1
|
Luo Q, Zhang M, Lyu M, Ke C, Gao X. Structure and function of vasa gene in gonadal gametogenesis of Pacific abalone. Int J Biol Macromol 2024; 277:134449. [PMID: 39098680 DOI: 10.1016/j.ijbiomac.2024.134449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pacific abalone (Haliotis discus hannai) is a marine gastropod mollusc with significant economic importance in both global fisheries and aquaculture. However, studies exploring the gonadal development and regulatory mechanisms of Haliotis discus hannai are limited. This study aimed to explore whether the vasa gene acted as a molecular marker for germ cells. Initially, the vasa gene was successfully cloned using the cDNA-end rapid amplification technique. The cloned gene had a 2478-bp-long open reading frame and encoded 825 amino acids. Then, a recombinant expression vector was constructed based on the Vasa protein, and an 87-kDa recombinant protein was prepared. Subsequently, a polyclonal antibody was prepared using the purified recombinant protein. The enzyme-linked immunosorbent assay (ELISA) confirmed the titer of the antibody to be ≥512 K. The immunohistochemical analysis revealed that Vasa was widely expressed in oogonia, Stage I oocytes, spermatogonia, and primary spermatocytes. The specific expression of Vasa in the hermaphroditic gonads of abalone was assessed using western blotting to investigate the effects of different photoperiods (12 L:12D, 24 L:0D, 18 L:6D, and 6 L:18D) on the gonadal development of abalone (P < 0.05), with higher expression levels observed in the ovarian proliferative and spermary maturing stages compared with other developmental stages (P < 0.05). Additionally, Vasa exhibited the highest expression in the spermary and ovary under a photoperiod of 18 L:6D (P < 0.05). These data demonstrated the key role of Vasa in developing germ cells in abalone. They shed light upon the molecular mechanism through which the photoperiod influenced Vasa expression and regulated gonadal development in abalone. The findings might provide theoretical references for analyzing the differentiation pattern of abalone germ cells and the genetic improvement and conservation of germplasm resources.
Collapse
Affiliation(s)
- Qi Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mo Zhang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Mingxin Lyu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaolong Gao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Zhang J, Kong J, Cao J, Dai P, Chen B, Tan J, Meng X, Luo K, Fu Q, Wei P, Luan S, Sui J. Reproductive Ability Disparity in the Pacific Whiteleg Shrimp ( Penaeus vannamei): Insights from Ovarian Cellular and Molecular Levels. BIOLOGY 2024; 13:218. [PMID: 38666830 PMCID: PMC11048709 DOI: 10.3390/biology13040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
The Pacific whiteleg shrimp (Penaeus vannamei) is a highly significant species in shrimp aquaculture. In the production of shrimp larvae, noticeable variations in the reproductive capacity among female individuals have been observed. Some females experience slow gonadal development, resulting in the inability to spawn, while others undergo multiple maturations and contribute to the majority of larval supply. Despite numerous studies that have been conducted on the regulatory mechanisms of ovarian development in shrimp, the factors contributing to the differences in reproductive capacity among females remain unclear. To elucidate the underlying mechanisms, this study examined the differences in the ovarian characteristics between high and low reproductive bulks at different maturity stages, focusing on the cellular and molecular levels. Transmission electron microscopy analysis revealed that the abundance of the endoplasmic reticulum, ribosomes, mitochondria, and mitochondrial cristae in oocytes of high reproductive bulk was significantly higher than that of the low reproductive bulk in the early stages of ovarian maturation (stages I and II). As the ovaries progressed to late-stage maturation (stages III and IV), differences in the internal structures of oocytes between females with different reproductive capacities gradually diminished. Transcriptome analysis identified differentially expressed genes (DEGs) related to the mitochondria between two groups, suggesting that energy production processes might play a crucial role in the observed variations in ovary development. The expression levels of the ETS homology factor (EHF) and PRDI-BF1 and RIZ homology domain containing 9 (PRDM9), which were significantly different between the two groups, were compared using qRT-PCR in individuals at different stages of ovarian maturation. The results showed a significantly higher expression of the EHF gene in the ovaries of high reproductive bulk at the II and IV maturity stages compared to the low reproductive bulk, while almost no expression was detected in the eyestalk tissue of the high reproductive bulk. The PRDM9 gene was exclusively expressed in ovarian tissue, with significantly higher expression in the ovaries of the high reproductive bulk at the four maturity stages compared to the low reproductive bulk. Fluorescence in situ hybridization further compared the expression patterns of EHF and PRDM9 in the ovaries of individuals with different fertility levels, with both genes showing stronger positive signals in the high reproductive bulk at the four ovarian stages. These findings not only contribute to our understanding of the regulatory mechanisms involved in shrimp ovarian development, but also provide valuable insights for the cultivation of new varieties aimed at improving shrimp fecundity.
Collapse
Affiliation(s)
- Jianchun Zhang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jie Kong
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jiawang Cao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Ping Dai
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Baolong Chen
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Jian Tan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xianhong Meng
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Kun Luo
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Qiang Fu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Peiming Wei
- BLUP Aquabreed Co., Ltd., Weifang 261312, China
| | - Sheng Luan
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Juan Sui
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Raspe S, Kümmerlen K, Harzsch S. Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101309. [PMID: 37879171 DOI: 10.1016/j.asd.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Collapse
Affiliation(s)
- Sophie Raspe
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Katja Kümmerlen
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| |
Collapse
|
4
|
Bustos P, Schmitt P, Brown DI, Farlora R. Silencing of the Vasa gene by RNA Interference Affects Embryonic Development and Reproductive Output in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:612-623. [PMID: 37526783 DOI: 10.1007/s10126-023-10232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
The sea louse Caligus rogercresseyi is a major ectoparasitic copepod that causes significant economic losses in the salmon farming industry. Despite recent advancements, the mechanisms underlying germline and embryo development in this species remain poorly understood. The Vasa gene encodes a highly conserved DEAD box helicase that is required for germ cell formation and function in many species. In this study, the Vasa gene was characterized in C. rogercresseyi, and its expression and function were analyzed. Phylogenetic analysis showed that the Cr-Vasa gene product formed clusters in clades with Vasa proteins from closely related species of crustaceans. Cr-Vasa gene expression patterns were assessed by qPCR, and the results showed a significantly higher relative expression level in adult females compared to copepodid, chalimus, and adult male stages. Tissue-specific localization of Cr-Vasa mRNA in C. rogercresseyi was determined using chromogenic in situ hybridization, and strong positive signal was observed in male testes, but also in the intestine and cuticle, while in females, it was observed in the ovaries, oocytes, cuticle, intestine, and egg strings. RNAi-mediated gene silencing of Cr-Vasa impacted embryonic development and reproductive output in adult female lice. Females from the dsVasa-treated group displayed unusual phenotypes, including shorter egg strings with numerous extra-embryonic inclusions, irregularly shaped abnormal embryos, and aborted egg strings. This study provides insights into the role of the Vasa gene in C. rogercresseyi embryonic development and reproductive output, which may have implications for the control of this parasitic copepod in the salmon farming industry.
Collapse
Affiliation(s)
- Paulina Bustos
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile
- Doctorado en Acuicultura, Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Donald I Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodolfo Farlora
- Laboratorio de Biotecnología Acuática y Genómica Reproductiva (LABYGER), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, 2360102, Valparaíso, Chile.
- Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
5
|
Vasa Is a Potential Germ Cell Marker in Leopard Coral Grouper ( Plectropomus leopardus). Genes (Basel) 2022; 13:genes13061077. [PMID: 35741839 PMCID: PMC9222667 DOI: 10.3390/genes13061077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Vasa (Ddx4, DEAD box polypeptide 4), an extremely specific marker of germ cells in vivo, is an ATP-dependent RNA helicase that plays an essential role in germ cell development and gametogenesis. However, the expression and function information about this gene in groupers remains lacking. Here, vasa homolog termed Plvasa was isolated and identified Plvasa as a putative germ cell marker in the leopard coral grouper, (Plectropomus leopardus). Results indicated that Plvasa contained 17 exons in the genomic sequence and 9 conserved motifs of the DEAD-box protein by sequence analysis. The sequence comparison, phylogenetic analyses and synteny analyses showed that Plvasa was homologous with other teleosts. Additionally, the expression of Plvasa was significantly higher in gonads than in other tissues in adult individuals (p < 0.05). Further, the distribution of Plvasa revealed that it was only expressed in the germ cells, such as spermatids, germline stem cells and oocytes at different stages, and could not be detected in the somatic cells of gonads. The current study verified that the Plvasa gene is a valuable molecular marker of germ cells in leopard coral grouper, which potentially plays an important role in investigating the genesis and development of teleost germ cells.
Collapse
|
6
|
Paris M, Wolff C, Patel NH, Averof M. The crustacean model Parhyale hawaiensis. Curr Top Dev Biol 2022; 147:199-230. [PMID: 35337450 DOI: 10.1016/bs.ctdb.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France
| | - Carsten Wolff
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France.
| |
Collapse
|
7
|
Dos Santos A, Vannuci-Silva M, Vendemiatti JADS, Artal MC, Silva BFD, Zanoni MVB, Umbuzeiro GDA. Measuring concentrations of a dye in the hemolymph of a marine amphipod: Development of a protocol for exposure assessment. MARINE POLLUTION BULLETIN 2022; 175:113376. [PMID: 35131559 DOI: 10.1016/j.marpolbul.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The increasing pollution of aquatic environments due to old and emerging contaminants requires the development of integrative methods for exposure assessment. Internal concentrations are a reliable way to estimate total exposure of contaminants originated from different routes (water, sediment, and food). We developed a protocol to evaluate the concentration of a dye, C.I. Disperse Red 1, in the hemolymph of Parhyale hawaiensis, a marine amphipod. LOD and LOQ were satisfactory to detect the dye in all hemolymph samples. The concentration detected in the hemolymph varied related to exposure time and dye concentration (0.003 to 0.086 μg mL-1). Polynomial regression model was the best fit. The protocol was reliable to detect and quantify dye exposure in marine amphipods and can be considered for future assessments of estuarine and marine regions under the influence of dye processing plants. The method possibly can be easily adapted to other amphipods and other azo dyes.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | | | | | - Gisela de Aragão Umbuzeiro
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
8
|
The embryonic transcriptome of Parhyale hawaiensis reveals different dynamics of microRNAs and mRNAs during the maternal-zygotic transition. Sci Rep 2022; 12:174. [PMID: 34996916 PMCID: PMC8741983 DOI: 10.1038/s41598-021-03642-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Parhyale hawaiensis has emerged as the crustacean model of choice due to its tractability, ease of imaging, sequenced genome, and development of CRISPR/Cas9 genome editing tools. However, transcriptomic datasets spanning embryonic development are lacking, and there is almost no annotation of non-protein-coding RNAs, including microRNAs. We have sequenced microRNAs, together with mRNAs and long non-coding RNAs, in Parhyale using paired size-selected RNA-seq libraries at seven time-points covering important transitions in embryonic development. Focussing on microRNAs, we annotate 175 loci in Parhyale, 88 of which have no known homologs. We use these data to annotate the microRNAome of 37 crustacean genomes, and suggest a core crustacean microRNA set of around 61 sequence families. We examine the dynamic expression of microRNAs and mRNAs during the maternal-zygotic transition. Our data suggest that zygotic genome activation occurs in two waves in Parhyale with microRNAs transcribed almost exclusively in the second wave. Contrary to findings in other arthropods, we do not predict a general role for microRNAs in clearing maternal transcripts. These data significantly expand the available transcriptomics resources for Parhyale, and facilitate its use as a model organism for the study of small RNAs in processes ranging from embryonic development to regeneration.
Collapse
|
9
|
Chen Y, Fang X, Tian XQ, Cui Z, Feng HY, Qiu GF. Germ plasm and the origin of the primordial germ cells in the oriental river prawn Macrobrachium nipponense. Cell Tissue Res 2021; 386:559-569. [PMID: 34599688 DOI: 10.1007/s00441-021-03534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/21/2021] [Indexed: 11/28/2022]
Abstract
Germ plasm is a special cytoplasmic component containing special RNAs and proteins, and is located in specific regions of oocytes and embryos. Only the blastomeres inheriting the germ plasm can develop into primordial germ cells (PGCs). By using Vasa mRNA as a germline marker, we previously demonstrated that germline specification followed the preformation mode in the prawn Macrobrachium nipponense. In this study, we raised the Vasa antibody to identify germ plasm in the oocyte and trace the origin and migration of PGCs. In previtellogenic oocytes, Vasa protein was detected in the perinuclear region, in which electron-dense granules associated with numerous mitochondria were mostly visualized under a transmission electron microscope. In mature oocytes, immunosignal was localized to a large granule under the plasma membrane. During early embryogenesis, the granule was inherited by a single blastomere from 1-cell to 16-cell stages, and thereafter was segregated into two daughter blastomeres at the 32-cell stage. In gastrula, the Vasa-positive cells were large with typical PGC characteristics, containing a big round nucleus and a prominent nucleolus. The immunosignal was localized to the perinuclear region again. In the zoea stage, the Vasa-positive cells migrated toward the genital ridge and clustered in the dorsomedial region close to the yolk portion. Accordingly, we concluded that the prawn PGCs could be specified from the 16-cell stage by inheriting the germplasm. To our knowledge, this is the first report on the identification of the prawn germ plasm and PGCs. The continuous expression of Vasa protein throughout oogenesis and embryogenesis suggests that Vasa protein could be an important factor in germ plasm that functions in early germ cell specification.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China
| | - Xiang Fang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China
| | - Xiao-Qing Tian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China
| | - Zheng Cui
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China
| | - Hai-Yang Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China
| | - Gao-Feng Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; National Demonstration Center for Experimental Fisheries Science Education; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China.
- College of Fisheries and Life Science, Pudong New Area, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai, 201306, China.
| |
Collapse
|
10
|
Arcanjo C, Trémolet G, Giusti-Petrucciani N, Duflot A, Forget-Leray J, Boulangé-Lecomte C. Susceptibility of the Non-Targeted Crustacean Eurytemora affinis to the Endocrine Disruptor Tebufenozide: A Transcriptomic Approach. Genes (Basel) 2021; 12:genes12101484. [PMID: 34680879 PMCID: PMC8536038 DOI: 10.3390/genes12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
Copepods are zooplanktonic crustaceans ubiquitously widespread in aquatic systems. Although they are not the target, copepods are exposed to a wide variety of pollutants such as insect growth regulators (IGRs). The aim of this study was to investigate the molecular response of a non-targeted organism, the copepod Eurytemora affinis, to an IGR. Adult males and females were exposed to two sub-lethal concentrations of tebufenozide (TEB). Our results indicate a sex-specific response with a higher sensitivity in males, potentially due to a differential activation of stress response pathways. In both sexes, exposure to TEB triggered similar pathways to those found in targeted species by modulating the transcription of early and late ecdysone responsive genes. Among them were genes involved in cuticle metabolism, muscle contraction, neurotransmission, and gametogenesis, whose mis-regulation could lead to moult, locomotor, and reproductive impairments. Furthermore, genes involved in epigenetic processes were found in both sexes, which highlights the potential impact of exposure to TEB on future generations. This work allows identification of (i) potential biomarkers of ecdysone agonists and (ii) further assessment of putative physiological responses to characterize the effects of TEB at higher biological levels. The present study reinforces the suitability of using E. affinis as an ecotoxicological model.
Collapse
|
11
|
Identification of Sex-Related Genes from the Three-Spot Swimming Crab Portunus sanguinolentus and Comparative Analysis with the Crucifix Crab Charybdis feriatus. Animals (Basel) 2021; 11:ani11071946. [PMID: 34209957 PMCID: PMC8300171 DOI: 10.3390/ani11071946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/12/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. In the present study, we compared the differentially expressed genes (DEGs) between the different sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of the family Portunidae. In total, 40,964 DEGs between the ovaries and testes of P. sanguinolentus were uncovered, with 27,578 up-regulated and 13,386 down-regulated in females. After comparison, C. feriatus has approximately 63.5% of genes in common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus, while its homologous gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids. Abstract Crabs within the family Portunidae are important marine species in both aquaculture and fishery sectors. The current aquaculture status of most portunids, however, still relies on wild-caught fisheries due to the lack of essential knowledge regarding their reproductive biology and underlying governing mechanism. With the advancement of sequencing technology, transcriptome sequencing has been progressively used to understand various physiological processes, especially on non-model organisms. In the present study, we compared the differentially expressed genes (DEGs) between sexes of Portunus sanguinolentus based on their gonadal transcriptome profiles and subsequently contrasted them with the gonadal DEGs of Charybdis feriatus, the other member of Family Portunidae. In total, 40,964 DEGs between ovaries and testes were uncovered, with 27,578 up- and 13,386 down-regulated in females. Among those, some sex-related DEGs were identified, including a dmrt-like (DMRT) gene which was specifically expressed in males. C. feriatus has approximately 63.5% of genes common with P. sanguinolentus, with 62.6% showing similar expression patterns. Interestingly, the DMRT gene was specifically expressed in male P. sanguinolentus while its homologous gene—doublesex (DSX)—was specifically expressed in male C. feriatus. The DEGs obtained from the gonadal transcriptome of P. sanguinolentus are a beneficial resource for future genetic and genomic research in P. sanguinolentus and its close species. The transcriptomic comparison analysis might provide references for better understanding the sex determination and differentiation mechanisms among portunids.
Collapse
|
12
|
Xu S, Pham T, Neupane S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2020; 2:1-5. [PMID: 33313574 PMCID: PMC7731668 DOI: 10.1007/s42995-019-00011-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/12/2019] [Indexed: 06/12/2023]
Abstract
In this mini-review we provide an up-to-date overview of the delivery methods that have been used for CRISPR/Cas9 genomic editing in crustacean species. With embryonic microinjection as the main workforce for delivering CRISPR/Cas9 reagents, biologists working with crustacean species have to tackle the technical challenges involved in microinjection. We use examples of three crustacean species (the branchiopod Daphnia, amphipod Parhyale hawaiensis, and decapod Exopalaemon carinicauda) to provide a technical guide for embryonic microinjection. Moreover, we outline two potentially useful new techniques for delivering CRISPR/Cas9 components into crustaceans, i.e., Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and electroporation.
Collapse
Affiliation(s)
- Sen Xu
- Corresponding author: Sen Xu, 501 S. Nedderman Dr, Arlington, Texas 76019, USA. Phone: 812-272-3986.
| | | | | |
Collapse
|
13
|
Wittfoth C, Harzsch S, Wolff C, Sombke A. The "amphi"-brains of amphipods: new insights from the neuroanatomy of Parhyale hawaiensis (Dana, 1853). Front Zool 2019; 16:30. [PMID: 31372174 PMCID: PMC6660712 DOI: 10.1186/s12983-019-0330-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Over the last years, the amphipod crustacean Parhyale hawaiensis has developed into an attractive marine animal model for evolutionary developmental studies that offers several advantages over existing experimental organisms. It is easy to rear in laboratory conditions with embryos available year-round and amenable to numerous kinds of embryological and functional genetic manipulations. However, beyond these developmental and genetic analyses, research on the architecture of its nervous system is fragmentary. In order to provide a first neuroanatomical atlas of the brain, we investigated P. hawaiensis using immunohistochemical labelings combined with laser-scanning microscopy, X-ray microcomputed tomography, histological sectioning and 3D reconstructions. RESULTS As in most amphipod crustaceans, the brain is dorsally bent out of the body axis with downward oriented lateral hemispheres of the protocerebrum. It comprises almost all prominent neuropils that are part of the suggested ground pattern of malacostracan crustaceans (except the lobula plate and projection neuron tract neuropil). Beyond a general uniformity of these neuropils, the brain of P. hawaiensis is characterized by an elaborated central complex and a modified lamina (first order visual neuropil), which displays a chambered appearance. In the light of a recent analysis on photoreceptor projections in P. hawaiensis, the observed architecture of the lamina corresponds to specialized photoreceptor terminals. Furthermore, in contrast to previous descriptions of amphipod brains, we suggest the presence of a poorly differentiated hemiellipsoid body and an inner chiasm and critically discuss these aspects. CONCLUSIONS Despite a general uniformity of amphipod brains, there is also a certain degree of variability in architecture and size of different neuropils, reflecting various ecologies and life styles of different species. In contrast to other amphipods, the brain of P. hawaiensis does not display any striking modifications or bias towards processing one particular sensory modality. Thus, we conclude that this brain represents a common type of an amphipod brain. Considering various established protocols for analyzing and manipulating P. hawaiensis, this organism is a suitable model to gain deeper understanding of brain anatomy e.g. by using connectome approaches, and this study can serve as first solid basis for following studies.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstr. 23, 17487 Greifswald, Germany
| | - Carsten Wolff
- Department of Biology, Comparative Zoology, Humboldt University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Andy Sombke
- Department of Integrative Zoology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Zhang Y, Miao G, Fazhan H, Waiho K, Zheng H, Li S, Ikhwanuddin M, Ma H. Transcriptome-seq provides insights into sex-preference pattern of gene expression between testis and ovary of the crucifix crab (Charybdis feriatus). Physiol Genomics 2018; 50:393-405. [DOI: 10.1152/physiolgenomics.00016.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The crucifix crab, Charybdis feriatus, which mainly inhabits Indo-Pacific region, is regarded as one of the most high-potential species for domestication and incorporation into the aquaculture sector. However, the regulatory mechanisms of sex determination and differentiation of this species remain unclear. To identify candidate genes involved in sex determination and differentiation, high throughput sequencing of transcriptome from the testis and ovary of C. feriatus was performed by the Illumina platform. After removing adaptor primers, low-quality sequences and very short (<50 nt) reads, we obtained 80.9 million and 66.2 million clean reads from testis and ovary, respectively. A total of 86,433 unigenes were assembled, and ~43% (37,500 unigenes) were successfully annotated to the NR, NT, Swiss-Prot, KEGG, COG, GO databases. By comparing the testis and ovary libraries, we obtained 27,636 differentially expressed genes. Some candidate genes involved in the sex determination and differentiation of C. feriatus were identified, such as vasa, pgds, vgr, hsp90, dsx-f, fem-1, and gpr. In addition, 88,608 simple sequence repeats were obtained, and 61,929 and 77,473 single nucleotide polymorphisms from testis and ovary were detected, respectively. The transcriptome profiling was validated by quantitative real-time PCR in 30 selected genes, which showed a good consistency. The present study is the first high-throughput transcriptome sequencing of C. feriatus. These findings will be useful for future functional analysis of sex-associated genes and molecular marker-assisted selections in C. feriatus.
Collapse
Affiliation(s)
- Yin Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Guidong Miao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Hanafiah Fazhan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Khor Waiho
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Huaiping Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| |
Collapse
|
16
|
Praher D, Zimmermann B, Genikhovich G, Columbus-Shenkar Y, Modepalli V, Aharoni R, Moran Y, Technau U. Characterization of the piRNA pathway during development of the sea anemone Nematostella vectensis. RNA Biol 2017; 14:1727-1741. [PMID: 28783426 PMCID: PMC5731801 DOI: 10.1080/15476286.2017.1349048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) and associated proteins comprise a conserved pathway for silencing transposons in metazoan germlines. piRNA pathway components are also expressed in multipotent somatic stem cells in various organisms. piRNA functions have been extensively explored in bilaterian model systems, however, comprehensive studies in non-bilaterian phyla remain limited. Here we investigate the piRNA pathway during the development of Nematostella vectensis, a well-established model system belonging to Cnidaria, the sister group to Bilateria. To date, no population of somatic stem cells has been identified in this organism, despite its long life-span and regenerative capacities that require a constant cell-renewal. We show that Nematostella piRNA pathway components are broadly expressed in early developmental stages, while piRNAs themselves show differential expression, suggesting specific developmental roles of distinct piRNA families. In adults, piRNA associated proteins are enriched in the germline but also expressed in somatic cells, indicating putative stem cell properties. Furthermore, we provide experimental evidence that Nematostella piRNAs cleave transposable elements as well as protein-coding genes. Our results demonstrate that somatic expression of piRNA associated proteins as well as the roles of piRNAs in transposon repression and gene regulation are likely ancestral features that evolved before the split between Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Daniela Praher
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Bob Zimmermann
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Grigory Genikhovich
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| | - Yaara Columbus-Shenkar
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior; Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem; Givat Ram, Jerusalem, Israel
| | - Ulrich Technau
- Department of Molecular Evolution and Development; Centre of Organismal Systems Biology, Faculty of Life Sciences, University of Vienna; Althanstrasse 14, Wien, Austria
| |
Collapse
|
17
|
Waiho K, Fazhan H, Shahreza MS, Moh JHZ, Noorbaiduri S, Wong LL, Sinnasamy S, Ikhwanuddin M. Transcriptome Analysis and Differential Gene Expression on the Testis of Orange Mud Crab, Scylla olivacea, during Sexual Maturation. PLoS One 2017; 12:e0171095. [PMID: 28135340 PMCID: PMC5279790 DOI: 10.1371/journal.pone.0171095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/15/2017] [Indexed: 01/04/2023] Open
Abstract
Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15–23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression—up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species’ genome structure and biology, as expressed and controlled by their gonads.
Collapse
Affiliation(s)
- Khor Waiho
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- * E-mail: (KW); (MI)
| | - Hanafiah Fazhan
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Md Sheriff Shahreza
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Julia Hwei Zhong Moh
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Shaibani Noorbaiduri
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Li Lian Wong
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Saranya Sinnasamy
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
- * E-mail: (KW); (MI)
| |
Collapse
|
18
|
Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A. The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion. eLife 2016; 5:20062. [PMID: 27849518 PMCID: PMC5111886 DOI: 10.7554/elife.20062] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/19/2016] [Indexed: 12/17/2022] Open
Abstract
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source. DOI:http://dx.doi.org/10.7554/eLife.20062.001 The marine crustacean known as Parhyale hawaiensis is related to prawns, shrimps and crabs and is found at tropical coastlines around the world. This species has recently attracted scientific interest as a possible new model to study how animal embryos develop before birth and, because Parhyale can rapidly regrow lost limbs, how tissues and organs regenerate. Indeed, Parhyale has many characteristics that make it a good model organism, being small, fast-growing and easy to keep and care for in the laboratory. Several research tools have already been developed to make it easier to study Parhyale. This includes the creation of a system for using the popular gene editing technology, CRISPR, in this animal. However, one critical resource that is available for most model organisms was missing; the complete sequence of all the genetic information of this crustacean, also known as its genome, was not available. Kao, Lai, Stamataki et al. have now compiled the Parhyale genome – which is slightly larger than the human genome – and studied its genetics. Analysis revealed that Parhyale has genes that allow it to fully digest plant material. This is unusual because most animals that do this rely upon the help of bacteria. Kao, Lai, Stamataki et al. also identified genes that provide some of the first insights into the immune system of crustaceans, which protects these creatures from diseases. Kao, Lai, Stamataki et al. have provided a resource and findings that could help to establish Parhyale as a popular model organism for studying several ideas in biology, including organ regeneration and embryonic development. Understanding how Parhyale digests plant matter, for example, could progress the biofuel industry towards efficient production of greener energy. Insights from its immune system could also be adapted to make farmed shrimp and prawns more resistant to infections, boosting seafood production. DOI:http://dx.doi.org/10.7554/eLife.20062.002
Collapse
Affiliation(s)
- Damian Kao
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Alvina G Lai
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Silvana Rosic
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Clinical Sciences, Imperial College London, London, United Kingdom
| | - Nikolaos Konstantinides
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Erin Jarvis
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | | | | | - Marie Sémon
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Marco Grillo
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Heather Bruce
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Suyash Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Andy Le
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Andrew Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Virginia, United States
| | - Michael B Eisen
- Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, United States
| | - Cassandra Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - William E Browne
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, United States
| | - Carsten Wolff
- Vergleichende Zoologie, Institut fur Biologie,Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Michalis Averof
- Institut de Gé nomique Fonctionnelle de Lyon, Centre National de la Recherche Scientifique (CNRS) and É cole Normale Supé rieure de Lyon, Lyon, France
| | - Nipam H Patel
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Peter Sarkies
- MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom.,Clinical Sciences, Imperial College London, London, United Kingdom
| | | | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Alwes F, Enjolras C, Averof M. Live imaging reveals the progenitors and cell dynamics of limb regeneration. eLife 2016; 5. [PMID: 27776632 PMCID: PMC5079749 DOI: 10.7554/elife.19766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/07/2016] [Indexed: 01/23/2023] Open
Abstract
Regeneration is a complex and dynamic process, mobilizing diverse cell types and remodelling tissues over long time periods. Tracking cell fate and behaviour during regeneration in active adult animals is especially challenging. Here, we establish continuous live imaging of leg regeneration at single-cell resolution in the crustacean Parhyale hawaiensis. By live recordings encompassing the first 4-5 days after amputation, we capture the cellular events that contribute to wound closure and morphogenesis of regenerating legs with unprecedented resolution and temporal detail. Using these recordings we are able to track cell lineages, to generate fate maps of the blastema and to identify the progenitors of regenerated epidermis. We find that there are no specialized stem cells for the epidermis. Most epidermal cells in the distal part of the leg stump proliferate, acquire new positional values and contribute to new segments in the regenerating leg.
Collapse
Affiliation(s)
- Frederike Alwes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Camille Enjolras
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), , France
| |
Collapse
|
20
|
Grillo M, Konstantinides N, Averof M. Old questions, new models: unraveling complex organ regeneration with new experimental approaches. Curr Opin Genet Dev 2016; 40:23-31. [DOI: 10.1016/j.gde.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
21
|
Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis. Curr Opin Genet Dev 2016; 39:149-156. [PMID: 27475080 DOI: 10.1016/j.gde.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 11/23/2022]
Abstract
The impressive diversity of body plans, lifestyles and segmental specializations exhibited by crustaceans (barnacles, copepods, shrimps, crabs, lobsters and their kin) provides great material to address longstanding questions in evolutionary developmental biology. Recent advances in forward and reverse genetics and in imaging approaches applied in the amphipod Parhyale hawaiensis and other emerging crustacean model species have made it possible to probe the molecular and cellular basis of crustacean diversity. A number of biological and technical qualities like the slow tempo and holoblastic cleavage mode, the stereotypy of many cellular processes, the functional and morphological diversity of limbs along the body axis, and the availability of various experimental manipulations, have made Parhyale a powerful system to study normal development and regeneration.
Collapse
|
22
|
Maceren-Pates M, Kurita Y, Pates G, Yoshikuni M. A model for germ cell development in a fully segmented worm. ZOOLOGICAL LETTERS 2015; 1:34. [PMID: 26649187 PMCID: PMC4672553 DOI: 10.1186/s40851-015-0035-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Polychaetes are segmented marine worms with body segments separated by a complete or incomplete septum. In most polychaetes the whole body cavity is filled with gametes during the breeding season. Platynereis dumerilii (Pl. dumerilii), which has an incomplete septum was shown to develop a single gonadal structure for gamete production located in the neck region. However, in Perinereis nuntia (Pe. nuntia), which has a complete septum separating each segment, the developmental feature of gametes remains unknown. To clarify this, the marker gene vasa was used to trace the development of germ cells throughout the life stages of Pe. nuntia. RESULTS In three-segmented juveniles, Pn-vasa was expressed in the parapodia and in the two cells localized in the pygidium. During the addition of a new segment, Pn-vasa positive cells in the pygidium increased from two to four and two new Pn-vasa positive cells were found in the newly-generated segment. In adults, Pn-vasa was expressed in a large cell cluster at the distal end of the parapodia, in smaller cell clusters (which had an elongated form in the trunk area of the parapodia), and in oocytes in the coelomic cavity. This may suggest that germ cells settle in the parapodia and later translocate into the coelomic cavity to develop into oocytes. CONCLUSION Our observations will help in understanding the mechanism of germ cell development in all body segments of Pe. nuntia. We hypothesize that primordial germ cells are supplied from the pygidium to every newly-generating segment which later settle in the parapodium. This will explain how polychaetes can generate gametes in each body segment, even those that are independently separated with a complete septum.
Collapse
Affiliation(s)
- Mercedes Maceren-Pates
- />Fishery Research Laboratory, Kyushu University, 4-46-24 Tsuyazaki, Fukutsu, 811-3304 Japan
| | - Yoshihisa Kurita
- />Graduate School of Agricultural Science, Tohoku University, 15 Mukai, Konorihama, Oshika, Miyagi 986-2242 Japan
| | - Gaudioso Pates
- />Fishery Research Laboratory, Kyushu University, 4-46-24 Tsuyazaki, Fukutsu, 811-3304 Japan
| | - Michiyasu Yoshikuni
- />Fishery Research Laboratory, Kyushu University, 4-46-24 Tsuyazaki, Fukutsu, 811-3304 Japan
| |
Collapse
|
23
|
Banerjee A, Manna S, Saha SK. A histological evaluation of development and axis formation in freshwater fish ectoparasite Argulus bengalensis Ramakrishna, 1951 (Crustacea: Branchiura). Parasitol Res 2015; 114:2199-212. [PMID: 25821935 DOI: 10.1007/s00436-015-4411-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
The present investigation was carried out to underscore the developmental events of a crustacean ectoparasite of fish, Argulus bengalensis. Serial histological sections of the embryo were made at lateral, sagittal and longitudinal planes to explain its cleavage, gastrulation and axis specification. The centrolecithal egg of A. bengalensis underwent meroblastic superficial cleavage. The cleavage initiated at the future dorsal side of the egg within 5 h to 5 h and 30 min of incubation. Consequently, a small mass of energids appeared superficially at the future dorsal side within 6 h. Later, energids were found at the future ventral and lateral sides. A syncytial blastoderm was formed around the centrally placed yolk material which was transformed into a cellular blastoderm within 30 h of incubation. In the blastoderm, two cell masses were formed at the dorsal and ventral part which initially extended towards each other and later spread out though future anterior-posterior direction. The pressure exerted by the cell flow displaced the entire yolk material at the future postero-ventral side. At the time of egg laying, a prototype of the embryonic axes is determined. The substratum side of the egg formed the dorsal part, whilst the side facing water turned to the ventral part. The broader end of the egg formed the anterior side and the narrow end formed the posterior side of the embryo. The anterior-posterior axis formation was initiated within 72 to 96 h of incubation when the blastodermal cells displaced the yolk material at the future posterior end. Within 120 h of incubation, the germ layers of the embryo were determined. The study reveals that the cleavage pattern of A. bengalensis shows close similarities with that of the Malacostraca amongst the crustaceans and dipteran and hymenopteran amongst the insects.
Collapse
Affiliation(s)
- Anirban Banerjee
- Fish Biology Research Unit, Department of Zoology, School of Life Sciences, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | | | | |
Collapse
|
24
|
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 2014; 402:276-90. [PMID: 25257304 DOI: 10.1016/j.ydbio.2014.08.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 08/13/2014] [Accepted: 08/29/2014] [Indexed: 11/30/2022]
Abstract
Studies in vertebrate and invertebrate model organisms on the molecular basis of primordial germ cell (PGC) specification have revealed that metazoans can specify their germ line either early in development by maternally transmitted cytoplasmic factors (inheritance), or later in development by signaling factors from neighboring tissues (induction). Regardless of the mode of PGC specification, once animal germ cells are specified, they invariably express a number of highly conserved genes. These include vasa and piwi, which can play essential roles in any or all of PGC specification, development, or gametogenesis. Although the arthropods are the most speciose animal phylum, to date there have been no functional studies of conserved germ line genes in species of the most basally branching arthropod clade, the chelicerates (which includes spiders, scorpions, and horseshoe crabs). Here we present the first such study by using molecular and functional tools to examine germ line development and the roles of vasa and piwi orthologues in the common house spider Parasteatoda (formerly Achaearanea) tepidariorum. We use transcript and protein expression patterns of Pt-vasa and Pt-piwi to show that primordial germ cells (PGCs) in the spider arise during late embryogenesis. Neither Pt-vasa nor Pt-piwi gene products are localized asymmetrically to any embryonic region before PGCs emerge as paired segmental clusters in opisthosomal segments 2-6 at late germ band stages. RNA interference studies reveal that both genes are required maternally for egg laying, mitotic progression in early embryos, and embryonic survival. Our results add to the growing body of evidence that vasa and piwi can play important roles in somatic development, and provide evidence for a previously hypothesized conserved role for vasa in cell cycle progression.
Collapse
Affiliation(s)
- Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Yue Meng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Green JE, Akam M. Germ cells of the centipede Strigamia maritima are specified early in embryonic development. Dev Biol 2014; 392:419-30. [PMID: 24930702 PMCID: PMC4111900 DOI: 10.1016/j.ydbio.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/17/2022]
Abstract
We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.
Collapse
Affiliation(s)
- Jack E Green
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
26
|
Nast AR, Extavour CG. Ablation of a single cell from eight-cell embryos of the amphipod crustacean Parhyale hawaiensis. J Vis Exp 2014. [PMID: 24686416 DOI: 10.3791/51073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.
Collapse
Affiliation(s)
- Anastasia R Nast
- Department of Organismic and Evolutionary Biology, Harvard University
| | | |
Collapse
|
27
|
Gupta T, Extavour CG. Identification of a putative germ plasm in the amphipod Parhyale hawaiensis. EvoDevo 2013; 4:34. [PMID: 24314239 PMCID: PMC3878990 DOI: 10.1186/2041-9139-4-34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods.
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
28
|
Cho SJ, Vallès Y, Weisblat DA. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella. Mol Biol Evol 2013; 31:341-54. [PMID: 24217283 PMCID: PMC3907050 DOI: 10.1093/molbev/mst201] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals.
Collapse
Affiliation(s)
- Sung-Jin Cho
- Department of Molecular and Cell Biology, LSA, University of California, Berkeley
| | | | | |
Collapse
|
29
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
30
|
Dalvin S, Nilsen F, Skern-Mauritzen R. Localization and transcription patterns of LsVasa, a molecular marker of germ cells inLepeophtheirus salmonis(Krøyer). J NAT HIST 2013. [DOI: 10.1080/00222933.2012.738830] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Nestorov P, Battke F, Levesque MP, Gerberding M. The maternal transcriptome of the crustacean Parhyale hawaiensis is inherited asymmetrically to invariant cell lineages of the ectoderm and mesoderm. PLoS One 2013; 8:e56049. [PMID: 23418507 PMCID: PMC3572164 DOI: 10.1371/journal.pone.0056049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The embryo of the crustacean Parhyale hawaiensis has a total, unequal and invariant early cleavage pattern. It specifies cell fates earlier than other arthropods, including Drosophila, as individual blastomeres of the 8-cell stage are allocated to the germ layers and the germline. Furthermore, the 8-cell stage is amenable to embryological manipulations. These unique features make Parhyale a suitable system for elucidating germ layer specification in arthropods. Since asymmetric localization of maternally provided RNA is a widespread mechanism to specify early cell fates, we asked whether this is also true for Parhyale. A candidate gene approach did not find RNAs that are asymmetrically distributed at the 8-cell stage. Therefore, we designed a high-density microarray from 9400 recently sequenced ESTs (1) to identify maternally provided RNAs and (2) to find RNAs that are differentially distributed among cells of the 8-cell stage. RESULTS Maternal-zygotic transition takes place around the 32-cell stage, i.e. after the specification of germ layers. By comparing a pool of RNAs from early embryos without zygotic transcription to zygotic RNAs of the germband, we found that more than 10% of the targets on the array were enriched in the maternal transcript pool. A screen for asymmetrically distributed RNAs at the 8-cell stage revealed 129 transcripts, from which 50% are predominantly expressed in the early embryonic stages. Finally, we performed knockdown experiments for two of these genes and observed cell-fate-related defects of embryonic development. CONCLUSIONS In contrast to Drosophila, the four primary germ layer cell lineages in Parhyale are specified during the maternal control phase of the embryo. A key step in this process is the asymmetric distribution of a large number of maternal RNAs to the germ layer progenitor cells.
Collapse
Affiliation(s)
- Peter Nestorov
- Max Planck Institut für Entwicklungsbiologie, Tübingen, Germany
| | - Florian Battke
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
32
|
Zeng V, Extavour CG. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012. [PMID: 23180770 PMCID: PMC3504982 DOI: 10.1093/database/bas048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL:asgard.rc.fas.harvard.edu
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
33
|
Qiu GF, Chen Y, Cui Z, Zhu XL. Localization of germline marker vasa homolog RNA to a single blastomere at early cleavage stages in the oriental river prawn Macrobrachium nipponense: evidence for germ cell specification by preformation. Gene 2012; 513:53-62. [PMID: 23154059 DOI: 10.1016/j.gene.2012.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 02/02/2023]
Abstract
Germ cells are specified by the inheritance of maternal germline determinants (preformation mode) or inductive signals from somatic cells (epigenesis mode) during embryogenesis. However, the germline specification in decapod crustaceans is unclear so far. Using vasa homolog (MnVasa) as a germ cell marker, here we probed the early events of germline specification in the oriental river prawn Macrobrachium nipponense. Quantitative RT-PCR analysis of unfertilized eggs and embryos demonstrated that the prawn MnVasa mRNA is a maternal factor. Whole-mount in situ hybridization further indicated that MnVasa transcripts are maternally supplied to only one blastomere at the very early cleavage stages. As cleavage proceeds, the MnVasa-positive blastomere undergoes proliferation and increases in number. During gastrulation, the MnVasa-positive cells are found to be around a blastopore and could migrate into an embryo through the blastopore. At the zoea stage, clusters of the MnVasa-positive cells distribute not only in the gonad rudiment in the cephalothorax but also at an extragonadic site, dorsal to the posterior hindgut in the abdomen, suggesting that MnVasa-positive cells could migrate anteriorly to the genital rudiment through the hindgut. Based on the dynamic localization and number of MnVasa-positive cells during embryogenesis, we concluded that the MnVasa-positive cells are primordial germ cells (PGC) or founder cells of PGC that are separated from soma at the early cleavage stage. MnVasa mRNA might have a key function in the specification of the prawn germline cells as a maternal determinant. These results provide the first evidence that the germline specification in decapod crustaceans follows a preformation mode.
Collapse
Affiliation(s)
- Gao-Feng Qiu
- Key laboratory of Freshwater Aquatic Genetic Resources Certificated by Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New area, Shanghai 201306, PR China.
| | | | | | | |
Collapse
|
34
|
Independent migration of cell populations in the early gastrulation of the amphipod crustacean Parhyale hawaiensis. Dev Biol 2012; 371:94-109. [PMID: 23046627 DOI: 10.1016/j.ydbio.2012.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/15/2012] [Accepted: 08/19/2012] [Indexed: 11/22/2022]
Abstract
Cells are the principal component of tissues and can drive morphogenesis through dynamic changes in structure and interaction. During gastrulation, the primary morphogenetic event of early development, cells change shape, exchange neighbors, and migrate long distances to establish cell layers that will form the tissues of the adult animal. Outside of Drosophila, little is known about how changes in cell behavior might drive gastrulation among arthropods. Here, we focus on three cell populations that form two aggregations during early gastrulation in the crustacean Parhyale hawaiensis. Using cytoskeletal markers and lineage tracing we observe bottle cells in anterior and visceral mesoderm precursors as gastrulation commences, and find that both Cytochalasin D, an inhibitor of actin polymerization, and ROCKOUT, an inhibitor of Rho-kinase activity, prevent gastrulation. Furthermore, by ablating specific cells, we show that each of the three populations acts independently during gastrulation, confirming previous hypotheses that cell behavior during Parhyale gastrulation relies on intrinsic signals instead of an inductive mechanism.
Collapse
|
35
|
Renault AD. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster. Biol Open 2012; 1:1043-8. [PMID: 23213382 PMCID: PMC3507172 DOI: 10.1242/bio.20121909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/31/2012] [Indexed: 11/28/2022] Open
Abstract
Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.
Collapse
Affiliation(s)
- Andrew D Renault
- Max Planck Institute for Developmental Biology , Spemannstrasse 35, 72076 Tübingen , Germany
| |
Collapse
|
36
|
Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol 2012; 364:236-48. [DOI: 10.1016/j.ydbio.2012.01.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023]
|
37
|
Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One 2012; 7:e33784. [PMID: 22448274 PMCID: PMC3309017 DOI: 10.1371/journal.pone.0033784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Everall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yu-huan Shih
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Moreton
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Zeng V, Villanueva KE, Ewen-Campen BS, Alwes F, Browne WE, Extavour CG. De novo assembly and characterization of a maternal and developmental transcriptome for the emerging model crustacean Parhyale hawaiensis. BMC Genomics 2011; 12:581. [PMID: 22118449 PMCID: PMC3282834 DOI: 10.1186/1471-2164-12-581] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arthropods are the most diverse animal phylum, but their genomic resources are relatively few. While the genome of the branchiopod Daphnia pulex is now available, no other large-scale crustacean genomic resources are available for comparison. In particular, genomic resources are lacking for the most tractable laboratory model of crustacean development, the amphipod Parhyale hawaiensis. Insight into shared and divergent characters of crustacean genomes will facilitate interpretation of future developmental, biomedical, and ecological research using crustacean models. RESULTS To generate a transcriptome enriched for maternally provided and zygotically transcribed developmental genes, we created cDNA from ovaries and embryos of P. hawaiensis. Using 454 pyrosequencing, we sequenced over 1.1 billion bases of this cDNA, and assembled them de novo to create, to our knowledge, the second largest crustacean genomic resource to date. We found an unusually high proportion of C2H2 zinc finger-containing transcripts, as has also been reported for the genome of the pea aphid Acyrthosiphon pisum. Consistent with previous reports, we detected trans-spliced transcripts, but found that they did not noticeably impact transcriptome assembly. Our assembly products yielded 19,067 unique BLAST hits against nr (E-value cutoff e-10). These included over 400 predicted transcripts with significant similarity to D. pulex sequences but not to sequences of any other animal. Annotation of several hundred genes revealed P. hawaiensis homologues of genes involved in development, gametogenesis, and a majority of the members of six major conserved metazoan signaling pathways. CONCLUSIONS The amphipod P. hawaiensis has higher transcript complexity than known insect transcriptomes, and trans-splicing does not appear to be a major contributor to this complexity. We discuss the importance of a reliable comparative genomic framework within which to consider findings from new crustacean models such as D. pulex and P. hawaiensis, as well as the need for development of further substantial crustacean genomic resources.
Collapse
Affiliation(s)
- Victor Zeng
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Karina E Villanueva
- Department of Biology, University of Miami, 234 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Ben S Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Frederike Alwes
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - William E Browne
- Department of Biology, University of Miami, 234 Cox Science Center, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Hickford DE, Frankenberg S, Pask AJ, Shaw G, Renfree MB. DDX4 (VASA) Is Conserved in Germ Cell Development in Marsupials and Monotremes1. Biol Reprod 2011; 85:733-43. [DOI: 10.1095/biolreprod.111.091629] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
40
|
Wang Y, Chen Y, Han K, Zou Z, Zhang Z. A vasa gene from green mud crab Scylla paramamosain and its expression during gonadal development and gametogenesis. Mol Biol Rep 2011; 39:4327-35. [PMID: 21842219 DOI: 10.1007/s11033-011-1220-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
VASA is one of the important regulatory factors that determine the development of the reproductive system. However, no information on vasa gene from Pleocyemata Brachyura is available. By using Race, we obtained a full-length cDNA of Sp-vasa of the green mud crab Scylla paramamosain. The full-length (2,851 bp) cDNA of vasa encodes a peptide of 631 amino acids. Real-time PCR results indicated that the expression level of Sp-vasa in the growth stage of ovary was higher than in the maturation stage, and in stage I and II of testis, the expression level of Sp-vasa were higher than in stage III. By using in situ hybridization, Sp-vasa RNAs were detected in the large part of oocyte plasm in stage I, nucleus zone in stage III and perinuclear zone in stage V. As the size of oocytes increases during oogenesis, the signals change from strong to weak. In addition, in stage I and II of testis, the expression levels of Sp-vasa were higher than in stage III, and the hybridization intensity of Sp-vasa gene gradually increased during spermatogenesis from spermatogonia to spermatids. However, no hybridization signal was detected in spermatozoon. Real-time PCR and in situ hybridization were consistent. These findings suggest that Sp-vasa is likely to serve as a useful and specific marker for germ cell development of S. paramamosain.
Collapse
Affiliation(s)
- Yilei Wang
- The Key Laboratory of Science and Technology for Aquaculture and Food Safety, Fisheries College, Jimei University, Xiamen, 361021, China.
| | | | | | | | | |
Collapse
|
41
|
Simeó CG, Andree KB, Rotllant G. Identification ofvasa, a potential marker of primordial germ cells in the spider crabMaja brachydactyla,and its expression during early post-embryonic development. INVERTEBR REPROD DEV 2011. [DOI: 10.1080/07924259.2011.553406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Wu HR, Chen YT, Su YH, Luo YJ, Holland LZ, Yu JK. Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Dev Biol 2011; 353:147-59. [DOI: 10.1016/j.ydbio.2011.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
|
43
|
Gustafson EA, Wessel GM. Vasa genes: emerging roles in the germ line and in multipotent cells. Bioessays 2011; 32:626-37. [PMID: 20586054 DOI: 10.1002/bies.201000001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sexually reproducing metazoans establish a cell lineage during development that is ultimately dedicated to gamete production. Work in a variety of animals suggests that a group of conserved molecular determinants act in this germ line maintenance and function. The most universal of these genes are Vasa and Vasa-like DEAD-box RNA helicase genes. However, recent evidence indicates that Vasa genes also function in other cell types, distinct from the germ line. Here we evaluate our current understanding of Vasa function and its regulation during development, addressing Vasa's emerging role in multipotent cells. We also explore the evolutionary diversification of the N-terminal domain of this gene and how this impacts the association of Vasa with nuage-like perinuclear structures.
Collapse
Affiliation(s)
- Eric A Gustafson
- Providence Institute of Molecular Oogenesis Department of Molecular Biology, Cell Biology and Biochemistry Brown University Providence, RI 02912, USA
| | | |
Collapse
|
44
|
Pawlak JB, Sellars MJ, Wood A, Hertzler PL. Cleavage and gastrulation in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus (Bate): a revised cell lineage and identification of a presumptive germ cell marker. Dev Growth Differ 2011; 52:677-92. [PMID: 20874712 DOI: 10.1111/j.1440-169x.2010.01205.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A previous study suggested that mesendoderm (ME) cell arrest occurred at the 64-cell stage and a ring of eight presumptive naupliar mesoderm cells or crown cells surrounded the blastopore in the Kuruma shrimp Penaeus (Marsupenaeus) japonicus. Since this varied from the pattern observed in other penaeoidean shrimp, cleavage and gastrulation was re-examined in P. japonicus using the nucleic acid stain Sytox Green and confocal microscopy. In contrast to the earlier study, cleavage and gastrulation followed the pattern observed in other penaeoidean shrimp. The ME cells arrested at the 32-cell stage, ingressed into the blastocoel, and resumed division after a three cell cycle delay. Nine naupliar mesoderm or crown cells surrounded the blastopore and their descendants invaginated during gastrulation. An intracellular body (ICB) was detected by Sytox Green and SYTO RNASelect staining to be segregated to one ME cell in P. japonicus, as described previously in Penaeus monodon. Staining of the ICB was eliminated by pre-treatment with RNase but not DNase. The ICB was also found in two other penaeoidean shrimp, Penaeus vannamei (Family Penaeidae) and Sicyonia ingentis (Family Sicyoniidae). The results support the hypothesis that the ICB is a germ granule found in the Dendrobranchiata.
Collapse
Affiliation(s)
- John B Pawlak
- Central Michigan University, Department of Biology, Mount Pleasant, Michigan 48859, USA
| | | | | | | |
Collapse
|
45
|
Gustafson EA, Yajima M, Juliano CE, Wessel GM. Post-translational regulation by gustavus contributes to selective Vasa protein accumulation in multipotent cells during embryogenesis. Dev Biol 2010; 349:440-50. [PMID: 21035437 DOI: 10.1016/j.ydbio.2010.10.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/17/2010] [Accepted: 10/20/2010] [Indexed: 01/15/2023]
Abstract
Vasa is a broadly conserved DEAD-box RNA helicase associated with germ line development and is expressed in multipotent cells in many animals. During embryonic development of the sea urchin Strongylocentrotus purpuratus, Vasa protein is enriched in the small micromeres despite a uniform distribution of vasa transcript. Here we show that the Vasa coding region is sufficient for its selective enrichment and find that gustavus, the B30.2/SPRY and SOCS box domain gene, contributes to this phenomenon. In vitro binding analyses show that Gustavus binds the N-terminal and DEAD-box portions of Vasa protein independently. A knockdown of Gustavus protein reduces both Vasa protein abundance and its propensity for accumulation in the small micromeres, whereas overexpression of the Vasa-interacting domain of Gustavus (GusΔSOCS) results in Vasa protein accumulation throughout the embryo. We propose that Gustavus has a conserved, positive regulatory role in Vasa protein accumulation during embryonic development.
Collapse
Affiliation(s)
- Eric A Gustafson
- Providence Institute of Molecular Oogenesis, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
46
|
Ewen-Campen B, Schwager EE, Extavour CGM. The molecular machinery of germ line specification. Mol Reprod Dev 2010; 77:3-18. [PMID: 19790240 DOI: 10.1002/mrd.21091] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral "pluripotency module" that could have been modified during metazoan evolution to become specific to the germ line.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
47
|
Biffis C, Alwes F, Scholtz G. Cleavage and gastrulation of the dendrobranchiate shrimp Penaeus monodon (Crustacea, Malacostraca, Decapoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2009; 38:527-540. [PMID: 19573622 DOI: 10.1016/j.asd.2009.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/17/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
The cleavage pattern of the black tiger shrimp Penaeus monodon was analyzed from the first division until gastrulation. Observations were based on microscopy combined with the use of fluorescent dyes, histological techniques, and computer based three-dimensional reconstructions. Early cleavage is holoblastic and follows a stereotypic pattern, which largely corresponds to what is known from other dendrobranchiate decapods. However, for the first time in this group, we report the presence of an intracellular structure throughout early development. This intracellular body (icb) marks the lineage of one of the two enlarged and division-delayed mesendoderm cells that initiate gastrulation. The identity of the icb as a natural marker and putative determinant of the germ line and its implications on the establishment of the body axes are discussed. The icb as a landmark reveals that the same stereotypic cell division pattern can lead to different fates of individual cells. Hence, the results of this study permit an additional approach to study the relation between cell lineage pattern and the identity of cell lineages.
Collapse
Affiliation(s)
- Caterina Biffis
- Humboldt-Universität zu Berlin, Institut für Biologie, Vergleichende Zoologie, Philippstr. 13, 10115 Berlin, Germany.
| | | | | |
Collapse
|
48
|
Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A 2009; 106:13892-6. [PMID: 19666517 DOI: 10.1073/pnas.0903105106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crustaceans possess remarkably diverse appendages, both between segments of a single individual as well as between species. Previous studies in a wide range of crustaceans have demonstrated a correlation between the anterior expression boundary of the homeotic (Hox) gene Ultrabithorax (Ubx) and the location and number of specialized thoracic feeding appendages, called maxillipeds. Given that Hox genes regulate regional identity in organisms as diverse as mice and flies, these observations in crustaceans led to the hypothesis that Ubx expression regulates the number of maxillipeds and that evolutionary changes in Ubx expression have generated various aspects of crustacean appendage diversity. Specifically, evolutionary changes in the expression boundary of Ubx have resulted in crustacean species with either 0, 1, 2, or 3 pairs of thoracic maxillipeds. Here we test this hypothesis by altering the expression of Ubx in Parhyale hawaiensis, a crustacean that normally possesses a single pair of maxillipeds. By reducing Ubx expression, we can generate Parhyale with additional maxillipeds in a pattern reminiscent of that seen in other crustacean species, and these morphological alterations are maintained as the animals molt and mature. These results provide critical evidence supporting the proposition that changes in Ubx expression have played a role in generating crustacean appendage diversity and lend general insights into the mechanisms of morphological evolution.
Collapse
|
49
|
Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 2009; 106:13897-902. [PMID: 19666530 DOI: 10.1073/pnas.0902804106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.
Collapse
|