1
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Xie X, Fu G, Liu Y, Fan C, Tan S, Huang H, Yan J, Jin L. Hedgehog pathway negatively regulated depleted uranium-induced nephrotoxicity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3833-3845. [PMID: 38546377 DOI: 10.1002/tox.24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 06/12/2024]
Abstract
Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.
Collapse
Affiliation(s)
- Xueying Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Guoquan Fu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yuxin Liu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Caixia Fan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shanshan Tan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Huarong Huang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Junyan Yan
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Lifang Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
3
|
Zhang H, Liu Y, Liu J, Chen J, Wang J, Hua H, Jiang Y. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment. J Hematol Oncol 2024; 17:5. [PMID: 38233872 PMCID: PMC10792844 DOI: 10.1186/s13045-024-01524-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hongying Zhang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongliang Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jieya Liu
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinzhu Chen
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Hui Hua
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yangfu Jiang
- Cancer Center, Laboratory of Oncogene, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Cai E, Barba MG, Ge X. Hedgehog Signaling in Cortical Development. Cells 2023; 13:21. [PMID: 38201225 PMCID: PMC10778342 DOI: 10.3390/cells13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.
Collapse
Affiliation(s)
| | | | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA 95340, USA
| |
Collapse
|
5
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
6
|
Rai S, Leydier L, Sharma S, Katwala J, Sahu A. A quest for genetic causes underlying signaling pathways associated with neural tube defects. Front Pediatr 2023; 11:1126209. [PMID: 37284286 PMCID: PMC10241075 DOI: 10.3389/fped.2023.1126209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/28/2023] [Indexed: 06/08/2023] Open
Abstract
Neural tube defects (NTDs) are serious congenital deformities of the nervous system that occur owing to the failure of normal neural tube closures. Genetic and non-genetic factors contribute to the etiology of neural tube defects in humans, indicating the role of gene-gene and gene-environment interaction in the occurrence and recurrence risk of neural tube defects. Several lines of genetic studies on humans and animals demonstrated the role of aberrant genes in the developmental risk of neural tube defects and also provided an understanding of the cellular and morphological programs that occur during embryonic development. Other studies observed the effects of folate and supplementation of folic acid on neural tube defects. Hence, here we review what is known to date regarding altered genes associated with specific signaling pathways resulting in NTDs, as well as highlight the role of various genetic, and non-genetic factors and their interactions that contribute to NTDs. Additionally, we also shine a light on the role of folate and cell adhesion molecules (CAMs) in neural tube defects.
Collapse
Affiliation(s)
- Sunil Rai
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Larissa Leydier
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Shivani Sharma
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Jigar Katwala
- Department of Molecular Biology, Medical University of the Americas, Charlestown, Saint Kitts and Nevis
| | - Anurag Sahu
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Funakoshi Y, Sugihara Y, Uneda A, Nakashima T, Suzuki H. Recent advances in the molecular understanding of medulloblastoma. Cancer Sci 2023; 114:741-749. [PMID: 36520034 PMCID: PMC9986075 DOI: 10.1111/cas.15691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Medulloblastoma is the most common pediatric malignant brain tumor composed of four molecular subgroups. Recent intensive genomics has greatly contributed to our understanding of medulloblastoma pathogenesis. Sequencing studies identified novel mutations involved in the cyclic AMP-dependent pathway or RNA processing in the Sonic Hedgehog (SHH) subgroup, and core-binding factor subunit alpha (CBFA) complex in the group 4 subgroup. Likewise, single-cell sequencing provided detailed insights into the cell of origin associated with brain development. In this review, we will summarize recent findings by sequencing analyses for medulloblastoma.
Collapse
Affiliation(s)
- Yusuke Funakoshi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Yuriko Sugihara
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Atsuhito Uneda
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan
| |
Collapse
|
8
|
Abstract
Hedgehog (Hh) proteins constitute one family of a small number of secreted signaling proteins that together regulate multiple aspects of animal development, tissue homeostasis and regeneration. Originally uncovered through genetic analyses in Drosophila, their subsequent discovery in vertebrates has provided a paradigm for the role of morphogens in positional specification. Most strikingly, the Sonic hedgehog protein was shown to mediate the activity of two classic embryonic organizing centers in vertebrates and subsequent studies have implicated it and its paralogs in a myriad of processes. Moreover, dysfunction of the signaling pathway has been shown to underlie numerous human congenital abnormalities and diseases, especially certain types of cancer. This review focusses on the genetic studies that uncovered the key components of the Hh signaling system and the subsequent, biochemical, cell and structural biology analyses of their functions. These studies have revealed several novel processes and principles, shedding new light on the cellular and molecular mechanisms underlying cell-cell communication. Notable amongst these are the involvement of cholesterol both in modifying the Hh proteins and in activating its transduction pathway, the role of cytonemes, filipodia-like extensions, in conveying Hh signals between cells; and the central importance of the Primary Cilium as a cellular compartment within which the components of the signaling pathway are sequestered and interact.
Collapse
Affiliation(s)
- Philip William Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
9
|
Senatore E, Iannucci R, Chiuso F, Delle Donne R, Rinaldi L, Feliciello A. Pathophysiology of Primary Cilia: Signaling and Proteostasis Regulation. Front Cell Dev Biol 2022; 10:833086. [PMID: 35646931 PMCID: PMC9130585 DOI: 10.3389/fcell.2022.833086] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.
Collapse
|
10
|
Zhang M, Gao L, Ye Y, Li X. Advances in glioma-associated oncogene (GLI) inhibitors for cancer therapy. Invest New Drugs 2022; 40:370-388. [PMID: 34837604 DOI: 10.1007/s10637-021-01187-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/22/2021] [Indexed: 10/19/2022]
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells, which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. As an important component of the Hh signaling pathway, glioma-associated oncogene (GLI) acts as a key signal transmission hub for various signaling pathways in many tumors. Here, we review direct and indirect inhibitors of GLI; summarize the abundant active structurally diverse natural GLI inhibitors; and discuss how to better develop and utilize GLI inhibitors to solve the problem of drug resistance in tumors of interest. In summary, GLI inhibitors will be promising candidates for various cancer treatments.
Collapse
Affiliation(s)
- Meng Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijuan Gao
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiping Ye
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyu Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Kawabata H, Ono Y, Tamamura N, Oyama K, Ueda J, Sato H, Takahashi K, Taniue K, Okada T, Fujibayashi S, Hayashi A, Goto T, Enomoto K, Konishi H, Fujiya M, Miyakawa K, Tanino M, Nishikawa Y, Koga D, Watanabe T, Maeda C, Karasaki H, Liss AS, Mizukami Y, Okumura T. Mutant GNAS limits tumor aggressiveness in established pancreatic cancer via antagonizing the KRAS-pathway. J Gastroenterol 2022; 57:208-220. [PMID: 35018527 DOI: 10.1007/s00535-021-01846-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Mutations in GNAS drive pancreatic tumorigenesis and frequently occur in intraductal papillary mucinous neoplasm (IPMN); however, their value as a therapeutic target is yet to be determined. This study aimed at evaluating the involvement of mutant GNAS in tumor aggressiveness in established pancreatic cancer. METHODS CRISPR/Cas9-mediated GNAS R201H silencing was performed using human primary IPMN-associated pancreatic cancer cells. The role of oncogenic GNAS in tumor maintenance was evaluated by conducting cell culture and xenograft experiments, and western blotting and transcriptome analyses were performed to uncover GNAS-driven signatures. RESULTS Xenografts of GNAS wild-type cells were characterized by a higher Ki-67 labeling index relative to GNAS-mutant cells. Phenotypic alterations in the GNAS wild-type tumors resulted in a significant reduction in mucin production accompanied by solid with massive stromal components. Transcriptional profiling suggested an apparent conflict of mutant GNAS with KRAS signaling. A significantly higher Notch intercellular domain (NICD) was observed in the nuclear fraction of GNAS wild-type cells. Meanwhile, inhibition of protein kinase A (PKA) induced NICD in GNAS-mutant IPMN cells, suggesting that NOTCH signaling is negatively regulated by the GNAS-PKA pathway. GNAS wild-type cells were characterized by a significant invasive property relative to GNAS-mutant cells, which was mediated through the NOTCH regulatory pathway. CONCLUSIONS Oncogenic GNAS induces mucin production, not only via MUC2 but also via MUC5AC/B, which may enlarge cystic lesions in the pancreas. The mutation may also limit tumor aggressiveness by attenuating NOTCH signaling; therefore, such tumor-suppressing effects must be considered when therapeutically inhibiting the GNAS pathway.
Collapse
Affiliation(s)
- Hidemasa Kawabata
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yusuke Ono
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Nobue Tamamura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kyohei Oyama
- Department of Cardiovascular Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroki Sato
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kenji Takahashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenzui Taniue
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tetsuhiro Okada
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Syugo Fujibayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Akihiro Hayashi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Takuma Goto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Katsuro Enomoto
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Hiroaki Konishi
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mikihiro Fujiya
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Keita Miyakawa
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Mishie Tanino
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Chiho Maeda
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan
| | - Andrew S Liss
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yusuke Mizukami
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
- Institute of Biomedical Research, Sapporo-Higashi Tokushukai Hospital, Sapporo, Hokkaido, 065-0033, Japan.
| | - Toshikatsu Okumura
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
12
|
Delalande JM, Nagy N, McCann CJ, Natarajan D, Cooper JE, Carreno G, Dora D, Campbell A, Laurent N, Kemos P, Thomas S, Alby C, Attié-Bitach T, Lyonnet S, Logan MP, Goldstein AM, Davey MG, Hofstra RMW, Thapar N, Burns AJ. TALPID3/KIAA0586 Regulates Multiple Aspects of Neuromuscular Patterning During Gastrointestinal Development in Animal Models and Human. Front Mol Neurosci 2022; 14:757646. [PMID: 35002618 PMCID: PMC8733242 DOI: 10.3389/fnmol.2021.757646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
TALPID3/KIAA0586 is an evolutionary conserved protein, which plays an essential role in protein trafficking. Its role during gastrointestinal (GI) and enteric nervous system (ENS) development has not been studied previously. Here, we analyzed chicken, mouse and human embryonic GI tissues with TALPID3 mutations. The GI tract of TALPID3 chicken embryos was shortened and malformed. Histologically, the gut smooth muscle was mispatterned and enteric neural crest cells were scattered throughout the gut wall. Analysis of the Hedgehog pathway and gut extracellular matrix provided causative reasons for these defects. Interestingly, chicken intra-species grafting experiments and a conditional knockout mouse model showed that ENS formation did not require TALPID3, but was dependent on correct environmental cues. Surprisingly, the lack of TALPID3 in enteric neural crest cells (ENCC) affected smooth muscle and epithelial development in a non-cell-autonomous manner. Analysis of human gut fetal tissues with a KIAA0586 mutation showed strikingly similar findings compared to the animal models demonstrating conservation of TALPID3 and its necessary role in human GI tract development and patterning.
Collapse
Affiliation(s)
- Jean Marie Delalande
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Julie E Cooper
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Gabriela Carreno
- Developmental Biology and Cancer Program, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Alison Campbell
- Department of Paediatric Surgery, Christchurch Hospital, Christchurch, New Zealand
| | - Nicole Laurent
- Génétique et Anomalies du Développement, Université de Bourgogne, Service d'Anatomie Pathologique, Dijon, France
| | - Polychronis Kemos
- Centre for Immunobiology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sophie Thomas
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France
| | - Caroline Alby
- Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Tania Attié-Bitach
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163 Institut Imagine, Paris, France.,Department of Genetics, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Malcolm P Logan
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan G Davey
- Division of Developmental Biology, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Division of Neurogastroenterology and Motility, Department of Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Inc., Cambridge, MA, United States
| |
Collapse
|
13
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
14
|
Cai E, Zhang J, Ge X. Control of the Hedgehog pathway by compartmentalized PKA in the primary cilium. SCIENCE CHINA-LIFE SCIENCES 2021; 65:500-514. [PMID: 34505970 DOI: 10.1007/s11427-021-1975-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023]
Abstract
The Hedgehog (Hh) signaling is one of the essential signaling pathways during embryogenesis and in adults. Hh signal transduction relies on primary cilium, a specialized cell surface organelle viewed as the hub of cell signaling. Protein kinase A (PKA) has been recognized as a potent negative regulator of the Hh pathway, raising the question of how such a ubiquitous kinase specifically regulates one signaling pathway. We reviewed recent genetic, molecular and biochemical studies that have advanced our mechanistic understanding of PKA's role in Hh signaling in vertebrates, focusing on the compartmentalized PKA at the centrosome and in the primary cilium. We outlined the recently developed genetic and optical tools that can be harvested to study PKA activities during the course of Hh signal transduction.
Collapse
Affiliation(s)
- Eva Cai
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA, 95340, USA.
| |
Collapse
|
15
|
Tschaikner PM, Regele D, Röck R, Salvenmoser W, Meyer D, Bouvier M, Geley S, Stefan E, Aanstad P. Feedback control of the Gpr161-G αs-PKA axis contributes to basal Hedgehog repression in zebrafish. Development 2021; 148:dev.192443. [PMID: 33531430 DOI: 10.1242/dev.192443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023]
Abstract
Hedgehog (Hh) ligands act as morphogens to direct patterning and proliferation during embryonic development. Protein kinase A (PKA) is a central negative regulator of Hh signalling, and in the absence of Hh ligands, PKA activity prevents inappropriate expression of Hh target genes. The orphan G-protein-coupled receptor Gpr161 contributes to the basal Hh repression machinery by activating PKA. Gpr161 acts as an A-kinase-anchoring protein, and is itself phosphorylated by PKA, but the functional significance of PKA phosphorylation of Gpr161 in the context of Hh signalling remains unknown. Here, we show that loss of Gpr161 in zebrafish leads to constitutive activation of medium and low, but not maximal, levels of Hh target gene expression. Furthermore, we find that PKA phosphorylation-deficient forms of Gpr161, which we show directly couple to Gαs, display an increased sensitivity to Shh, resulting in excess high-level Hh signalling. Our results suggest that PKA feedback-mediated phosphorylation of Gpr161 may provide a mechanism for fine-tuning Gpr161 ciliary localisation and PKA activity.
Collapse
Affiliation(s)
- Philipp M Tschaikner
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria.,Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Dominik Regele
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Ruth Röck
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Willi Salvenmoser
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Innsbruck 6020, Austria
| | - Dirk Meyer
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| | - Pia Aanstad
- Institute of Molecular Biology and Center for Molecular Biosciences, University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
16
|
Shi X, Simms KJ, Zhang P. Acute Alcohol Intoxication Impairs Sonic Hedgehog-Gli1 Signaling and Activation of Primitive Hematopoietic Precursor Cells in the Early Stage of Host Response to Bacteremia. Alcohol Clin Exp Res 2020; 44:1977-1987. [PMID: 32772391 PMCID: PMC7720280 DOI: 10.1111/acer.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activation of hematopoietic stem cells [HSCs, lineage(lin)- stem cell growth factor receptor (c-kit)+ stem cell antigen-1(Sca-1)+ , or LKS cells in mice] is critical for initiating the granulopoietic response. This study determined the effect of alcohol exposure on sonic hedgehog (SHH) signaling in the regulation of HSC activation during bacteremia. METHODS Acute alcohol intoxication was induced in mice by intraperitoneal (i.p.) injection of 20% alcohol (5 g alcohol/kg body weight). Control mice received i.p. saline. Thirty minutes later, mice were intravenously (i.v.) injected with Escherichia coli (E. coli, 1 to 5 × 107 CFUs/mouse) or saline. RESULTS SHH expression by lineage-negative bone marrow cells (BMCs) was significantly increased 24 hours after E. coli infection. Extracellular signal-regulated kinase 1/2 (ERK1/2)-specificity protein 1 (Sp1) signaling promotes SHH expression. ERK1/2 was markedly activated in BMCs 8 hours following E. coli infection. Alcohol suppressed both the activation of ERK1/2 and up-regulation of SHH expression following E. coli infection. E. coli infection up-regulated GLI family zinc finger 1 (Gli1) gene expression by BMCs and increased Gli1 protein content in LKS cells. The extent of Gli1 expression was correlated with the activity of proliferation in LKS cells. Alcohol inhibited up-regulation of Gli1 expression and activation of LKS cells in response to E. coli infection. Alcohol also interrupted the granulopoietic response to bacteremia. CONCLUSION These data show that alcohol disrupts SHH-Gli1 signaling and HSC activation in the early stage of the granulopoietic response, which may serve as an important mechanism underlying the impairment of immune defense against bacterial infection in host excessively consuming alcohol.
Collapse
Affiliation(s)
- Xin Shi
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Kevin J Simms
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- From the Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
17
|
Zhang R, Cong F, Li Q, Min Z, Yan J, Zhang Q, Ma J, Lu S, Ma J. miR-497 Is Implicated in the Process of Chondrogenesis and Inhibits IHH Gene Expression in Human Chondrocytes. Cartilage 2020; 11:479-489. [PMID: 30156864 PMCID: PMC7488943 DOI: 10.1177/1947603518796126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine differences in microRNA-497 (miR-497) expression during cartilage tissue formation and to test whether miR-497 directly interferes with Indian hedgehog (IHH) gene and inhibits IHH expression in human chondrocytes. DESIGN At different cartilage development stages and different time points in bone matrix gelatin-induced endochondral ossification (BMG-ECO) rat models, the expression of miR-497 and the Ihh gene was monitored at the mRNA level. Bioinformatic analysis, gene mutation, dual luciferase reporter gene assays and gene expression assays at both the mRNA and protein levels in human chondrocytes were subsequently performed to validate the interaction between miR-497 and the IHH gene. RESULTS The mRNA expression of miR-497 or the Ihh gene in BMG-ECO rats showed significant differences between the cartilage development stages and between different time points, and the trends in the expression of miR-497 and Ihh were reversed. Bioinformatic and dual luciferase reporter gene assays demonstrated a direct interaction between miR-497 and the IHH gene. Differential mRNA and protein expression profiles of the IHH gene in human chondrocytes after 48 hours of transfection with miR-497 mimics and a negative control indicated that miR-497 inhibited IHH expression. CONCLUSION Our study provided new clues for further functional and molecular mechanism studies of miR-497 in chondrogenesis and demonstrated a potential target for clinical therapy for cartilage degenerative disease.
Collapse
Affiliation(s)
- Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fei Cong
- Department of Orthopedic Microsurgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qi Li
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zixin Min
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jidong Yan
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qian Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jie Ma
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shemin Lu
- School of Basic Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Jianbing Ma, Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, 555 East Youyi Road, Xi’an, Shaanxi, 710054, China.
| |
Collapse
|
18
|
Protein phosphatase 4 promotes Hedgehog signaling through dephosphorylation of Suppressor of fused. Cell Death Dis 2020; 11:686. [PMID: 32826873 PMCID: PMC7442787 DOI: 10.1038/s41419-020-02843-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Reversible phosphorylation of Suppressor of fused (Sufu) is essential for Sonic Hedgehog (Shh) signal transduction. Sufu is stabilized under dual phosphorylation of protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Its phosphorylation is reduced with the activation of Shh signaling. However, the phosphatase in this reversible phosphorylation has not been found. Taking advantage of a proteomic approach, we identified Protein phosphatase 4 regulatory subunit 2 (Ppp4r2), an interacting protein of Sufu. Shh signaling promotes the interaction of these two proteins in the nucleus, and Ppp4 also promotes dephosphorylation of Sufu, leading to its degradation and enhancing the Gli1 transcriptional activity. Finally, Ppp4-mediated dephosphorylation of Sufu promotes proliferation of medulloblastoma tumor cells, and expression of Ppp4 is positively correlated with up-regulation of Shh pathway target genes in the Shh-subtype medulloblastoma, underscoring the important role of this regulation in Shh signaling.
Collapse
|
19
|
Wu F, Zhang C, Zhao C, Wu H, Teng Z, Jiang T, Wang Y. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res 2020; 80:2818-2832. [PMID: 32371475 DOI: 10.1158/0008-5472.can-19-2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised by acquisition of mutations that alter pathway components, notably secondary mutations in SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. Pharmacologic blockade of GLI2 activity could ultimately overcome these diversified refractory mechanisms, which would also be effective in a broader spectrum of primary tumors than current SMO antagonists. To this end, we conducted a high-content screening directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the growth of drug refractory human medulloblastoma xenografts. Together, these results identify PGE1 and other prostaglandins as potential templates for complementary therapeutic development to circumvent resistance to current generation SMO antagonists in use in the clinic. SIGNIFICANCE: These findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities for Hedgehog-targeted therapies and elicits significant antitumor effects in xenograft models of drug refractory human medulloblastoma mimicking GLI2 amplification.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenze Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China. .,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 2020; 35:725-731. [PMID: 30923969 DOI: 10.1007/s00467-019-04240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
Abstract
Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.
Collapse
|
21
|
Crane JN, Chang VY, Yong WH, Salamon N, Lee H, Kianmahd J, Dorrani N, Martinez-Agosto JA, Davidson TB. A case report of a novel germline GNAS mutation in sonic hedgehog activated medulloblastoma. Pediatr Blood Cancer 2020; 67:e28103. [PMID: 31793173 PMCID: PMC7307637 DOI: 10.1002/pbc.28103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/12/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jacquelyn N. Crane
- Division of Pediatric Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Vivian Y. Chang
- Division of Pediatric Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California,Children’s Discovery and Innovation Institute, University of California Los Angeles Hospital, Los Angeles, California
| | - William H. Yong
- Division of Neuropathology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Clinical Genomics Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jessica Kianmahd
- Division of Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Naghmeh Dorrani
- Clinical Genomics Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Division of Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Julian A. Martinez-Agosto
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California,Children’s Discovery and Innovation Institute, University of California Los Angeles Hospital, Los Angeles, California,Clinical Genomics Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Division of Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Tom B. Davidson
- Division of Hematology, Oncology and Blood and Marrow Transplantation, Children’s Hospital of Los Angeles, Los Angeles, California
| |
Collapse
|
22
|
Yatsuzuka A, Hori A, Kadoya M, Matsuo-Takasaki M, Kondo T, Sasai N. GPR17 is an essential regulator for the temporal adaptation of sonic hedgehog signalling in neural tube development. Development 2019; 146:dev.176784. [PMID: 31444216 DOI: 10.1242/dev.176784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023]
Abstract
Dorsal-ventral pattern formation of the neural tube is regulated by temporal and spatial activities of extracellular signalling molecules. Sonic hedgehog (Shh) assigns ventral neural subtypes via activation of the Gli transcription factors. Shh activity in the neural progenitor cells changes dynamically during differentiation, but the mechanisms regulating this dynamicity are not fully understood. Here, we show that temporal change of intracellular cAMP levels confers the temporal Shh signal, and the purinergic G-protein-coupled receptor GPR17 plays an essential role in this regulation. GPR17 is highly expressed in the ventral progenitor regions of the neural tube and acts as a negative regulator of the Shh signal in chick embryos. Although the activation of the GPR17-related signal inhibits ventral identity, perturbation of Gpr17 expression leads to aberrant expansion of ventral neural domains. Notably, perturbation of Gpr17 expression partially inhibits the negative feedback of Gli activity. Moreover, GPR17 increases cAMP activity, suggesting that it exerts its function by inhibiting the processing of Gli3 protein. GPR17 also negatively regulates Shh signalling in neural cells differentiated from mouse embryonic stem cells, suggesting that GPR17 function is conserved among different organisms. Our results demonstrate that GPR17 is a novel negative regulator of Shh signalling in a wide range of cellular contexts.
Collapse
Affiliation(s)
- Atsuki Yatsuzuka
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Akiko Hori
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Mami Matsuo-Takasaki
- Department of Regenerative Medicine and Stem Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
23
|
Hu A, Song BL. The interplay of Patched, Smoothened and cholesterol in Hedgehog signaling. Curr Opin Cell Biol 2019; 61:31-38. [PMID: 31369952 DOI: 10.1016/j.ceb.2019.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 12/29/2022]
Abstract
The Hedgehog (HH) pathway plays a pivotal role in regulating a diverse array of events from embryonic tissue patterning to adult organ self-renewal. Aberrant activation of the pathway is linked to carcinogenesis. Key factors in the HH pathway include the signaling ligand HH, the receptor Patched (PTCH), and the G-protein-coupled receptor-like transducer Smoothened (SMO). A long-lasting question about this pathway is how PTCH prevents SMO from being activated. Recent high-resolution structural studies provide insight into the molecular basis of HH recognition by PTCH. Moreover, cholesterol stands out as the endogenous ligand of SMO and acts by binding and/or covalently linking to SMO. In this review, we discuss current advances in HH signaling, the interplay of PTCH, SMO and cholesterol, and propose putative models of SMO activation by cholesterol binding and/or modification.
Collapse
Affiliation(s)
- Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
24
|
ERAP1 promotes Hedgehog-dependent tumorigenesis by controlling USP47-mediated degradation of βTrCP. Nat Commun 2019; 10:3304. [PMID: 31341163 PMCID: PMC6656771 DOI: 10.1038/s41467-019-11093-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated βTrCP, the substrate-receptor subunit of the SCFβTrCP ubiquitin ligase, and promotes βTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors. ERAP1 is an endoplasmic reticulum aminopeptidase that trims MHC Class-I peptides for antigen presentation. Here, the authors show that ERAP1 enhances Hedgehog signalling by sequestering USP47 from βTrCP and promoting tumorigenesis through βTrCP degradation and increased Gli protein stability.
Collapse
|
25
|
Nam H, Jeon S, An H, Yoo J, Lee HJ, Lee SK, Lee S. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. eLife 2019; 8:46683. [PMID: 31305241 PMCID: PMC6658197 DOI: 10.7554/elife.46683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/14/2019] [Indexed: 01/20/2023] Open
Abstract
During spinal cord development, Sonic hedgehog (Shh), secreted from the floor plate, plays an important role in the production of motor neurons by patterning the ventral neural tube, which establishes MN progenitor identity. It remains unknown, however, if Shh signaling plays a role in generating columnar diversity of MNs that connect distinct target muscles. Here, we report that Shh, expressed in MNs, is essential for the formation of lateral motor column (LMC) neurons in vertebrate spinal cord. This novel activity of Shh is mediated by its downstream effector ARHGAP36, whose expression is directly induced by the MN-specific transcription factor complex Isl1-Lhx3. Furthermore, we found that AKT stimulates the Shh activity to induce LMC MNs through the stabilization of ARHGAP36 proteins. Taken together, our data reveal that Shh, secreted from MNs, plays a crucial role in generating MN diversity via a regulatory axis of Shh-AKT-ARHGAP36 in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Heejin Nam
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Shin Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.,Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science Uiversity, Portland, United States
| | - Hyejin An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaeyoung Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gyungnam, Republic of Korea
| | - Soo-Kyung Lee
- Neuroscience Section, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science Uiversity, Portland, United States.,Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Seunghee Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Ghia EM, Rassenti LZ, Neuberg DS, Blanco A, Yousif F, Smith EN, McPherson JD, Hudson TJ, Harismendy O, Frazer KA, Kipps TJ. Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia. Blood 2019; 133:2651-2663. [PMID: 30923040 PMCID: PMC6587306 DOI: 10.1182/blood-2018-09-873695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Targeted sequencing of 103 leukemia-associated genes in leukemia cells from 841 treatment-naive patients with chronic lymphocytic leukemia (CLL) identified 89 (11%) patients as having CLL cells with mutations in genes encoding proteins that putatively are involved in hedgehog (Hh) signaling. Consistent with this finding, there was a significant association between the presence of these mutations and the expression of GLI1 (χ2 test, P < .0001), reflecting activation of the Hh pathway. However, we discovered that 38% of cases without identified mutations also were GLI1+ Patients with GLI1+ CLL cells had a shorter median treatment-free survival than patients with CLL cells lacking expression of GLI1 independent of IGHV mutation status. We found that GANT61, a small molecule that can inhibit GLI1, was highly cytotoxic for GLI1+ CLL cells relative to that of CLL cells without GLI1. Collectively, this study shows that a large proportion of patients have CLL cells with activated Hh signaling, which is associated with early disease progression and enhanced sensitivity to inhibition of GLI1.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Zinc Finger Protein GLI1/metabolism
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| | - Donna S Neuberg
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA
| | - Alejandro Blanco
- Programa de Genetica Humana, Universidad de Chile, Santiago, Chile
| | - Fouad Yousif
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - John D McPherson
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA; and
| | | | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA
| | - Kelly A Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, CA
- Department of Pediatrics and Rady Children's Hospital, University of California San Diego, La Jolla, CA
| | - Thomas J Kipps
- Moores Cancer Center, University of California San Diego, La Jolla, CA
| |
Collapse
|
27
|
Renard E, Chéry C, Oussalah A, Josse T, Perrin P, Tramoy D, Voirin J, Klein O, Leheup B, Feillet F, Guéant-Rodriguez RM, Guéant JL. Exome sequencing of cases with neural tube defects identifies candidate genes involved in one-carbon/vitamin B12 metabolisms and Sonic Hedgehog pathway. Hum Genet 2019; 138:703-713. [DOI: 10.1007/s00439-019-02015-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/13/2019] [Indexed: 12/13/2022]
|
28
|
PRMT7 methylates and suppresses GLI2 binding to SUFU thereby promoting its activation. Cell Death Differ 2019; 27:15-28. [PMID: 31000813 DOI: 10.1038/s41418-019-0334-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
Cellular senescence is implicated in aging or age-related diseases. Sonic hedgehog (Shh) signaling, an inducer of embryonic development, has recently been demonstrated to inhibit cellular senescence. However, the detailed mechanisms to activate Shh signaling to prevent senescence is not well understood. Here, we demonstrate that Protein arginine methyltransferase 7 (PRMT7) promotes Shh signaling via GLI2 methylation which is critical for suppression of cellular senescence. PRMT7-deficient mouse embryonic fibroblasts (MEFs) exhibited a premature cellular senescence with accompanied increase in the cell cycle inhibitors p16 and p21. PRMT7 depletion results in reduced Shh signaling activity in MEFs while PRMT7 overexpression enhances GLI2-reporter activities that are sensitive to methylation inhibition. PRMT7 interacts with and methylates GLI2 on arginine residues 225 and 227 nearby a binding region of SUFU, a negative regulator of GLI2. This methylation interferes with GLI2-SUFU binding, leading to facilitation of GLI2 nuclear accumulation and Shh signaling. Taken together, these data suggest that PRMT7 induces GLI2 methylation, reducing its binding to SUFU and increasing Shh signaling, ultimately leading to prevention of cellular senescence.
Collapse
|
29
|
Gli Proteins: Regulation in Development and Cancer. Cells 2019; 8:cells8020147. [PMID: 30754706 PMCID: PMC6406693 DOI: 10.3390/cells8020147] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 12/18/2022] Open
Abstract
Gli proteins are transcriptional effectors of the Hedgehog signaling pathway. They play key roles in the development of many organs and tissues, and are deregulated in birth defects and cancer. We review the molecular mechanisms of Gli protein regulation in mammals, with special emphasis on posttranslational modifications and intracellular transport. We also discuss how Gli proteins interact with co-activators and co-repressors to fine-tune the expression of Hedgehog target genes. Finally, we provide an overview of the regulation of developmental processes and tissue regeneration by Gli proteins and discuss how these proteins are involved in cancer progression, both through canonical regulation via the Hedgehog pathway and through cross-talk with other signaling pathways.
Collapse
|
30
|
Rodriguez-Blanco J, Li B, Long J, Shen C, Yang F, Orton D, Collins S, Kasahara N, Ayad NG, McCrea HJ, Roussel MF, Weiss WA, Capobianco AJ, Robbins DJ. A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clin Cancer Res 2018; 25:1379-1388. [PMID: 30487124 DOI: 10.1158/1078-0432.ccr-18-1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Although most children with medulloblastoma are cured of their disease, Sonic Hedgehog (SHH) subgroup medulloblastoma driven by TRP53 mutations is essentially lethal. Casein kinase 1α (CK1α) phosphorylates and destabilizes GLI transcription factors, thereby inhibiting the key effectors of SHH signaling. We therefore tested a second-generation CK1α activator against TRP53-mutant, MYCN-amplified medulloblastoma. EXPERIMENTAL DESIGN The ability of this CK1α activator to block SHH signaling was determined in vitro using GLI reporter cells, granular precursor primary cultures, and PATCHED1 (PTCH1)-mutant sphere cultures. While in vivo efficacy was tested using 2 different medulloblastoma mouse models: PTCH1 and ND2:SMOA1. Finally, the clinical relevance of CK1α activators was demonstrated using a TRP53-mutant, MYCN-amplified patient-derived xenograft. RESULTS SSTC3 inhibited SHH activity in vitro, acting downstream of the vismodegib target SMOOTHENED (SMO), and reduced the viability of sphere cultures derived from SHH medulloblastoma. SSTC3 accumulated in the brain, inhibited growth of SHH medulloblastoma tumors, and blocked metastases in a genetically engineered vismodegib-resistant mouse model of SHH medulloblastoma. Importantly, SSTC3 attenuated growth and metastasis of orthotopic patient-derived TRP53-mutant, MYCN-amplified, SHH subgroup medulloblastoma xenografts, increasing overall survival. CONCLUSIONS Using a newly described small-molecule, SSTC3, we show that CK1a activators could address a significant unmet clinical need for patients with SMO inhibitor-resistant medulloblastoma, including those harboring mutations in TRP53.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Fan Yang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Sara Collins
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Noriyuki Kasahara
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - Nagi G Ayad
- Sylvester Comprehensive Cancer Center, University of Miami, Florida.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, Florida
| | - Heather J McCrea
- Department of Clinical Neurological Surgery, University of Miami, Florida
| | - Martine F Roussel
- Department of Tumor Cell Biology, St Jude Children's Research Hospital (SJCRH), Memphis, Tennessee
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| |
Collapse
|
31
|
Del Giovane A, Ragnini-Wilson A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int J Mol Sci 2018; 19:E3677. [PMID: 30463396 PMCID: PMC6274747 DOI: 10.3390/ijms19113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myelin sheaths on vertebrate axons provide protection, vital support and increase the speed of neuronal signals. Myelin degeneration can be caused by viral, autoimmune or genetic diseases. Remyelination is a natural process that restores the myelin sheath and, consequently, neuronal function after a demyelination event, preventing neurodegeneration and thereby neuron functional loss. Pharmacological approaches to remyelination represent a promising new frontier in the therapy of human demyelination pathologies and might provide novel tools to improve adaptive myelination in aged individuals. Recent phenotypical screens have identified agonists of the atypical G protein-coupled receptor Smoothened and inhibitors of the glioma-associated oncogene 1 as being amongst the most potent stimulators of oligodendrocyte precursor cell (OPC) differentiation in vitro and remyelination in the central nervous system (CNS) of mice. Here, we discuss the current state-of-the-art of studies on the role of Sonic Hedgehog reactivation during remyelination, referring readers to other reviews for the role of Hedgehog signaling in cancer and stem cell maintenance.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| | - Antonella Ragnini-Wilson
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
32
|
Liu A. Proteostasis in the Hedgehog signaling pathway. Semin Cell Dev Biol 2018; 93:153-163. [PMID: 31429406 DOI: 10.1016/j.semcdb.2018.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) signaling pathway is crucial for the development of vertebrate and invertebrate animals alike. Hh ligand binds its receptor Patched (Ptc), allowing the activation of the obligate signal transducer Smoothened (Smo). The levels and localizations of both Ptc and Smo are regulated by ubiquitination, and Smo is under additional regulation by phosphorylation and SUMOylation. Downstream of Smo, the Ci/Gli family of transcription factors regulates the transcriptional responses to Hh. Phosphorylation, ubiquitination and SUMOylation are important for the stability and localization of Ci/Gli proteins and Hh signaling output. Finally, Suppressor of Fused directly regulates Ci/Gli proteins and itself is under proteolytic regulation that is critical for normal Hh signaling.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
33
|
Xu S, Liu Y, Meng Q, Wang B. Rab34 small GTPase is required for Hedgehog signaling and an early step of ciliary vesicle formation in mouse. J Cell Sci 2018; 131:jcs.213710. [PMID: 30301781 DOI: 10.1242/jcs.213710] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
The primary cilium is a microtubule-based organelle that protrudes from the cell surface and plays essential roles in embryonic development. Ciliogenesis begins with the successive fusion of preciliary vesicles to form ciliary vesicles, which then dock onto the distal end of the mother centriole. Rab proteins have been linked to cilia formation in cultured cells, but not yet in vivo In the present study, we demonstrate that endocytic recycling protein Rab34 localizes to cilia, and that its mutation results in significant decrease of ciliogenesis in both cultured cells and mice. Rab34 is required for the successive fusion of preciliary vesicles to generate ciliary vesicles and for the migration of the mother centriole from perinuclear region to plasma membrane. We also show that Rab34 mutant mice exhibit polydactyly, and cleft-lip and -palate. These phenotypes are consistent with observations that nonciliated Rab34 mutant cells fail to respond to Hedgehog signaling and that processing of full-length Gli3 to its C-terminally truncated form is reduced in Rab34 mutant embryos. Therefore, Rab34 is required for an early step of ciliary vesicle formation and Hh signaling in vivo This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shouying Xu
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yang Liu
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.,Department of Veterinary Public Health, College of Veterinary Medicine, Jilin University, Jilin 130000, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| |
Collapse
|
34
|
Bo X, Wu M, Xiao H, Wang H. Transcriptome analyses reveal molecular mechanisms that regulate endochondral ossification in amphibian Bufo gargarizans during metamorphosis. Biochim Biophys Acta Gen Subj 2018; 1862:2632-2644. [PMID: 30076880 DOI: 10.1016/j.bbagen.2018.07.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND A developmental transition from aquatic to terrestrial existence is one of the most important events in the evolution of terrestrial vertebrates. Amphibian metamorphosis is a classic model to study this transition. The development of the vertebrate skeleton can reflect its evolutionary history. Endochondral ossification serves a vital role in skeletal development. Thus, we sought to unravel molecular mechanisms that regulate endochondral ossification during Bufo gargarizans metamorphosis. METHODS The alizarin red-alcian blue double staining method was used to visualize the skeletal development of B. gargarizans during metamorphosis. RNA sequencing (RNA-seq) was used to explore the transcriptome of B. gargarizans in four key developmental stages during metamorphosis. Real-time quantitative PCR (RT-qPCR) was used to validate the expression patterns of endochondral ossification related genes. RESULTS Endochondral ossification increased gradually in skeletal system of B. gargarizans during metamorphosis. A total of 137,264 unigenes were assembled and 44,035 unigenes were annotated. 10,352 differentially expressed genes (DEGs) were further extracted among four key developmental stages. In addition, 28 endochondral ossification related genes were found by searching for DEG libraries in B. gargarizans. Of the 28 genes, 10 genes were validated using RT-qPCR. CONCLUSIONS The exquisite coordination of the 28 genes is essential for regulation of endochondral ossification during B. gargarizans metamorphosis. GENERAL SIGNIFICANCE The present study will not only provide an invaluable genomic resource and background for further research of endochondral ossification in amphibians but will also aid in enhancing our understanding of the evolution of terrestrial vertebrates.
Collapse
Affiliation(s)
- Xiaoxue Bo
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
35
|
Genetic interaction between Gli3 and Ezh2 during limb pattern formation. Mech Dev 2018; 151:30-36. [PMID: 29729398 DOI: 10.1016/j.mod.2018.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Abstract
Anteroposterior polarity of the early limb bud is essential for proper skeletal pattern formation. In order to establish anterior identity, hedgehog signalling needs to be repressed by GLI3 repressor activity, although the mechanism of repression is not well defined. Here we describe genetic interaction between Gli3 and Enhancer of Zeste 2 (Ezh2) that encodes the histone methyltransferase subunit of Polycomb Repressive Complex 2. Loss of anterior limb identity was evident in both Gli3 and conditional Ezh2 single mutant embryos. This phenotype was enhanced in Ezh2;Gli3 double mutant embryos, but more closely resembled that of Ezh2 single mutants. Absent anterior skeletal elements in the Ezh2 mutant background were not rescued by either reduction of Gli activator or forced expression of Gli repressor. The data imply that Ezh2 is epistatic to Gli3 and suggest the possibility that hedghehog activation is repressed by the recruitment of polycomb repressive complex 2.
Collapse
|
36
|
Targeting GLI Transcription Factors in Cancer. Molecules 2018; 23:molecules23051003. [PMID: 29695137 PMCID: PMC6100584 DOI: 10.3390/molecules23051003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of hedgehog (Hh) signaling has been observed in a wide variety of tumors and accounts for more than 25% of human cancer deaths. Inhibitors targeting the Hh signal transducer Smoothened (SMO) are widely used and display a good initial efficacy in patients suffering from basal cell carcinoma (BCC); however, a large number of patients relapse. Though SMO mutations may explain acquired therapy resistance, a growing body of evidence suggests that the non-canonical, SMO-independent activation of the Hh pathway in BCC patients can also account for this adverse effect. In this review, we highlight the importance of glioma-associated oncogene (GLI) transcription factors (the main downstream effectors of the canonical and the non-canonical Hh cascade) and their putative role in the regulation of multiple oncogenic signaling pathways. Moreover, we discuss the contribution of the Hh signaling to malignant transformation and propose GLIs as central hubs in tumor signaling networks and thus attractive molecular targets in anti-cancer therapies.
Collapse
|
37
|
Wang C, Li J, Takemaru KI, Jiang X, Xu G, Wang B. Centrosomal protein Dzip1l binds Cby, promotes ciliary bud formation, and acts redundantly with Bromi to regulate ciliogenesis in the mouse. Development 2018; 145:dev.164236. [PMID: 29487109 DOI: 10.1242/dev.164236] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of a basal body, a ciliary axoneme and a compartment between the first two structures, called the transition zone (TZ). The TZ serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a TZ protein. Loss of Dzip1l results in reduced ciliogenesis and dysmorphic cilia in vivo Dzip1l interacts with, and acts upstream of, Cby, an appendage protein, in ciliogenesis. Dzip1l also has overlapping functions with Bromi (Tbc1d32) in ciliogenesis, cilia morphogenesis and neural tube patterning. Loss of Dzip1l arrests ciliogenesis at the stage of ciliary bud formation from the TZ. Consistent with this, Dzip1l mutant cells fail to remove the capping protein Cp110 (Ccp110) from the distal end of mother centrioles and to recruit Rpgrip1l to the TZ. Therefore, Dzip1l promotes ciliary bud formation and is required for the integrity of the TZ.
Collapse
Affiliation(s)
- Chengbing Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xiaogang Jiang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu 215123, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| |
Collapse
|
38
|
Kindt LM, Coughlin AR, Perosino TR, Ersfeld HN, Hampton M, Liang JO. Identification of transcripts potentially involved in neural tube closure using RNA sequencing. Genesis 2018; 56:e23096. [PMID: 29488319 DOI: 10.1002/dvg.23096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
Anencephaly is a fatal human neural tube defect (NTD) in which the anterior neural tube remains open. Zebrafish embryos with reduced Nodal signaling display an open anterior neural tube phenotype that is analogous to anencephaly. Previous work from our laboratory suggests that Nodal signaling acts through induction of the head mesendoderm and mesoderm. Head mesendoderm/mesoderm then, through an unknown mechanism, promotes formation of the polarized neuroepithelium that is capable of undergoing the movements required for closure. We compared the transcriptome of embryos treated with a Nodal signaling inhibitor at sphere stage, which causes NTDs, to embryos treated at 30% epiboly, which does not cause NTDs. This screen identified over 3,000 transcripts with potential roles in anterior neurulation. Expression of several genes encoding components of tight and adherens junctions was significantly reduced, supporting the model that Nodal signaling regulates formation of the neuroepithelium. mRNAs involved in Wnt, FGF, and BMP signaling were also differentially expressed, suggesting these pathways might regulate anterior neurulation. In support of this, we found that pharmacological inhibition of FGF-receptor function causes an open anterior NTD as well as loss of mesodermal derivatives. This suggests that Nodal and FGF signaling both promote anterior neurulation through induction of head mesoderm.
Collapse
Affiliation(s)
- Lexy M Kindt
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | - Alicia R Coughlin
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | | | - Haley N Ersfeld
- Department of Biology, University of Minnesota Duluth, Duluth
| | - Marshall Hampton
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth.,Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth
| | - Jennifer O Liang
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| |
Collapse
|
39
|
Huang D, Wang Y, Tang J, Luo S. Molecular mechanisms of suppressor of fused in regulating the hedgehog signalling pathway. Oncol Lett 2018; 15:6077-6086. [PMID: 29725392 DOI: 10.3892/ol.2018.8142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Highly conserved throughout evolution, the hedgehog (Hh) signalling pathway has been demonstrated to be involved in embryonic development, stem cell maintenance and tissue homeostasis in animals ranging from invertebrates to vertebrates. In the human body, a variety of cancer types are associated with the aberrantly activated Hh signalling pathway. Multiple studies have revealed suppressor of fused (Sufu) as a key negative regulator of this signalling pathway. In vertebrates, Sufu primarily functions as a tumor suppressor factor by interacting with and inhibiting glioma-associated oncogene homologues (GLIs), which are the terminal transcription factors of the Hh signalling pathway and belong to the Kruppel family of zinc finger proteins; by contrast, the regulation of Sufu itself remains relatively unclear. In the present review article, we focus on the effects of Sufu on the Hh signalling pathway in tumourigenesis and the molecular mechanisms underlying the regulation of GLI by Sufu. In addition, the factors modulating the activity of Sufu at post-transcriptional levels are also discussed.
Collapse
Affiliation(s)
- Dengliang Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yiting Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiabin Tang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
40
|
Shi X, Wei S, Simms KJ, Cumpston DN, Ewing TJ, Zhang P. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection. Front Immunol 2018. [PMID: 29535725 PMCID: PMC5834434 DOI: 10.3389/fimmu.2018.00349] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 107 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2–SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition of increase in blood granulocytes following bacteremia. Our results indicate that SHH signaling is critically important in the regulation of hematopoietic stem/progenitor cell activation and reprogramming during the granulopoietic response to serious bacterial infection.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Shengcai Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kevin J Simms
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Devan N Cumpston
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Thomas J Ewing
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
41
|
Rao R, Salloum R, Xin M, Lu QR. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis. Cell Cycle 2018; 15:1325-30. [PMID: 27052725 DOI: 10.1080/15384101.2016.1164371] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are critical players in tumor growth and progression. The redundant roles of GPCRs in tumor development confound effective treatment; therefore, targeting a single common signaling component downstream of these receptors may be efficacious. GPCRs transmit signals through heterotrimeric G proteins composed of Gα and Gβγ subunits. Hyperactive Gαs signaling can mediate tumor progression in some tissues; however, recent work in medulloblastoma and basal cell carcinoma revealed that Gαs can also function as a tumor suppressor in neoplasms derived from ectoderm cells including neural and epidermal stem/progenitor cells. In these stem-cell compartments, signaling through Gαs suppresses self-renewal by inhibiting the Sonic Hedgehog (SHH) and Hippo pathways. The loss of GNAS, which encodes Gαs, leads to activation of these pathways, over-proliferation of progenitor cells, and tumor formation. Gαs activates the cAMP-dependent protein kinase A (PKA) signaling pathway and inhibits activation of SHH effectors Smoothened-Gli. In addition, Gαs-cAMP-PKA activation negatively regulates the Hippo pathway by blocking the NF2-LATS1/2-Yap signaling. In this review, we will address the novel function of the signaling network regulated by Gαs in suppression of SHH-driven tumorigenesis and the therapeutic approaches that can be envisioned to harness this pathway to inhibit tumor growth and progression.
Collapse
Affiliation(s)
- Rohit Rao
- a University of Cincinnati Medical Scientist Training Program , Cincinnati , OH , USA
| | - Ralph Salloum
- b Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Mei Xin
- b Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Q Richard Lu
- b Brain Tumor Center, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
42
|
Lupu FI, Burnett JB, Eggenschwiler JT. Cell cycle-related kinase regulates mammalian eye development through positive and negative regulation of the Hedgehog pathway. Dev Biol 2017; 434:24-35. [PMID: 29166577 DOI: 10.1016/j.ydbio.2017.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023]
Abstract
Cell cycle-related kinase (CCRK) is a conserved regulator of ciliogenesis whose loss in mice leads to a wide range of developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, and microphthalmia. Here, we investigate the role of CCRK in mouse eye development. Ccrk mutants show dramatic patterning defects, with an expansion of the optic stalk domain into the optic cup, as well as an expansion of the retinal pigment epithelium (RPE) into neural retina (NR) territory. In addition, Ccrk mutants display a shortened optic stalk. These defects are associated with bimodal changes in Hedgehog (Hh) pathway activity within the eye, including the loss of proximal, high level responses but a gain in distal, low level responses. We simultaneously removed the Hh activator GLI2 in Ccrk mutants (Ccrk-/-;Gli2-/-), which resulted in rescue of optic cup patterning and exacerbation of optic stalk length defects. Next, we disrupted the Hh pathway antagonist GLI3 in mutants lacking CCRK (Ccrk-/-;Gli3-/-), which lead to even greater expansion of the RPE markers into the NR domain and a complete loss of NR specification within the optic cup. These results indicate that CCRK functions in eye development by both positively and negatively regulating the Hh pathway, and they reveal distinct requirements for Hh signaling in patterning and morphogenesis of the eyes.
Collapse
Affiliation(s)
- Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
43
|
Wu C, Li J, Peterson A, Tao K, Wang B. Loss of dynein-2 intermediate chain Wdr34 results in defects in retrograde ciliary protein trafficking and Hedgehog signaling in the mouse. Hum Mol Genet 2017; 26:2386-2397. [PMID: 28379358 DOI: 10.1093/hmg/ddx127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/28/2017] [Indexed: 11/14/2022] Open
Abstract
The Wdr34 gene encodes an intermediate chain of cytoplasmic dynein 2, the motor for retrograde intraflagellar transport (IFT) in primary cilia. Although mutations in human WDR34 have recently been reported, the association of WDR34 function with Hedgehog (Hh) signaling has not been established, and actual cilia defects in the WDR34 mutant cells have also not been completely characterized. In the present study, we show that Wdr34 mutant mice die in midgestation and exhibit open brain and polydactyly phenotypes. Several Hh-dependent ventral neural cell types are not specified in the mutant neural tube. The expression of the direct Hh targets, Gli1 and Patched 1, is inhibited, while the expression of limb patterning genes that are normally inhibited by the Gli3 repressor is anteriorly expanded in mutant limbs. Comparison of cilia phenotype and function among wild type, Dnchc2 (dynein 2 heavy chain), and Wdr34 mutant cells demonstrates that cilia in both Dnchc2 and Wdr34 mutant cells are stumpy. Several ciliary proteins examined abnormally accumulate in the cilia of both mutant cells. Consistent with its function, overexpressed Wdr34 is occasionally localized to cilia, and Wdr34 is required for the ciliary localization of dynein 2 light intermediate chain Lic3. More interestingly, we show that both Dnchc2 and Wdr34 act between Smo and Gli2/Gli3 in the Hh pathway. Therefore, like Dnchc2, Wdr34 is required for ciliogenesis, retrograde ciliary protein trafficking, and the regulation of Gli2/Gli3 activators and repressors. Furthermore, both Wdr34 and Dnchc2 promote microtubule growth, a novel dynein 2 function in a non-cilia structure.
Collapse
Affiliation(s)
- Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Andrew Peterson
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, W404, New York, NY 10065,USA.,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, W404, New York, NY 10065, USA
| |
Collapse
|
44
|
Primary Cilium-Dependent Signaling Mechanisms. Int J Mol Sci 2017; 18:ijms18112272. [PMID: 29143784 PMCID: PMC5713242 DOI: 10.3390/ijms18112272] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023] Open
Abstract
Primary cilia are hair-like organelles and play crucial roles in vertebrate development, organogenesis, health, and many genetic disorders. A primary cilium is a mechano-sensory organelle that responds to mechanical stimuli in the micro-environment. A cilium is also a chemosensor that senses chemical signals surrounding a cell. The overall function of a cilium is therefore to act as a communication hub to transfer extracellular signals into intracellular responses. Although intracellular calcium has been one of the most studied signaling messengers that transmit extracellular signals into the cells, calcium signaling by various ion channels remains a topic of interest in the field. This may be due to a broad spectrum of cilia functions that are dependent on or independent of utilizing calcium as a second messenger. We therefore revisit and discuss the calcium-dependent and calcium-independent ciliary signaling pathways of Hedgehog, Wnt, PDGFR, Notch, TGF-β, mTOR, OFD1 autophagy, and other GPCR-associated signaling. All of these signaling pathways play crucial roles in various cellular processes, such as in organ and embryonic development, cardiac functioning, planar cell polarity, transactivation, differentiation, the cell cycle, apoptosis, tissue homeostasis, and the immune response.
Collapse
|
45
|
Abstract
The transcriptional output of the Sonic Hedgehog morphogenic pathway is orchestrated by three Krüppel family transcription factors, Gli1 to -3, which undergo extensive posttranslational modifications, including ubiquitination and SUMOylation. Here, we report that the sentrin-specific peptidase SENP1 is the specific deSUMOylation enzyme for Gli1. We show that SUMOylation stabilizes Gli1 by competing with ubiquitination at conserved lysine residues and that SUMOylated Gli1 is enriched in the nucleus, suggesting that SUMOylation is a nuclear localization signal for Gli1. Finally, we show that small interfering RNA (siRNA)-mediated knockdown of SENP1 augments the ability of Shh to sustain the proliferation of cerebellar granule cell precursors, demonstrating the physiological significance of the negative regulation of Shh signaling by SENP1.
Collapse
|
46
|
Wang C, Li J, Meng Q, Wang B. Three Tctn proteins are functionally conserved in the regulation of neural tube patterning and Gli3 processing but not ciliogenesis and Hedgehog signaling in the mouse. Dev Biol 2017; 430:156-165. [PMID: 28800946 DOI: 10.1016/j.ydbio.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 01/10/2023]
Abstract
Tctn1, Tctn2, and Tctn3 are membrane proteins that localize at the transition zone of primary cilia. Tctn1 and Tctn2 mutations have been reported in both humans and mice, but Tctn3 mutations have been reported only in humans. It is also not clear whether the three Tctn proteins are functionally conserved with respect to ciliogenesis and Hedgehog (Hh) signaling. In the present study, we report that loss of Tctn3 gene function in mice results in a decrease in ciliogenesis and Hh signaling. Consistent with this, Tctn3 mutant mice exhibit holoprosencephaly and randomized heart looping and lack the floor plate in the neural tube, the phenotypes similar to those of Tctn1 and Tctn2 mutants. We also show that overexpression of Tctn3, but not Tctn1 or Tctn2, can rescue ciliogenesis in Tctn3 mutant cells. Similarly, replacement of Tctn3 with Tctn1 or Tctn2 in the Tctn3 gene locus results in reduced ciliogenesis and Hh signaling, holoprosencephaly, and randomized heart looping. Surprisingly, however, the neural tube patterning and the proteolytic processing of Gli3 (a transcription regulator for Hh signaling) into a repressor, both of which are usually impaired in ciliary gene mutants, are normal. These results suggest that Tctn1, Tctn2, and Tctn3 are functionally divergent with respect to their role in ciliogenesis and Hh signaling but conserved in neural tube patterning and Gli3 processing.
Collapse
Affiliation(s)
- Chengbing Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Jia Li
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.
| |
Collapse
|
47
|
Burnett JB, Lupu FI, Eggenschwiler JT. Proper ciliary assembly is critical for restricting Hedgehog signaling during early eye development in mice. Dev Biol 2017; 430:32-40. [PMID: 28778798 DOI: 10.1016/j.ydbio.2017.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
Patterning of the vertebrate eye into optic stalk, retinal pigment epithelium (RPE) and neural retina (NR) territories relies on a number of signaling pathways, but how these signals are interpreted by optic progenitors is not well understood. The primary cilium is a microtubule-based organelle that is essential for Hedgehog (Hh) signaling, but it has also been implicated in the regulation of other signaling pathways. Here, we show that the optic primordium is ciliated during early eye development and that ciliogenesis is essential for proper patterning and morphogenesis of the mouse eye. Ift172 mutants fail to generate primary cilia and exhibit patterning defects that resemble those of Gli3 mutants, suggesting that cilia are required to restrict Hh activity during eye formation. Ift122 mutants, which produce cilia with abnormal morphology, generate optic vesicles that fail to invaginate to produce the optic cup. These mutants also lack formation of the lens, RPE and NR. Such phenotypic features are accompanied by strong, ectopic Hh pathway activity, evidenced by altered gene expression patterns. Removal of GLI2 from Ift122 mutants rescued several aspects of optic cup and lens morphogenesis as well as RPE and NR specification. Collectively, our data suggest that proper assembly of primary cilia is critical for restricting the Hedgehog pathway during eye formation in the mouse.
Collapse
Affiliation(s)
- Jacob B Burnett
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | - Floria I Lupu
- Department of Genetics, University of Georgia, Athens, GA 30602, United States
| | | |
Collapse
|
48
|
Li J, Wang C, Wu C, Cao T, Xu G, Meng Q, Wang B. PKA-mediated Gli2 and Gli3 phosphorylation is inhibited by Hedgehog signaling in cilia and reduced in Talpid3 mutant. Dev Biol 2017; 429:147-157. [PMID: 28673820 DOI: 10.1016/j.ydbio.2017.06.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Hedgehog (Hh) signaling is thought to occur in primary cilia, but the molecular basis of Gli2 and Gli3 activation by Hh signaling in cilia is unknown. Similarly, how ciliary gene mutations result in reduced Gli3 processing that generates a repressor is also not clear. Here we show that Hh signaling inhibits Gli2 and Gli3 phosphorylation by protein kinase A (PKA) in cilia. The cilia related gene Talpid3 (Ta3) mutation results in the reduced processing and phosphorylation of Gli2 and Gli3. Interestingly, Ta3 interacts and colocalizes with PKA regulatory subunit PKARIIβ at centrioles in the cell. The centriolar localization and PKA binding regions are located in the N- and C-terminal regions of Ta3, respectively. PKARIIβ fails to localize at centrioles in some Ta3 mutant cells. Therefore, our study provides the direct evidence that Gli2 and Gli3 are dephosphorylated and activated in cilia and that impaired Gli2 and Gli3 processing in Ta3 mutant is at least in part due to a decrease in Gli2 and Gli3 phosphorylation.
Collapse
Affiliation(s)
- Jia Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China; Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Chengbing Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA
| | - Chuanqing Wu
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ting Cao
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, W404, New York, NY 10065, USA.
| |
Collapse
|
49
|
Pak E, Segal RA. Hedgehog Signal Transduction: Key Players, Oncogenic Drivers, and Cancer Therapy. Dev Cell 2017; 38:333-44. [PMID: 27554855 DOI: 10.1016/j.devcel.2016.07.026] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Hedgehog (Hh) signaling pathway governs complex developmental processes, including proliferation and patterning within diverse tissues. These activities rely on a tightly regulated transduction system that converts graded Hh input signals into specific levels of pathway activity. Uncontrolled activation of Hh signaling drives tumor initiation and maintenance. However, recent entry of pathway-specific inhibitors into the clinic reveals mixed patient responses and thus prompts further exploration of pathway activation and inhibition. In this review, we share emerging insights into regulated and oncogenic Hh signaling, supplemented with updates on the development and use of Hh pathway-targeted therapies.
Collapse
Affiliation(s)
- Ekaterina Pak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Zhang Z, Shen L, Law K, Zhang Z, Liu X, Hua H, Li S, Huang H, Yue S, Hui CC, Cheng SY. Suppressor of Fused Chaperones Gli Proteins To Generate Transcriptional Responses to Sonic Hedgehog Signaling. Mol Cell Biol 2017; 37:e00421-16. [PMID: 27849569 PMCID: PMC5247608 DOI: 10.1128/mcb.00421-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1-/-, Sufu-/-, and Ptch1-/-; Sufu-/- double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Longyan Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kelvin Law
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaotong Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hu Hua
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sanen Li
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huijie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chi-Chung Hui
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|