activity. Consequently, Gipc1 mutant mice show specific defects in axonal projections, as well as vascular structures, that rely on Plexin-D1 signalling for their development. Thus, intracellular sorting steps that occur after receptor internalization by endocytosis provide a critical level of control of cellular responses to guidance signals. Molecular mechanisms controlling axonal growth cone behaviour are only partially understood. Here the authors reveal a role of an adaptor protein GIPC1 in Plexin-D1 receptor recycling, and show that this process is required for axon track formation and vascular patterning in mice.
Collapse
|
38
|
Camillo C, Gioelli N, Bussolino F, Serini G. An Electrical Impedance-Based Method for Quantitative Real-Time Analysis of Semaphorin-Elicited Endothelial Cell Collapse. Methods Mol Biol 2017; 1493:195-207. [PMID: 27787852 DOI: 10.1007/978-1-4939-6448-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Semaphorins (SEMA) are chemorepulsive guidance cues that, acting through plexin receptors, inhibit integrin-mediated cell adhesion to the extracellular matrix. The ensuing cell retraction and collapse is a key biological event downstream of SEMA/plexin signaling that is however hard to precisely quantify. Here, we describe a quantitative approach that allows monitoring over time the evolution of SEMA3E/plexin D1-elicited endothelial cell collapse. This method exploits the xCELLigence platform, an electrical impedance-based system in which microelectronic sensor arrays are integrated into the bottom of microplate wells. Measuring electrical impedance allows real-time monitoring of changes in endothelial cell morphology and adhesion induced by SEMA3E via plexin D1. Afterwards, analogic electrical impedance measurements are converted into digital numeric signals that can then be analyzed by mathematical and statistical methods.
Collapse
Affiliation(s)
- Chiara Camillo
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Km 3.95, Candiolo, 10060, Italy
- Department of Oncology, University of Torino School of Medicine, Torino, Italy
| | - Noemi Gioelli
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Km 3.95, Candiolo, 10060, Italy
- Department of Oncology, University of Torino School of Medicine, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino School of Medicine, Torino, Italy
| | - Guido Serini
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, Km 3.95, Candiolo, 10060, Italy.
- Department of Oncology, University of Torino School of Medicine, Torino, Italy.
| |
Collapse
|
39
|
Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1. Cell Rep 2016; 17:2299-2311. [DOI: 10.1016/j.celrep.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/12/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022] Open
|
40
|
Verlinden L, Vanderschueren D, Verstuyf A. Semaphorin signaling in bone. Mol Cell Endocrinol 2016; 432:66-74. [PMID: 26365296 DOI: 10.1016/j.mce.2015.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/20/2022]
Abstract
Semaphorin molecules regulate cell adhesion and motility in a wide variety of cell types and are therefore involved in numerous processes including axon guidance, angiogenesis, cardiogenesis, tumor growth, and immune response. Increasing evidence points to a role of transmembrane, membrane-associated and soluble semaphorins during bone development as well as in the control of normal bone homeostasis. Within bone, semaphorins are implicated in the communication between different cell types by relaying signals in an autocrine or paracrine way. Semaphorins are not only involved in bone resorption but also in bone formation. Therefore, targeting semaphorin-induced signaling in bone may constitute an interesting new therapeutic strategy in osteoporosis. However, all the pioneering research on semaphorins is performed in mice and it remains to be established to what extent semaphorin signaling pathways are conserved between mice and men. In addition, knowledge of semaphorin signaling in bone mostly arises from loss/gain of function studies of one single semaphorin and/or receptor. However, different semaphorin molecules are co-expressed in bone and their signaling pathways are likely to interact in a complex and coherent way that needs proper understanding before targeting semaphorin signaling can be therapeutically exploited.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Annemieke Verstuyf
- Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
41
|
Abstract
Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently, Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion receptors.
Collapse
Affiliation(s)
- Donatella Valdembri
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| | - Donatella Regano
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Federica Maione
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Enrico Giraudo
- c Laboratory of Transgenic Mouse Models, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy.,d Department of Science and Drug Technology , University of Torino , Candiolo, Torino , Italy
| | - Guido Serini
- a Department of Oncology , University of Torino School of Medicine , Candiolo, Torino , Italy.,b Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) , Candiolo, Torino , Italy
| |
Collapse
|
42
|
Kur E, Kim J, Tata A, Comin CH, Harrington KI, Costa LDF, Bentley K, Gu C. Temporal modulation of collective cell behavior controls vascular network topology. eLife 2016; 5. [PMID: 26910011 PMCID: PMC4811760 DOI: 10.7554/elife.13212] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 01/14/2023] Open
Abstract
Vascular network density determines the amount of oxygen and nutrients delivered to host tissues, but how the vast diversity of densities is generated is unknown. Reiterations of endothelial-tip-cell selection, sprout extension and anastomosis are the basis for vascular network generation, a process governed by the VEGF/Notch feedback loop. Here, we find that temporal regulation of this feedback loop, a previously unexplored dimension, is the key mechanism to determine vascular density. Iterating between computational modeling and in vivo live imaging, we demonstrate that the rate of tip-cell selection determines the length of linear sprout extension at the expense of branching, dictating network density. We provide the first example of a host tissue-derived signal (Semaphorin3E-Plexin-D1) that accelerates tip cell selection rate, yielding a dense network. We propose that temporal regulation of this critical, iterative aspect of network formation could be a general mechanism, and additional temporal regulators may exist to sculpt vascular topology. DOI:http://dx.doi.org/10.7554/eLife.13212.001 Many animals have a network of blood vessels that supplies oxygen and nutrients to every part of the body. Each organ contains a unique pattern of blood vessels; some have lots of densely packed vessels, while others have fewer vessels that are more widely spaced. New blood vessels typically form by sprouting from the side of pre-existing vessels. This involves the endothelial cells that line the inner wall of blood vessels moving outwards to create a sprout that is made up of ‘tip cells’ and ‘stalk cells’. Tip cells are found at the front of the growing vessels and encourage the formation of new sprouts, while the stalk cells trail behind and elongate the sprout. Two signaling pathways that involve two proteins called VEGF and Notch interact with each other to control which cells become tip cells and which become stalk cells. Cells with higher levels of VEGF signaling will become tip cells. These cells also activate Notch signaling, which in turn blocks VEGF signaling in their neighboring cells. This feedback mechanism enables a new sprout to form by forcing cells present around a newly formed tip cell to become stalk cells. However, it was still not understood how the different organs develop blood vessel networks with different densities. In 2011, researchers revealed that two other proteins, Semaphorin3E and its receptor Plexin-D1, are expressed in tip cells in the back of the eye in mice and control the VEGF/Notch signaling pathway. Now Kur et al. – including some of the researchers involved in the 2011 work – have used a combination of predictive computer simulations and experimental approaches to understand this interaction in more detail. The analysis showed that Semaphorin3E and Plexin-D1 speed up VEGF/Notch signaling, which causes new tip cells to form at a faster rate, and results in a more densely packed network of blood vessels. For example, in mice that lack Semaphorin3E and Plexin-D1, VEGF/Notch signaling was slower and new tip cells formed more slowly, which resulted in the blood vessel network at the back of the mice’s eyes being less dense. Kur et al. propose that different organs have different ‘molecular metronomes’ that control the pace of VEGF/Notch signaling. A fast acting metronome would yield a dense network, while a slower one would form a less dense network. This helps to explain how diverse densities of blood vessel networks are formed in different organs. This work may aid efforts to develop therapeutic approaches for controlling the development of new blood vessels in cancers and other diseases. DOI:http://dx.doi.org/10.7554/eLife.13212.002
Collapse
Affiliation(s)
- Esther Kur
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jiha Kim
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Aleksandra Tata
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Cesar H Comin
- Instituto de Física de São Carlos, University of Sao Paulo, Sao Carlos, Brazil
| | - Kyle I Harrington
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Luciano da F Costa
- Instituto de Física de São Carlos, University of Sao Paulo, Sao Carlos, Brazil
| | - Katie Bentley
- Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
43
|
Kwiatkowski SC, Ojeda AF, Lwigale PY. PlexinD1 is required for proper patterning of the periocular vascular network and for the establishment of corneal avascularity during avian ocular development. Dev Biol 2016; 411:128-39. [PMID: 26783882 DOI: 10.1016/j.ydbio.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
The anterior eye is comprised of an avascular cornea surrounded by a dense periocular vascular network and therefore serves as an excellent model for angiogenesis. Although signaling through PlexinD1 underlies various vascular patterning events during embryonic development, its role during the formation of the periocular vascular network is yet to be determined. Our recent study showed that PlexinD1 mRNA is expressed by periocular angioblasts and blood vessels during ocular vasculogenesis in patterns that suggest its involvement with Sema3 ligands that are concurrently expressed in the anterior eye. In this study, we used in vivo knockdown experiments to determine the role of PlexinD1 during vascular patterning in the anterior eye of the developing avian embryos. Knockdown of PlexinD1 in the anterior eye caused mispatterning of the vascular network in the presumptive iris, which was accompanied by lose of vascular integrity and profuse hemorrhaging in the anterior chamber. We also observed ectopic vascularization of the cornea in PlexinD1 knockdown eyes, which coincided with the formation of the limbal vasculature in controls. Finally we show that Sema3E and Sema3C transcripts are expressed in ocular tissue that is devoid of vasculature. These results indicate that PlexinD1 plays a critical role during vascular patterning in the iris and limbus, and is essential for the establishment of corneal avascularity during development. We conclude that PlexinD1 is involved in vascular response to antiangiogenic Sema3 signaling that guides the formation of the iris and limbal blood vessels by inhibiting VEGF signaling.
Collapse
Affiliation(s)
- Sam C Kwiatkowski
- Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77025, United States
| | - Ana F Ojeda
- Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77025, United States
| | - Peter Y Lwigale
- Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77025, United States.
| |
Collapse
|
44
|
Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, Degenhardt K, Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol 2015; 407:195-210. [PMID: 26434918 DOI: 10.1016/j.ydbio.2015.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 01/23/2023]
Abstract
Fibronectin (Fn1) is an evolutionarily conserved extracellular matrix glycoprotein essential for embryonic development. Global deletion of Fn1 leads to mid-gestation lethality from cardiovascular defects. However, severe morphogenetic defects that occur early in embryogenesis in these embryos precluded assigning a direct role for Fn1 in cardiovascular development. We noticed that Fn1 is expressed in strikingly non-uniform patterns during mouse embryogenesis, and that its expression is particularly enriched in the pharyngeal region corresponding with the pharyngeal arches 3, 4, and 6. This region bears a special importance for the developing cardiovascular system, and we hypothesized that the localized enrichment of Fn1 in the pharyngeal region may be essential for cardiovascular morphogenesis. To test this hypothesis, we ablated Fn1 using the Isl1(Cre) knock-in strain of mice. Deletion of Fn1 using the Isl1(Cre) strain resulted in defective formation of the 4th pharyngeal arch arteries (PAAs), aberrant development of the cardiac outflow tract (OFT), and ventricular septum defects. To determine the cell types responding to Fn1 signaling during cardiovascular development, we deleted a major Fn1 receptor, integrin α5 using the Isl1(Cre) strain, and observed the same spectrum of abnormalities seen in the Fn1 conditional mutants. Additional conditional mutagenesis studies designed to ablate integrin α5 in distinct cell types within the Isl1(+) tissues and their derivatives, suggested that the expression of integrin α5 in the pharyngeal arch mesoderm, endothelium, surface ectoderm and the neural crest were not required for PAA formation. Our studies suggest that an (as yet unknown) integrin α5-dependent signal extrinsic to the pharyngeal endothelium mediates the formation of the 4th PAAs.
Collapse
Affiliation(s)
- Dongying Chen
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xia Wang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Dong Liang
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Julie Gordon
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ashok Mittal
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Nancy Manley
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107, USA
| | - Sophie Astrof
- Sidney Kimmel Medical College of Thomas Jefferson University, Department of Medicine, Center for Translational Medicine, 1020 Locust Street, Philadelphia, PA 19107, USA; Cell and Developmental Biology graduate program, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
45
|
Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, Singh MK, Epstein JA, Altunoglu U, Verzijl H, Soria L, van Beusekom E, Roscioli T, Iqbal Z, Gilissen C, Hoischen A, de Brouwer APM, Erasmus C, Schubert D, Brunner H, Pérez Aytés A, Marin F, Aroca P, Kayserili H, Carta A, de Wind N, Padberg GW, van Bokhoven H. De novo mutations in PLXND1 and REV3L cause Möbius syndrome. Nat Commun 2015; 6:7199. [PMID: 26068067 PMCID: PMC4648025 DOI: 10.1038/ncomms8199] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/17/2015] [Indexed: 11/17/2022] Open
Abstract
Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients. lt has been debated for decades if there is a genetic aetiology underlying Möbius syndrome, a neurological disorder characterized by facial paralysis. Here Tomas-Roca et al. use exome sequencing and identify de novo mutations in PLXND1 and REV3L, representing converging pathways in hindbrain development.
Collapse
Affiliation(s)
- Laura Tomas-Roca
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Anastasia Tsaalbi-Shtylik
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Manvendra K Singh
- Department of Cell and Developmental Biology, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 9-105 SCTR, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA.,Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, National Heart Center Singapore, 8 College Road, Singapore 169857, Singapore
| | - Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, 9-105 SCTR, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, Capa, Fatih 34093, Turkey
| | - Harriette Verzijl
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Laura Soria
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Tony Roscioli
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,The Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | - Zafar Iqbal
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Arjan P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Corrie Erasmus
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, PO Box 5800, Maastricht 6200AZ, The Netherlands
| | - Antonio Pérez Aytés
- Dysmorphology and Reproductive Genetics Unit, Moebius Syndrome Foundation of Spain, University Hospital LA FE, Valencia 46540, Spain
| | - Faustino Marin
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100 Espinardo (Murcia), Spain
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Millet Caddesi, Capa, Fatih 34093, Turkey
| | - Arturo Carta
- Ophthalmology Unit, Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), University of Parma, via Gramsci 14, 43126, Parma, Italy
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - George W Padberg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, PO Box 9101, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
46
|
Plein A, Calmont A, Fantin A, Denti L, Anderson NA, Scambler PJ, Ruhrberg C. Neural crest-derived SEMA3C activates endothelial NRP1 for cardiac outflow tract septation. J Clin Invest 2015; 125:2661-76. [PMID: 26053665 DOI: 10.1172/jci79668] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
In mammals, the outflow tract (OFT) of the developing heart septates into the base of the pulmonary artery and aorta to guide deoxygenated right ventricular blood into the lungs and oxygenated left ventricular blood into the systemic circulation. Accordingly, defective OFT septation is a life-threatening condition that can occur in both syndromic and nonsyndromic congenital heart disease. Even though studies of genetic mouse models have previously revealed a requirement for VEGF-A, the class 3 semaphorin SEMA3C, and their shared receptor neuropilin 1 (NRP1) in OFT development, the precise mechanism by which these proteins orchestrate OFT septation is not yet understood. Here, we have analyzed a complementary set of ligand-specific and tissue-specific mouse mutants to show that neural crest-derived SEMA3C activates NRP1 in the OFT endothelium. Explant assays combined with gene-expression studies and lineage tracing further demonstrated that this signaling pathway promotes an endothelial-to-mesenchymal transition that supplies cells to the endocardial cushions and repositions cardiac neural crest cells (NCCs) within the OFT, 2 processes that are essential for septal bridge formation. These findings elucidate a mechanism by which NCCs cooperate with endothelial cells in the developing OFT to enable the postnatal separation of the pulmonary and systemic circulation.
Collapse
|
47
|
Cariboni A, André V, Chauvet S, Cassatella D, Davidson K, Caramello A, Fantin A, Bouloux P, Mann F, Ruhrberg C. Dysfunctional SEMA3E signaling underlies gonadotropin-releasing hormone neuron deficiency in Kallmann syndrome. J Clin Invest 2015; 125:2413-28. [PMID: 25985275 DOI: 10.1172/jci78448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/02/2015] [Indexed: 01/09/2023] Open
Abstract
Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.
Collapse
|
48
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
49
|
Masuda T, Taniguchi M. Congenital diseases and semaphorin signaling: overview to date of the evidence linking them. Congenit Anom (Kyoto) 2015; 55:26-30. [PMID: 25385160 DOI: 10.1111/cga.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022]
Abstract
Semaphorins and their receptors, neuropilins and plexins, were initially characterized as a modulator of axonal guidance during development, but are now recognized as a regulator of a wide range of developmental events including morphogenesis and angiogenesis, and activities of the immune system. Owing to the development of next-generation sequencing technologies together with other useful DNA assays, it has also become clear that semaphorin signaling plays a crucial role in many congenital diseases such as retinal degeneration and congenital heart defects. This review summarizes the recent knowledge about the relationship between a variety of congenital diseases and semaphorin signaling.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
50
|
Sanchez-Castro M, Pichon O, Briand A, Poulain D, Gournay V, David A, Caignec CL. Disruption of theSEMA3DGene in a Patient with Congenital Heart Defects. Hum Mutat 2014; 36:30-3. [DOI: 10.1002/humu.22702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Sanchez-Castro
- INSERM; UMR1087; l'institut du thorax; Nantes France
- Université de Nantes; Nantes France
| | - Olivier Pichon
- CHU Nantes; Service de Génétique Médicale; Nantes France
| | - Annaig Briand
- CHU Nantes; Service de Génétique Médicale; Nantes France
| | - Damien Poulain
- CHU Nantes; Service de Génétique Médicale; Nantes France
| | | | - Albert David
- CHU Nantes; Service de Génétique Médicale; Nantes France
| | - Cédric Le Caignec
- INSERM; UMR1087; l'institut du thorax; Nantes France
- Université de Nantes; Nantes France
- CHU Nantes; Service de Génétique Médicale; Nantes France
| |
Collapse
|