1
|
Kong D, Zhao X, Pan Y, Song N. Gonadal transcriptome analysis of sex-biased gene and genome-wide investigation of dmrt gene family in Acanthogobius ommaturus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101204. [PMID: 38342067 DOI: 10.1016/j.cbd.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Acanthogobius ommaturus is one of the largest goby fish, and widely distributed in the Northwestern Pacific as an annual benthic fish. This study aims to report the gonadal transcriptome of A. ommaturus and identify differentially expressed genes (DEGs) between sexes. A total of 5460 (27.94 %) DEGs were detected from genome, with 3301 (16.89 %) biased towards males and 2159 (11.05 %) towards females. Analysis of 76 known vertebrate sex-related genes revealed multiple key genes, including the male-biased genes dmrt1 (Doublesex and Mab-3 related transcription factor 1) and amh (Anti-Mullerian Hormone), and the female-biased genes foxl2 (Forkhead Box L2) and cyp19a1a (Cytochrome P450 Aromatase 19 Subfamily A1). Furthermore, a genome-wide gene family analysis focused on the most significantly differentially expressed male-biased gene, dmrt1, was conducted using the chromosomal-level genome. Six Aodmrt genes were identified and subjected to phylogenetic and protein interaction network analyses. To validate the expression pattern, quantitative real-time PCR (qRT-PCR) was performed and compared with gonadal transcriptome data. The results showed that only dmrt1 exhibited significant male-bias, while the expression levels and sex differences of other dmrt genes in the gonads were inconclusive. Interestingly, the other dmrt genes displayed higher expression levels in other tissues, suggesting currently unknown functions. In conclusion, this study provides valuable genetic information contributing to the understanding of the sex determination mechanism of A. ommaturus and bony fish.
Collapse
Affiliation(s)
- Delong Kong
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Xiang Zhao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Yu Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Na Song
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
2
|
Shi Y, Qiu J, Li X, Lin Y, Li W, Hou J, Fu Y. Role of Thyroid Hormone in Dynamic Variation of gdf6a Gene during Metamorphosis of Paralichthys olivaceus. Int J Mol Sci 2023; 25:23. [PMID: 38203198 PMCID: PMC10779056 DOI: 10.3390/ijms25010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRβ. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.
Collapse
Affiliation(s)
- Yaxin Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xike Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yue Lin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jilun Hou
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (J.Q.); (X.L.); (Y.L.); (W.L.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Ong ALC, Kokaji T, Kishi A, Takihara Y, Shinozuka T, Shimamoto R, Isotani A, Shirai M, Sasai N. Acquisition of neural fate by combination of BMP blockade and chromatin modification. iScience 2023; 26:107887. [PMID: 37771660 PMCID: PMC10522999 DOI: 10.1016/j.isci.2023.107887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.
Collapse
Affiliation(s)
- Agnes Lee Chen Ong
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toshiya Kokaji
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Arisa Kishi
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yoshihiro Takihara
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ren Shimamoto
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
4
|
Lu K, Liang XF, Tang SL, Wu J, Zhang L, Wang Y, Chai F. Role of short-wave-sensitive 1 (sws1) in cone development and first feeding in larval zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:801-813. [PMID: 37495865 DOI: 10.1007/s10695-023-01213-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Color vision is mediated by the expression of different major visual pigment proteins (opsins) on retinal photoreceptors. Vertebrates have four classes of cone opsins that are most sensitive to different wavelengths of light: short wavelength sensitive 1 (SWS1), short wavelength sensitive 2 (SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). UV wavelengths play important roles in foraging and communication. However, direct evidence provide links between sws1 and first feeding is lacking. Here, CRISPR/Cas9 technology was performed to generate mutant zebrafish lines with sws1 deletion. sws1 mutant zebrafish larvae exhibited decreased sws1, rh2-2, and lws1 expression, and increased rod gene (rho and gnat1) expression. Furthermore, the sws1-deficient larvae exhibited significantly reduced food intake, and the orexigenic genes npy and agrp signaling were upregulated at 6 days postfertilization (dpf). The transcription expression of sws1 and rh2-3 genes decreased in sws1-/- adults compared to wild type. Surprisingly, the results of feeding at the adult stage were not the same with larvae. sws1 deficiency did not affect food intake and appetite gene expression at adult stages. These results reveal a role for sws1 in normal cone development and first feeding in larval zebrafish.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Shu-Lin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Lixin Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yuye Wang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Farui Chai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
5
|
Farre AA, Sun C, Starostik MR, Hunter SS, English MA, Duncan A, Santhanam A, Shihabeddin E, O’Brien J, Swaroop A, Stenkamp DL. Long wavelength-sensing cones of zebrafish retina exhibit multiple layers of transcriptional heterogeneity. Front Cell Neurosci 2023; 17:1214084. [PMID: 37519633 PMCID: PMC10382231 DOI: 10.3389/fncel.2023.1214084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Understanding how photoreceptor genes are regulated is important for investigating retinal development and disease. While much is known about gene regulation in cones, the mechanism by which tandemly-replicated opsins, such as human long wavelength-sensitive and middle wavelength-sensitive opsins, are differentially regulated remains elusive. In this study, we aimed to further our understanding of transcriptional heterogeneity in cones that express tandemly-replicated opsins and the regulation of such differential expression using zebrafish, which express the tandemly-replicated opsins lws1 and lws2. Methods We performed bulk and single cell RNA-Seq of LWS1 and LWS2 cones, evaluated expression patterns of selected genes of interest using multiplex fluorescence in situ hybridization, and used exogenous thyroid hormone (TH) treatments to test selected genes for potential control by thyroid hormone: a potent, endogenous regulator of lws1 and lws2 expression. Results Our studies indicate that additional transcriptional differences beyond opsin expression exist between LWS1 and LWS2 cones. Bulk RNA-Seq results showed 95 transcripts enriched in LWS1 cones and 186 transcripts enriched in LWS2 cones (FC > 2, FDR < 0.05). In situ hybridization results also reveal underlying heterogeneity within the lws1- and lws2-expressing populations. This heterogeneity is evident in cones of mature zebrafish, and further heterogeneity is revealed in transcriptional responses to TH treatments. Discussion We found some evidence of coordinate regulation of lws opsins and other genes by exogenous TH in LWS1 vs. LWS2 cones, as well as evidence of gene regulation not mediated by TH. The transcriptional differences between LWS1 and LWS2 cones are likely controlled by multiple signals, including TH.
Collapse
Affiliation(s)
- Ashley A. Farre
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Margaret R. Starostik
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Milton A. English
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Audrey Duncan
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Abirami Santhanam
- Department of Vision Science, University of Houston College of Optometry, Houston, TX, United States
| | - Eyad Shihabeddin
- MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Department of Vision Science, University of Houston College of Optometry, Houston, TX, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
6
|
Wei WY, Gong Y, Guo XF, Liu M, Zhou YL, Li Z, Zhou L, Wang ZW, Gui JF. Gonadal transcriptomes reveal sex-biased expression genes associated with sex determination and differentiation in red-tail catfish (Hemibagrus wyckioides). BMC Genomics 2023; 24:183. [PMID: 37024792 PMCID: PMC10077648 DOI: 10.1186/s12864-023-09264-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish. RESULTS In this study, we performed the first transcriptomic analysis of male and female gonads at four developmental stages at 10, 18, 30, and 48 days post hatching (dph) using RNA-seq technology. A total of 23,588 genes were screened in 24 sequenced samples, of which 28, 213, 636, and 1381 differentially expressed genes (DEGs) were detected at four developmental stages, respectively. Seven candidate genes of sex determination and differentiation were further identified. Real-time quantitative PCR (RT-qPCR) further confirmed that anti-Mullerian hormone (amh), growth differentiation factor 6a (gdf6a), testis-specific gene antigen 10 (tsga10), and cytochrome P450 family 17 subfamily A (cyp17a) were highly expressed mainly in the male, while cytochrome P450 family 19 subfamily A polypeptide 1b (cyp19a1b), forkhead box L2 (foxl2), and hydroxysteroid 17-beta dehydrogenase 1 (hsd17b1) were highly expressed in the female. The KEGG pathway enrichment data showed that these identified DEGs were mainly involved in steroid hormone biosynthesis and TGF-β signaling pathways. CONCLUSIONS Based on RNA-seq data of gonads at the early developmental stages, seven DEGs shared by the four developmental stages were identified, among which amh and gdf6a may be the male-biased expression genes, while foxl2, cyp19a1b and hsd17b1 may be the female-biased expression genes in red-tail catfish. Our study will provide crucial genetic information for the research on sex control in red-tail catfish, as well as for exploring the evolutionary processes of sex determination mechanisms in fish.
Collapse
Affiliation(s)
- Wen-Yu Wei
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Fen Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Lin Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Fox SC, Widen SA, Asai-Coakwell M, Havrylov S, Benson M, Prichard LB, Baddam P, Graf D, Lehmann OJ, Waskiewicz AJ. BMP3 is a novel locus involved in the causality of ocular coloboma. Hum Genet 2022; 141:1385-1407. [PMID: 35089417 DOI: 10.1007/s00439-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.
Collapse
Affiliation(s)
- Sabrina C Fox
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Vienna BioCenter, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mika Asai-Coakwell
- Department of Animal and Poultry and Animal Science, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Matthew Benson
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Lisa B Prichard
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada. .,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
9
|
Retinal Pigment Epithelium and Neural Retinal Progenitors Interact via Semaphorin 6D to Facilitate Optic Cup Morphogenesis. eNeuro 2021; 8:ENEURO.0053-21.2021. [PMID: 33811086 PMCID: PMC8116109 DOI: 10.1523/eneuro.0053-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cell movement propels embryonic tissues to acquire shapes required for mature function. The movements are driven both by acto-myosin signaling and by cells interacting with the extracellular matrix (ECM). Unknown is whether cell-cell interactions within a tissue are also required, and the molecular mechanisms by which such communication might occur. Here, we use the developing visual system of zebrafish as a model to understand the role cell-cell communication plays in tissue morphogenesis in the embryonic nervous system. We identify that cell-cell-mediated contact between two distinct cell populations, progenitors of the neural retina and retinal pigment epithelium (RPE), facilitates epithelial flow to produce the mature cupped retina. We identify for the first time the need in eye morphogenesis for distinct populations of progenitors to interact, and suggest a novel role for a member of a key developmental signaling family, the transmembrane Semaphorin6d, as mediating communication between distinct cell types to control tissue morphogenesis.
Collapse
|
10
|
Knickmeyer MD, Mateo JL, Heermann S. BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish. Int J Mol Sci 2021; 22:ijms22094560. [PMID: 33925390 PMCID: PMC8123821 DOI: 10.3390/ijms22094560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Decussation of axonal tracts is an important hallmark of vertebrate neuroanatomy resulting in one brain hemisphere controlling the contralateral side of the body and also computing the sensory information originating from that respective side. Here, we show that BMP interferes with optic chiasm formation and RGC pathfinding in zebrafish. Experimental induction of BMP4 at 15 hpf results in a complete ipsilateral projection of RGC axons and failure of commissural connections of the forebrain, in part as the result of an interaction with shh signaling, transcriptional regulation of midline guidance cues and an affected optic stalk morphogenesis. Experimental induction of BMP4 at 24 hpf, resulting in only a mild repression of forebrain shh ligand expression but in a broad expression of pax2a in the diencephalon, does not per se prevent RGC axons from crossing the midline. It nevertheless shows severe pathologies of RGC projections e.g., the fasciculation of RGC axons with the ipsilateral optic tract resulting in the innervation of one tectum by two eyes or the projection of RGC axons in the direction of the contralateral eye.
Collapse
Affiliation(s)
- Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Juan L. Mateo
- Departamento de Informática, Universidad de Oviedo, Jesús Arias de Velasco, 33005 Oviedo, Spain;
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany;
- Correspondence:
| |
Collapse
|
11
|
Nadolski NJ, Balay SD, Wong CXL, Waskiewicz AJ, Hocking JC. Abnormal Cone and Rod Photoreceptor Morphogenesis in gdf6a Mutant Zebrafish. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32293666 PMCID: PMC7401959 DOI: 10.1167/iovs.61.4.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.
Collapse
|
12
|
Yoon KH, Fox SC, Dicipulo R, Lehmann OJ, Waskiewicz AJ. Ocular coloboma: Genetic variants reveal a dynamic model of eye development. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:590-610. [PMID: 32852110 DOI: 10.1002/ajmg.c.31831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
Ocular coloboma is a congenital disorder of the eye where a gap exists in the inferior retina, lens, iris, or optic nerve tissue. With a prevalence of 2-19 per 100,000 live births, coloboma, and microphthalmia, an associated ocular disorder, represent up to 10% of childhood blindness. It manifests due to the failure of choroid fissure closure during eye development, and it is a part of a spectrum of ocular disorders that include microphthalmia and anophthalmia. Use of genetic approaches from classical pedigree analyses to next generation sequencing has identified more than 40 loci that are associated with the causality of ocular coloboma. As we have expanded studies to include singleton cases, hereditability has been very challenging to prove. As such, researchers over the past 20 years, have unraveled the complex interrelationship amongst these 40 genes using vertebrate model organisms. Such research has greatly increased our understanding of eye development. These genes function to regulate initial specification of the eye field, migration of retinal precursors, patterning of the retina, neural crest cell biology, and activity of head mesoderm. This review will discuss the discovery of loci using patient data, their investigations in animal models, and the recent advances stemming from animal models that shed new light in patient diagnosis.
Collapse
Affiliation(s)
- Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
Eckert P, Knickmeyer MD, Heermann S. In Vivo Analysis of Optic Fissure Fusion in Zebrafish: Pioneer Cells, Basal Lamina, Hyaloid Vessels, and How Fissure Fusion is Affected by BMP. Int J Mol Sci 2020; 21:ijms21082760. [PMID: 32316164 PMCID: PMC7215994 DOI: 10.3390/ijms21082760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Colobomata, persistent optic fissures, frequently cause congenital blindness. Here, we focused on optic fissure fusion using in vivo time-lapse imaging in zebrafish. We identified the fusion initiating cells, which we termed “pioneer cells.” Based on morphology, localization, and downregulation of the neuroretinal (NR) precursor marker rx2, these cells could be considered as retinal pigment epithelial (RPE) progenitors. Notably, pioneer cells regain rx2 expression and integrate into the NR after fusion, indicating that they do not belong to the pool of RPE progenitors, supported by the lack of RPE marker expression in pioneer cells. They establish the first cellular contact between the margins in the proximal fissure region and separate the hyaloid artery and vein. After initiation, the fusion site is progressing distally, increasing the distance between the hyaloid artery and vein. A timed BMP (Bone Morphogenetic Protein) induction, resulting in coloboma, did not alter the morphology of the fissure margins, but it did affect the expression of NR and RPE markers within the margins. In addition, it resulted in a persisting basal lamina and persisting remnants of periocular mesenchyme and hyaloid vasculature within the fissure, supporting the necessity of BMP antagonism within the fissure margins. The hampered fissure fusion had severe effects on the vasculature of the eye.
Collapse
Affiliation(s)
- Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Correspondence:
| |
Collapse
|
14
|
Meyer DN, Crofts EJ, Akemann C, Gurdziel K, Farr R, Baker BB, Weber D, Baker TR. Developmental exposure to Pb 2+ induces transgenerational changes to zebrafish brain transcriptome. CHEMOSPHERE 2020; 244:125527. [PMID: 31816550 PMCID: PMC7015790 DOI: 10.1016/j.chemosphere.2019.125527] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 05/24/2023]
Abstract
Lead (Pb2+) is a major public health hazard for urban children, with profound and well-characterized developmental and behavioral implications across the lifespan. The ability of early Pb2+ exposure to induce epigenetic changes is well-established, suggesting that Pb2+-induced neurobehavioral deficits may be heritable across generations. Understanding the long-term and multigenerational repercussions of lead exposure is crucial for clarifying both the genotypic alterations behind these behavioral outcomes and the potential mechanism of heritability. To study this, zebrafish (Danio rerio) embryos (<2 h post fertilization; EK strain) were exposed for 24 h to waterborne Pb2+ at a concentration of 10 μM. This exposed F0 generation was raised to adulthood and spawned to produce the F1 generation, which was subsequently spawned to produce the F2 generation. Previous avoidance conditioning studies determined that a 10 μM Pb2+ dose resulted in learning impairments persisting through the F2 generation. RNA was extracted from control- and 10 μM Pb2+-lineage F2 brains, (n = 10 for each group), sequenced, and transcript expression was quantified utilizing Quant-Seq. 648 genes were differentially expressed in the brains of F2 lead-lineage fish versus F2 control-lineage fish. Pathway analysis revealed altered genes in processes including synaptic function and plasticity, neurogenesis, endocrine homeostasis, and epigenetic modification, all of which are implicated in lead-induced neurobehavioral deficits and/or their inheritance. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational health effects of developmental lead exposure.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Emily J Crofts
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Camille Akemann
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Katherine Gurdziel
- Applied Genome Technology Center, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Rebecca Farr
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA; Division of Laboratory Animal Resources, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Daniel Weber
- Children's Environmental Health Sciences Core Center, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Tracie R Baker
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA; Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Eckert P, Knickmeyer MD, Schütz L, Wittbrodt J, Heermann S. Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biol 2020; 9:180179. [PMID: 30958096 PMCID: PMC6395882 DOI: 10.1098/rsob.180179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Optic cup morphogenesis is an intricate process. Especially, the formation of the optic fissure is not well understood. Persisting optic fissures, termed coloboma, are frequent causes for congenital blindness. Even though the defective fusion of the fissure margins is the most acknowledged reason for coloboma, highly variable morphologies of coloboma phenotypes argue for a diverse set of underlying pathomechanisms. Here, we investigate optic fissure morphogenesis in zebrafish to identify potential morphogenetic defects resulting in coloboma. We show that the formation of the optic fissure depends on tissue flow movements, integrated into the bilateral distal epithelial flow forming the optic cup. On the temporal side, the distal flow translates into a ventral perpendicular flow, shaping the temporal fissure margin. On the nasal side, however, the distal flow is complemented by tissue derived from the optic stalk, shaping the nasal fissure margin. Notably, a distinct population of TGFβ-signalling positive cells is translocated from the optic stalk into both fissure margins. Furthermore, we show that induced BMP signalling as well as Wnt-signalling inhibition result in morphogenetic defects of the optic fissure. Our data also indicate that morphogenesis is crucial for a proper positioning of pre-specified dorsal–ventral optic cup domains.
Collapse
Affiliation(s)
- Priska Eckert
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Max D Knickmeyer
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany.,2 Faculty of Biology, University of Freiburg , Schaenzlestrasse 1, 79104 Freiburg , Germany
| | - Lucas Schütz
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Joachim Wittbrodt
- 3 Centre for Organismal Studies, Heidelberg University , 69120 Heidelberg , Germany
| | - Stephan Heermann
- 1 Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg , 79104 Freiburg , Germany
| |
Collapse
|
16
|
Yan X, Atorf J, Ramos D, Thiele F, Weber S, Dalke C, Sun M, Puk O, Michel D, Fuchs H, Klaften M, Przemeck GKH, Sabrautzki S, Favor J, Ruberte J, Kremers J, de Angelis MH, Graw J, German Mouse Clinic Consortium. Mutation in Bmpr1b Leads to Optic Disc Coloboma and Ventral Retinal Gliosis in Mice. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32106289 PMCID: PMC7329948 DOI: 10.1167/iovs.61.2.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose The clinical phenotype of retinal gliosis occurs in different forms; here, we characterize one novel genetic feature, (i.e., signaling via BMP-receptor 1b). Methods Mouse mutants were generated within a recessive ENU mutagenesis screen; the underlying mutation was identified by linkage analysis and Sanger sequencing. The eye phenotype was characterized by fundoscopy, optical coherence tomography, optokinetic drum, electroretinography, and visual evoked potentials, by histology, immunohistology, and electron-microscopy. Results The mutation affects intron 10 of the Bmpr1b gene, which is causative for skipping of exon 10. The expression levels of pSMAD1/5/8 were reduced in the mutant retina. The loss of BMPR1B-mediated signaling leads to optic nerve coloboma, gliosis in the optic nerve head and ventral retina, defective optic nerve axons, and irregular retinal vessels. The ventral retinal gliosis is proliferative and hypertrophic, which is concomitant with neuronal delamination and the reduction of retinal ganglion cells (RGCs); it is dominated by activated astrocytes overexpressing PAX2 and SOX2 but not PAX6, indicating that they may retain properties of gliogenic precursor cells. The expression pattern of PAX2 in the optic nerve head and ventral retina is altered during embryonic development. These events finally result in reduced electrical transmission of the retina and optic nerve and significantly reduced visual acuity. Conclusions Our study demonstrates that BMPR1B is necessary for the development of the optic nerve and ventral retina. This study could also indicate a new mechanism in the formation of retinal gliosis; it opens new routes for its treatment eventually preventing scar formation in the retina.
Collapse
Affiliation(s)
- Xiaohe Yan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
- School of Optometry, Shenzhen University, Shenzhen, China
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - David Ramos
- Department of Animal Health and Anatomy, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frank Thiele
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Susanne Weber
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Minxuan Sun
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Puk
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dian Michel
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Klaften
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sibylle Sabrautzki
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jack Favor
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jesús Ruberte
- Department of Animal Health and Anatomy, Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, Faculty of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- The German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
17
|
Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors. Gene Expr Patterns 2020; 35:119100. [DOI: 10.1016/j.gep.2020.119100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 01/11/2023]
|
18
|
Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. eLife 2019; 8:50047. [PMID: 31868592 PMCID: PMC6968919 DOI: 10.7554/elife.50047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.
Collapse
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Arvind M Venkatesan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Melissa Guerin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
19
|
Cardozo MJ, Almuedo-Castillo M, Bovolenta P. Patterning the Vertebrate Retina with Morphogenetic Signaling Pathways. Neuroscientist 2019; 26:185-196. [PMID: 31509088 DOI: 10.1177/1073858419874016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.
Collapse
Affiliation(s)
- Marcos J Cardozo
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," (CSIC/UAM), Madrid, Spain.,CIBERER, ISCIII, Madrid, Spain
| |
Collapse
|
20
|
Pereira Piedade W, Veith S, Famulski JK. Ubiquitin-mediated proteasome degradation regulates optic fissure fusion. Biol Open 2019; 8:bio.044974. [PMID: 31189662 PMCID: PMC6602337 DOI: 10.1242/bio.044974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Optic fissure fusion is a critical event during retinal development. Failure of fusion leads to coloboma, a potentially blinding congenital disorder. Pax2a is an essential regulator of optic fissure fusion and the target of numerous morphogenetic pathways. In our current study, we examined the negative regulator of pax2a expression, Nz2, and the mechanism modulating Nlz2 activity during optic fissure fusion. Upregulation of Nlz2 in zebrafish embryos resulted in downregulation of pax2a expression and fissure fusion failure. Conversely, upregulation of pax2a expression also led to fissure fusion failure suggesting Pax2 levels require modulation to ensure proper fusion. Interestingly, we discovered Nlz2 is a target of the E3 ubiquitin ligase Siah. We show that zebrafish siah1 expression is regulated by Hedgehog signaling and that Siah1 can directly target Nlz2 for proteasomal degradation, in turn regulating the levels of pax2a mRNA. Finally, we show that both activation and inhibition of Siah activity leads to failure of optic fissure fusion dependent on ubiquitin-mediated proteasomal degradation of Nlz2. In conclusion, we outline a novel, proteasome-mediated degradation regulatory pathway involved in optic fissure fusion. Summary: Optic fissure fusion, a key retinal morphogenic event highly sensitive to developmental signaling, is directly regulated by ubiquitin-mediated proteasomal degradation uncovering a novel regulatory pathway potentially correlated to incidence of coloboma.
Collapse
Affiliation(s)
| | - Sydney Veith
- University of Kentucky, Department of Biology, 40506, Lexington, KY, USA
| | | |
Collapse
|
21
|
DuVal MG, Allison WT. Photoreceptor Progenitors Depend Upon Coordination of gdf6a, thrβ, and tbx2b to Generate Precise Populations of Cone Photoreceptor Subtypes. Invest Ophthalmol Vis Sci 2019; 59:6089-6101. [PMID: 30592497 DOI: 10.1167/iovs.18-24461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Replacing cone photoreceptors, the units of the retina necessary for daytime vision, depends upon the successful production of a full variety of new cones from, for example, stem cells. Using genetic experiments in a model organism with high cone diversity, zebrafish, we map the intersecting effects of cone development factors gdf6a, tbx2b, and thrβ. Methods We investigated these genes of interest by using genetic combinations of mutants, gene knockdown, and dominant negative gene expression, and then quantified cone subtype outcomes (which normally develop in tightly regulated ratios). Results Gdf6a mutants have reduced blue cones and, discovered here, reduced red cones. In combined gdf6a/tbx2b disruption, the loss of gdf6a in heterozygous tbx2b mutants reduced UV cones. Intriguingly, when we disrupted thrβ in gdf6a mutants by using a thrβ morpholino, their combined early disruption revealed a lamination phenotype. Disrupting thrβ activity via expression of a dominant negative thrβ (dnthrβ) at either early or late retinal development had differential outcomes on red cones (reduced abundance), versus UV and blue cones (increased abundance). By using dnthrβ in gdf6a mutants, we revealed that disrupting thrβ activity did not change gdf6a mutant cone phenotypes. Conclusions Gdf6a loss directly affects blue and red cones and indirectly affects UV cones by increasing sensitivity to additional disruption, such as reduced tbx2b, resulting in fewer UV cones. The effects of thrβ change through photoreceptor development, first promoting red cones and restricting UV cones, and later restricting UV and blue cones. The effects of gdf6a on UV, blue, and red cone development overlap with, but likely supersede, those of thrβ.
Collapse
Affiliation(s)
- Michèle G DuVal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BYL, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW. Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLife 2019; 8:e40093. [PMID: 30777146 PMCID: PMC6380838 DOI: 10.7554/elife.40093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Thomas A Hawkins
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Quenten Schwarz
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Lisa M Lawrence
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Claudia Wierzbicki
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Bowie YL Cheng
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Jingyuan Luo
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | | | - Allison Klosner
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Ian M Sealy
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Jasmine Rowell
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Chintan A Trivedi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Isaac H Bianco
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Miguel L Allende
- Center for Genome RegulationFacultad de Ciencias, Universidad de ChileSantiagoChile
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Gaia Gestri
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
23
|
Transcriptome profiling of zebrafish optic fissure fusion. Sci Rep 2019; 9:1541. [PMID: 30733552 PMCID: PMC6367446 DOI: 10.1038/s41598-018-38379-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Incomplete fusion of the optic fissure leads to ocular coloboma, a congenital eye defect that affects up to 7.5 per 10,000 births and accounts for up to 10 percent of childhood blindness. The molecular and cellular mechanisms that facilitate optic fissure fusion remain elusive. We have profiled global gene expression during optic fissure morphogenesis by transcriptome analysis of tissue dissected from the margins of the zebrafish optic fissure and the opposing dorsal retina before (32 hours post fertilisation, hpf), during (48 hpf) and after (56 hpf) optic fissure fusion. Differential expression analysis between optic fissure and dorsal retinal tissue resulted in the detection of several known and novel developmental genes. The expression of selected genes was validated by qRT-PCR analysis and localisation investigated using in situ hybridisation. We discuss significantly overrepresented functional ontology categories in the context of optic fissure morphogenesis and highlight interesting transcripts from hierarchical clustering for subsequent analysis. We have identified netrin1a (ntn1a) as highly differentially expressed across optic fissure fusion, with a resultant ocular coloboma phenotype following morpholino antisense translation-blocking knockdown and downstream disruption of atoh7 expression. To support the identification of candidate genes in human studies, we have generated an online open-access resource for fast and simple quantitative querying of the gene expression data. Our study represents the first comprehensive analysis of the zebrafish optic fissure transcriptome and provides a valuable resource to facilitate our understanding of the complex aetiology of ocular coloboma.
Collapse
|
24
|
Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, Weiss O, Agarwala S, Inbal A, Lehmann OJ, Waskiewicz AJ. Morphogenetic defects underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 2018. [PMID: 29522511 PMCID: PMC5862500 DOI: 10.1371/journal.pgen.1007246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure. Ocular coloboma is a disease characterized by gaps in the lower portion of the eye and can affect the iris, lens, or retina, and cause loss of vision. Coloboma arises from incomplete closure of a transient fissure on the underside of the developing eye. Therefore, our identification of patients with similar tissue defects, but restricted to the superior half of eye, was surprising. Here, we describe an ocular developmental structure, the superior ocular sulcus, as a potential origin for the congenital disorder superior coloboma. Formation and closure of the sulcus are directed by dorsal-ventral eye patterning, and altered patterning interferes with the role of the sulcus as a pathway for blood vessel growth onto the eye.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Biology, University of Kentucky, Lexington, Unites States of America
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sonya A Widen
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassidy S Bernstein
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Unites States of America.,Institute for Neuroscience, University of Texas at Austin, Austin, Unites States of America
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| | - Andrew J Waskiewicz
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Brorin is required for neurogenesis, gliogenesis, and commissural axon guidance in the zebrafish forebrain. PLoS One 2017; 12:e0176036. [PMID: 28448525 PMCID: PMC5407822 DOI: 10.1371/journal.pone.0176036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Bmps regulate numerous neural functions with their regulators. We previously identified Brorin, a neural-specific secreted antagonist of Bmp signaling, in humans, mice, and zebrafish. Mouse Brorin has two cysteine-rich domains containing 10 cysteine residues in its core region, and these are located in similar positions to those in the cysteine-rich domains of Chordin family members, which are secreted Bmp antagonists. Zebrafish Brorin had two cysteine-rich domains with high similarity to those of mouse Brorin. We herein examined zebrafish brorin in order to elucidate its in vivo actions. Zebrafish brorin was predominantly expressed in developing neural tissues. The overexpression of brorin led to the inactivation of Bmp signaling. On the other hand, the knockdown of brorin resulted in the activation of Bmp signaling and brorin morphants exhibited defective development of the ventral domain in the forebrain. Furthermore, the knockdown of brorin inhibited the generation of γ–aminobutyric acid (GABA)ergic interneurons and oligodendrocytes and promoted the generation of astrocytes in the forebrain. In addition, brorin was required for axon guidance in the forebrain. The present results suggest that Brorin is a secreted Bmp antagonist predominantly expressed in developing neural tissues and that it plays multiple roles in the development of the zebrafish forebrain.
Collapse
|
26
|
Pillay LM, Mackowetzky KJ, Widen SA, Waskiewicz AJ. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation. PLoS One 2016; 11:e0166040. [PMID: 27861498 PMCID: PMC5115706 DOI: 10.1371/journal.pone.0166040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/11/2016] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation.
Collapse
Affiliation(s)
- Laura M Pillay
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Kacey J Mackowetzky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Andrew Jan Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
27
|
Valdivia LE, Lamb DB, Horner W, Wierzbicki C, Tafessu A, Williams AM, Gestri G, Krasnow AM, Vleeshouwer-Neumann TS, Givens M, Young RM, Lawrence LM, Stickney HL, Hawkins TA, Schwarz QP, Cavodeassi F, Wilson SW, Cerveny KL. Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development 2016; 143:1087-98. [PMID: 26893342 PMCID: PMC4852494 DOI: 10.1242/dev.130922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye. Summary: In the vertebrate eye, dorsally expressed Gdf6a limits RA pathway activity to control the transition from proliferation to differentiation, thereby regulating eye size.
Collapse
Affiliation(s)
- Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Dayna B Lamb
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wilson Horner
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Claudia Wierzbicki
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Amanuel Tafessu
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Audrey M Williams
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Anna M Krasnow
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | | | - McKenzie Givens
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Lisa M Lawrence
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Heather L Stickney
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Quenten P Schwarz
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Kara L Cerveny
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
28
|
Huang J, Liu Y, Filas B, Gunhaga L, Beebe DC. Negative and positive auto-regulation of BMP expression in early eye development. Dev Biol 2015; 407:256-64. [PMID: 26407529 DOI: 10.1016/j.ydbio.2015.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 02/09/2023]
Abstract
Previous results have shown that Bone Morphogenetic Protein (BMP) signaling is essential for lens specification and differentiation. How BMP signals are regulated in the prospective lens ectoderm is not well defined. To address this issue we have modulated BMP activity in a chicken embryo pre-lens ectoderm explant assay, and also studied transgenic mice, in which the type I BMP receptors, Bmpr1a and Acvr1, are deleted from the prospective lens ectoderm. Our results show that chicken embryo pre-lens ectoderm cells express BMPs and require BMP signaling for lens specification in vitro, and that in vivo inhibition of BMP signals in the mouse prospective lens ectoderm interrupts lens placode formation and prevents lens invagination. Furthermore, our results provide evidence that BMP expression is negatively auto-regulated in the lens-forming ectoderm, decreasing when the tissue is exposed to exogenous BMPs and increasing when BMP signaling is prevented. In addition, eyes lacking BMP receptors in the prospective lens placode develop coloboma in the adjacent wild type optic cup. In these eyes, Bmp7 expression increases in the ventral optic cup and the normal dorsal-ventral gradient of BMP signaling in the optic cup is disrupted. Pax2 becomes undetectable and expression of Sfrp2 increases in the ventral optic cup, suggesting that increased BMP signaling alter their expression, resulting in failure to close the optic fissure. In summary, our results suggest that negative and positive auto-regulation of BMP expression is important to regulate early eye development.
Collapse
Affiliation(s)
- Jie Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Ying Liu
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamen Filas
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - David C Beebe
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
30
|
Wang X, Lupo G, He R, Barsacchi G, Harris WA, Liu Y. Dorsoventral patterning of the Xenopus eye involves differential temporal changes in the response of optic stalk and retinal progenitors to Hh signalling. Neural Dev 2015; 10:7. [PMID: 25886149 PMCID: PMC4373414 DOI: 10.1186/s13064-015-0035-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/04/2015] [Indexed: 01/20/2023] Open
Abstract
Background Hedgehog (Hh) signals are instrumental to the dorsoventral patterning of the vertebrate eye, promoting optic stalk and ventral retinal fates and repressing dorsal retinal identity. There has been limited analysis, however, of the critical window during which Hh molecules control eye polarity and of the temporal changes in the responsiveness of eye cells to these signals. Results In this study, we used pharmacological and molecular tools to perform stage-specific manipulations of Hh signalling in the developing Xenopus eye. In gain-of-function experiments, most of the eye was sensitive to ventralization when the Hh pathway was activated starting from gastrula/neurula stages. During optic vesicle stages, the dorsal eye became resistant to Hh-dependent ventralization, but this pathway could partially upregulate optic stalk markers within the retina. In loss-of-function assays, inhibition of Hh signalling starting from neurula stages caused expansion of the dorsal retina at the expense of the ventral retina and the optic stalk, while the effects of Hh inhibition during optic vesicle stages were limited to the reduction of optic stalk size. Conclusions Our results suggest the existence of two competence windows during which the Hh pathway differentially controls patterning of the eye region. In the first window, between the neural plate and the optic vesicle stages, Hh signalling exerts a global influence on eye dorsoventral polarity, contributing to the specification of optic stalk, ventral retina and dorsal retinal domains. In the second window, between optic vesicle and optic cup stages, this pathway plays a more limited role in the maintenance of the optic stalk domain. We speculate that this temporal regulation is important to coordinate dorsoventral patterning with morphogenesis and differentiation processes during eye development. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0035-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiumei Wang
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Giuseppe Lupo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Rongqiao He
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| | - Giuseppina Barsacchi
- Dipartimento di Biologia, Unità di Biologia Cellulare e dello Sviluppo, Università di Pisa, SS 12 Abetone e Brennero 4, 56127, Pisa, Italy.
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Ying Liu
- The State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
31
|
Deml B, Kariminejad A, Borujerdi RHR, Muheisen S, Reis LM, Semina EV. Mutations in MAB21L2 result in ocular Coloboma, microcornea and cataracts. PLoS Genet 2015; 11:e1005002. [PMID: 25719200 PMCID: PMC4342166 DOI: 10.1371/journal.pgen.1005002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022] Open
Abstract
Ocular coloboma results from abnormal embryonic development and is often associated with additional ocular and systemic features. Coloboma is a highly heterogeneous disorder with many cases remaining unexplained. Whole exome sequencing from two cousins affected with dominant coloboma with microcornea, cataracts, and skeletal dysplasia identified a novel heterozygous allele in MAB21L2, c.151 C>G, p.(Arg51Gly); the mutation was present in all five family members with the disease and appeared de novo in the first affected generation of the three-generational pedigree. MAB21L2 encodes a protein similar to C. elegans mab-21 cell fate-determining factor; the molecular function of MAB21L2 is largely unknown. To further evaluate the role of MAB21L2, zebrafish mutants carrying a p.(Gln48Serfs*5) frameshift truncation (mab21l2Q48Sfs*5) and a p.(Arg51_Phe52del) in-frame deletion (mab21l2R51_F52del) were developed with TALEN technology. Homozygous zebrafish embryos from both lines developed variable lens and coloboma phenotypes: mab21l2Q48Sfs*5 embryos demonstrated severe lens and retinal defects with complete lethality while mab21l2R51_F52del mutants displayed a milder lens phenotype and severe coloboma with a small number of fish surviving to adulthood. Protein studies showed decreased stability for the human p.(Arg51Gly) and zebrafish p.(Arg51_Phe52del) mutant proteins and predicted a complete loss-of-function for the zebrafish p.(Gln48Serfs*5) frameshift truncation. Additionally, in contrast to wild-type human MAB21L2 transcript, mutant p.(Arg51Gly) mRNA failed to efficiently rescue the ocular phenotype when injected into mab21l2Q48Sfs*5 embryos, suggesting this allele is functionally deficient. Histology, immunohistochemistry, and in situ hybridization experiments identified retinal invagination defects, an increase in cell death, abnormal proliferation patterns, and altered expression of several ocular markers in the mab21l2 mutants. These findings support the identification of MAB21L2 as a novel factor involved in human coloboma and highlight the power of genome editing manipulation in model organisms for analysis of the effects of whole exome variation in humans.
Collapse
Affiliation(s)
- Brett Deml
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | | | - Sanaa Muheisen
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Linda M. Reis
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Elena V. Semina
- Department of Pediatrics and Children’s Research Institute at the Medical College of Wisconsin and Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Heermann S, Schütz L, Lemke S, Krieglstein K, Wittbrodt J. Eye morphogenesis driven by epithelial flow into the optic cup facilitated by modulation of bone morphogenetic protein. eLife 2015; 4. [PMID: 25719386 PMCID: PMC4337729 DOI: 10.7554/elife.05216] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 01/07/2023] Open
Abstract
The hemispheric, bi-layered optic cup forms from an oval optic vesicle during early vertebrate eye development through major morphological transformations. The overall basal surface, facing the developing lens, is increasing, while, at the same time, the space basally occupied by individual cells is decreasing. This cannot be explained by the classical view of eye development. Using zebrafish (Danio rerio) as a model, we show that the lens-averted epithelium functions as a reservoir that contributes to the growing neuroretina through epithelial flow around the distal rims of the optic cup. We propose that this flow couples morphogenesis and retinal determination. Our 4D data indicate that future stem cells flow from their origin in the lens-averted domain of the optic vesicle to their destination in the ciliary marginal zone. BMP-mediated inhibition of the flow results in ectopic neuroretina in the RPE domain. Ultimately the ventral fissure fails to close resulting in coloboma. DOI:http://dx.doi.org/10.7554/eLife.05216.001 The eye is our most important organ for sensing and recognizing our environment. In humans and other vertebrates, the eye forms from an outgrowth of the brain as the embryo develops. This outgrowth is called the optic vesicle and it is rapidly transformed into a cup-shaped structure known as the optic cup. Defects in this process prevent the optic cup from closing completely, which leads to a severe condition called Coloboma—one of the most frequent causes of blindness in children. The optic cup has two distinct layers: the inside layer—known as the neuroretina—contains light sensitive cells and is surrounded by the other layer called the pigmented epithelium. It is thought that the neural retina is made from cells from the side of the optic vesicle that faces the lens, and the pigmented epithelium is formed by cells from the other side of the vesicle. This is a plausible explanation and is well accepted, but it cannot explain how the neuroretina can become five times larger as the cup forms. Heermann et al. addressed this problem by using four-dimensional in vivo microscopy to follow individual cells as the optic cup forms in living zebrafish embryos. The experiments show that the neuroretina is made of cells from both sides of the optic vesicle. Cells from the back of the optic vesicle (furthest away from the lens) join the rest of the cells by moving around the outside rim of the cup. Further experiments found that a signaling molecule called BMP—which is crucial to the normal development of the eye—controls the flow of cells around the developing optic cup. This factor needs to be carefully controlled during the development of the eye; when BMP activity was artificially increased, the flow of cells stopped, resulting in neuroretinal tissue developing in the wrong place (in the outer layer of the optic cup). The experiments also reveal that the stem cells in the retina—which divide to produce new cells throughout the life of the zebrafish—originate from two distinct areas in the optic vesicle. Heermann et al.'s findings challenge the textbook model of eye development by revealing that cells from both sides of the optic vesicle contribute to the neuroretina and that retinal stem cells originate from a specific place in the developing eye. A future challenge will be to understand how the movement of the cells into the neuroretina is coordinated to make a perfectly shaped eye. DOI:http://dx.doi.org/10.7554/eLife.05216.002
Collapse
Affiliation(s)
- Stephan Heermann
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Lucas Schütz
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Steffen Lemke
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| | - Kerstin Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, University Freiburg, Freiburg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
| |
Collapse
|
33
|
Zhao Q, Zhao JY, Zhang JS. Influence of bone morphogenetic protein type IA receptor conditional knockout in lens on expression of bone morphogenetic protein 4 in lens. Int J Ophthalmol 2015; 8:57-60. [PMID: 25709908 DOI: 10.3980/j.issn.2222-3959.2015.01.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/29/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the influence of bone morphogenetic protein type IA receptor [BMPR-IA (ALK3)] conditional knockout in lens on expression of bone morphogenetic protein 4 (BMP4) in lens during the development of the vertebrate eye. METHODS Cre-positive mice were mated with Cre-negative mice to generate 50% Cre-positive (conditional knockout, CKO) 4 embryos, 8 eyes and 50% Cre-negative offspring (wild type, WT) 4 embryos, 8 eyes. The embryos were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned to a thickness of 4 µm. Removal of paraffin wax and dehydrating for sections, and then the procedure of in situ hybridization was processed, BMP4 MK1784-m (BOSTER) was used, and observed the expression of BMP4 in the lens in experimental group and control group. We selected SPSS11.0 software for statistical analysis, P<0.05 showed that the difference was statistically significant. RESULTS Four embryos of each genotype were examined, totally we had 8 embryos, 16 eyes. We got the uniform outcomes in all the embryos. We found ALK3 was required during lens growing, but was not essential for the formation of lens. We observed that the expression of Bmp4 in the lens was significantly reduced in all 8 ALK3 CKO lens, BMP4 expression was normal in all the 8 WT lens, P<0.01. This phenomenon became increasingly visible in accordance with embryo development. The most apparent alteration was present at stage E15.5. CONCLUSION ALK3 is essential for lens growth. The influence of ALK3 on the expression of BMP4 is present during the development of mice lens.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Ophthalmology, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Jiang-Yue Zhao
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Jin-Song Zhang
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
34
|
Pieper AA, McKnight SL, Ready JM. P7C3 and an unbiased approach to drug discovery for neurodegenerative diseases. Chem Soc Rev 2014; 43:6716-26. [PMID: 24514864 PMCID: PMC4237066 DOI: 10.1039/c3cs60448a] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel neuroprotective small molecule was discovered using a target-agnostic in vivo screen in living mice. This aminopropyl carbazole, named P7C3, is orally bioavailable, crosses the blood-brain barrier, and is non-toxic at doses several fold higher than the efficacious dose. The potency and drug-like properties of P7C3 were optimized through a medicinal chemistry campaign, providing analogues for detailed examination. Improved versions, such as (-)-P7C3-S243 and P7C3-A20, displayed neuroprotective properties in rodent models of Parkinson's disease, amyotrophic lateral sclerosis, traumatic brain injury and age-related cognitive decline. Derivatives appended with immobilizing moieties may reveal the protein targets of the P7C3 class of neuroprotective compounds. Our results indicate that unbiased, in vivo screens might provide starting points for the development of treatments for neurodegenerative diseases as well as tools to study the biology underlying these disorders.
Collapse
Affiliation(s)
- Andrew A. Pieper
- University of Iowa Carver College of Medicine, Departments of Psychiatry, Neurology, and Veterans Affairs, 200 Hawkins Ave, Iowa City, Ia 52242, Ph: 319-353-5781 Fax: 319-353-3003,
| | - Steven L. McKnight
- University of Texas Southwestern Medical Center, Department of Biochemistry, 5323 Harry Hines Blvd, Dallas, Texas 75390-9038, Ph: 214-648-3342,
| | - Joseph M. Ready
- University of Texas Southwestern Medical Center, Department of Biochemistry, 5323 Harry Hines Blvd, Dallas, Texas 75390-9038, Ph: 214-648-0313,
| |
Collapse
|
35
|
Pi-Roig A, Martin-Blanco E, Minguillon C. Distinct tissue-specific requirements for the zebrafish tbx5 genes during heart, retina and pectoral fin development. Open Biol 2014; 4:140014. [PMID: 24759614 PMCID: PMC4043114 DOI: 10.1098/rsob.140014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The transcription factor Tbx5 is expressed in the developing heart, eyes and anterior appendages. Mutations in human TBX5 cause Holt-Oram syndrome, a condition characterized by heart and upper limb malformations. Tbx5-knockout mouse embryos have severely impaired forelimb and heart morphogenesis from the earliest stages of their development. However, zebrafish embryos with compromised tbx5 function show a complete absence of pectoral fins, while heart development is disturbed at significantly later developmental stages and eye development remains to be thoroughly analysed. We identified a novel tbx5 gene in zebrafish--tbx5b--that is co-expressed with its paralogue, tbx5a, in the developing eye and heart and hypothesized that functional redundancy could be occurring in these organs in embryos with impaired tbx5a function. We have now investigated the consequences of tbx5a and/or tbx5b downregulation in zebrafish to reveal that tbx5 genes have essential roles in the establishment of cardiac laterality, dorsoventral retina axis organization and pectoral fin development. Our data show that distinct relationships between tbx5 paralogues are required in a tissue-specific manner to ensure the proper morphogenesis of the three organs in which they are expressed. Furthermore, we uncover a novel role for tbx5 genes in the establishment of correct heart asymmetry in zebrafish embryos.
Collapse
Affiliation(s)
- Aina Pi-Roig
- CSIC-Institut de Biologia Molecular de Barcelona, Department of Developmental Biology, Parc Científic de Barcelona, C/Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | |
Collapse
|
36
|
gdf6a is required for cone photoreceptor subtype differentiation and for the actions of tbx2b in determining rod versus cone photoreceptor fate. PLoS One 2014; 9:e92991. [PMID: 24681822 PMCID: PMC3969374 DOI: 10.1371/journal.pone.0092991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 12/17/2022] Open
Abstract
Functional vision restoration is within reach via stem cell therapy, but one of the largest obstacles is the derivation of colour-sensitive cone photoreceptors that are required for high-acuity daytime vision. To enhance progress made using nocturnal murine models, we instead utilize cone-rich zebrafish and herein investigate relationships between gdf6a and tbx2b in cone photoreceptor development. Growth/differentiation factor 6a (gdf6a), a bone morphogenetic protein family ligand, is an emerging factor in photoreceptor degenerative diseases. The T-box transcription factor tbx2b is required to specify UV cone photoreceptor fate instead of rod photoreceptor fate. Interactions between these factors in cone development would be unanticipated, considering the discrete phenotypes in their respective mutants. However, gdf6a positively modulates the abundance of tbx2b transcript during early eye morphogenesis, and we extended this conclusion to later stages of retinal development comprising the times when photoreceptors differentiate. Despite this, gdf6a-/- larvae possess a normal relative number of UV cones and instead present with a low abundance of blue cone photoreceptors, approximately half that of siblings (p<0.001), supporting a differential role for gdf6a amongst the spectral subtypes of cone photoreceptors. Further, gdf6a-/- larvae from breeding of compound heterozygous gdf6a+/-;tbx2b+/- mutants exhibit the recessive lots-of-rods phenotype (which also shows a paucity of UV cones) at significantly elevated rates (44% or 48% for each of two tbx2b alleles, χ2 p≤0.007 for each compared to expected Mendelian 25%). Thus the gdf6a-/- background sensitizes fish such that the recessive lots-of-rods phenotype can appear in heterozygous tbx2b+/- fish. Overall, this work establishes a novel link between tbx2b and gdf6a in determining photoreceptor fates, defining the nexus of an intricate pathway influencing the abundance of cone spectral subtypes and specifying rod vs. cone photoreceptors. Understanding this interaction is a necessary step in the refinement of stem cell-based restoration of daytime vision in humans.
Collapse
|
37
|
DuVal MG, Gilbert MJH, Watson DE, Zerulla TC, Tierney KB, Allison WT. Growth differentiation factor 6 as a putative risk factor in neuromuscular degeneration. PLoS One 2014; 9:e89183. [PMID: 24586579 PMCID: PMC3938462 DOI: 10.1371/journal.pone.0089183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/16/2014] [Indexed: 11/25/2022] Open
Abstract
Mutation of Glass bottom boat, the Drosophila homologue of the bone morphogenetic protein or growth/differentiation factor (BMP/GDF) family of genes in vertebrates, has been shown to disrupt development of neuromuscular junctions (NMJ). Here we tested whether this same conclusion can be broadened to vertebrate BMP/GDF genes. This analysis was also extended to consider whether such genes are required for NMJ maintenance in post-larval stages, as this would argue that BMP genes are viable candidates for analysis in progressive neuromuscular disease. Zebrafish mutants harboring homozygous null mutations in the BMP-family gene gdf6a were raised to adulthood and assessed for neuromuscular deficits. Fish lacking gdf6a exhibited decreased endurance (∼50%, p = 0.005) compared to wild type, and this deficit progressively worsened with age. These fish also presented with significantly disrupted NMJ morphology (p = 0.009), and a lower abundance of spinal motor neurons (∼50%, p<0.001) compared to wild type. Noting the similarity of these symptoms to those of Amyotrophic Lateral Sclerosis (ALS) model mice and fish, we asked if mutations in gdf6a would enhance the phenotypes observed in the latter, i.e. in zebrafish over-expressing mutant Superoxide Dismutase 1 (SOD1). Amongst younger adult fish only bigenic fish harboring both the SOD1 transgene and gdf6a mutations, but not siblings with other combinations of these gene modifications, displayed significantly reduced endurance (75%, p<0.05) and strength/power (75%, p<0.05), as well as disrupted NMJ morphology (p<0.001) compared to wild type siblings. Bigenic fish also had lower survival rates compared to other genotypes. Thus conclusions regarding a role for BMP ligands in effecting NMJ can be extended to vertebrates, supporting conservation of mechanisms relevant to neuromuscular degenerative diseases. These conclusions synergize with past findings to argue for further analysis of GDF6 and other BMP genes as modifier loci, potentially affecting susceptibility to ALS and perhaps a broader suite of neurodegenerative diseases.
Collapse
Affiliation(s)
- Michèle G. DuVal
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | | | - D. Ezekiel Watson
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
| | - Tanja C. Zerulla
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - Keith B. Tierney
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
- Centre for Prions and Protein Folding Disease, University of Alberta, Edmonton AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton AB, Canada
- * E-mail:
| |
Collapse
|
38
|
The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur J Hum Genet 2014; 22:1290-7. [PMID: 24549050 DOI: 10.1038/ejhg.2014.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 01/17/2023] Open
Abstract
Genome-wide linkage analysis, followed by targeted deep sequencing, in a Danish multigeneration family with juvenile cataract revealed a region of chromosome 17 co-segregating with the disease trait. Affected individuals were heterozygous for two potentially protein-disrupting alleles in this region, in ACACA and UNC45B. As alterations of the UNC45B protein have been shown to affect eye development in model organisms, effort was focused on the heterozygous UNC45B missense mutation. UNC45B encodes a myosin-specific chaperone that, together with the general heat shock protein HSP90, is involved in myosin assembly. The mutation changes p.Arg805 to Trp in the UCS domain, an amino acid that is highly conserved from yeast to human. UNC45B is strongly expressed in the heart and skeletal muscle tissue, but here we show expression in human embryo eye and zebrafish lens. The zebrafish mutant steif, carrying an unc45b nonsense mutation, has smaller eyes than wild-type embryos and shows accumulation of nuclei in the lens. Injection of RNA encoding the human wild-type UNC45B protein into the steif homozygous embryo reduced the nuclei accumulation and injection of human mutant UNC45B cDNA in wild-type embryos resulted in development of a phenotype similar to the steif mutant. The p.Arg805Trp alteration in the mammalian UNC45B gene suggests that developmental cataract may be caused by a defect in non-muscle myosin assembly during maturation of the lens fiber cells.
Collapse
|
39
|
Sfrp1a and Sfrp5 function as positive regulators of Wnt and BMP signaling during early retinal development. Dev Biol 2014; 388:192-204. [PMID: 24457098 DOI: 10.1016/j.ydbio.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/16/2013] [Accepted: 01/13/2014] [Indexed: 01/08/2023]
Abstract
Axial patterning of the developing eye is critically important for proper axonal pathfinding as well as for key morphogenetic events, such as closure of the optic fissure. The dorsal retina is initially specified by the actions of Bone Morphogenetic Protein (BMP) signaling, with such identity subsequently maintained by the Wnt-β catenin pathway. Using zebrafish as a model system, we demonstrate that Secreted frizzled-related protein 1a (Sfrp1a) and Sfrp5 work cooperatively to pattern the retina along the dorso-ventral axis. Sfrp1a/5 depleted embryos display a reduction in dorsal marker gene expression that is consistent with defects in BMP- and Wnt-dependent dorsal retina identity. In accord with this finding, we observe a marked reduction in transgenic reporters of BMP and Wnt signaling within the dorsal retina of Sfrp1a/5 depleted embryos. In contrast to studies in which canonical Wnt signaling is blocked, we note an increase in BMP ligand expression in Sfrp1a/5 depleted embryos, a phenotype similar to that seen in embryos with inhibited BMP signaling. Overexpression of a low dose of sfrp5 mRNA causes an increase in dorsal retina marker gene expression. We propose a model in which Sfrp proteins function as facilitators of both BMP and Wnt signaling within the dorsal retina.
Collapse
|
40
|
Kashyap B, Pegorsch L, Frey RA, Sun C, Shelden EA, Stenkamp DL. Eye-specific gene expression following embryonic ethanol exposure in zebrafish: roles for heat shock factor 1. Reprod Toxicol 2013; 43:111-24. [PMID: 24355176 DOI: 10.1016/j.reprotox.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 01/03/2023]
Abstract
The mechanisms through which ethanol exposure results in developmental defects remain unclear. We used the zebrafish model to elucidate eye-specific mechanisms that underlie ethanol-mediated microphthalmia (reduced eye size), through time-series microarray analysis of gene expression within eyes of embryos exposed to 1.5% ethanol. 62 genes were differentially expressed (DE) in ethanol-treated as compared to control eyes sampled during retinal neurogenesis (24-48 h post-fertilization). The EDGE (extraction of differential gene expression) algorithm identified >3000 genes DE over developmental time in ethanol-exposed eyes as compared to controls. The DE lists included several genes indicating a mis-regulated cellular stress response due to ethanol exposure. Combined treatment with sub-threshold levels of ethanol and a morpholino targeting heat shock factor 1 mRNA resulted in microphthalmia, suggesting convergent molecular pathways. Thermal preconditioning partially prevented ethanol-mediated microphthalmia while maintaining Hsf-1 expression. These data suggest roles for reduced Hsf-1 in mediating microphthalmic effects of embryonic ethanol exposure.
Collapse
Affiliation(s)
- Bhavani Kashyap
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Laurel Pegorsch
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States
| | - Chi Sun
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States
| | - Eric A Shelden
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, United States; Neuroscience Graduate Program, University of Idaho, Moscow, ID 83844, United States; Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, United States.
| |
Collapse
|
41
|
Reichert S, Randall RA, Hill CS. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border. Development 2013; 140:4435-44. [PMID: 24089471 DOI: 10.1242/dev.098707] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.
Collapse
Affiliation(s)
- Sabine Reichert
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | |
Collapse
|
42
|
Mandal A, Rydeen A, Anderson J, Sorrell MRJ, Zygmunt T, Torres-Vázquez J, Waxman JS. Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid. Dev Dyn 2013; 242:989-1000. [PMID: 23703807 DOI: 10.1002/dvdy.23987] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Retinoic acid (RA) signaling plays a critical role in vertebrate development. Transcriptional reporters of RA signaling in zebrafish, thus far, have not reflected the broader availability of embryonic RA, necessitating additional tools to enhance our understanding of the spatial and temporal activity of RA signaling in vivo. RESULTS We have generated novel transgenic RA sensors in which a RA receptor (RAR) ligand-binding domain (RLBD) is fused to the Gal4 DNA-binding domain (GDBD) or a VP16-GDBD (VPBD) construct. Stable transgenic lines expressing these proteins when crossed with UAS reporter lines are responsive to RA. Interestingly, the VPBD RA sensor is significantly more sensitive than the GDBD sensor and demonstrates there may be almost ubiquitous availability of RA within the early embryo. Using confocal microscopy to compare the expression of the GDBD RA sensor to our previously established RA signaling transcriptional reporter line, Tg(12XRARE:EGFP), illustrates these reporters have significant overlap, but that expression from the RA sensor is much broader. We also identify previously unreported domains of expression for the Tg(12XRARE:EGFP) line. CONCLUSIONS Our novel RA sensor lines will be useful and complementary tools for studying RA signaling during development and anatomical structures independent of RA signaling.
Collapse
Affiliation(s)
- Amrita Mandal
- The Heart Institute, Molecular Cardiovascular Biology Division and Development Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ramel MC, Hill CS. The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol 2013; 378:170-82. [PMID: 23499658 PMCID: PMC3899928 DOI: 10.1016/j.ydbio.2013.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/26/2022]
Abstract
In the early zebrafish embryo, a ventral to dorsal gradient of bone morphogenetic protein (BMP) activity is established, which is essential for the specification of cell fates along this axis. To visualise and mechanistically determine how this BMP activity gradient forms, we have used a transgenic zebrafish line that expresses monomeric red fluorescent protein (mRFP) under the control of well-characterised BMP responsive elements. We demonstrate that mRFP expression in this line faithfully reports BMP and GDF signalling at both early and late stages of development. Taking advantage of the unstable nature of mRFP transcripts, we use in situ hybridisation to reveal the dynamic spatio-temporal pattern of BMP activity and establish the timing and sequence of events that lead to the formation of the BMP activity gradient. We show that the BMP transcriptional activity gradient is established between 30% and 40% epiboly stages and that it is preceded by graded mRNA expression of the BMP ligands. Both Dharma and FGF signalling contribute to graded bmp transcription during these early stages and it is subsequently maintained through autocrine BMP signalling. We show that BMP2B protein is also expressed in a gradient as early as blastula stages, but do not find any evidence of diffusion of this BMP to generate the BMP transcriptional activity gradient. Thus, in contrast to diffusion/transport-based models of BMP gradient formation in Drosophila, our results indicate that the establishment of the BMP activity gradient in early zebrafish embryos is determined by graded expression of the BMP ligands.
Collapse
Affiliation(s)
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
44
|
Asai-Coakwell M, March L, Dai XH, Duval M, Lopez I, French CR, Famulski J, De Baere E, Francis PJ, Sundaresan P, Sauvé Y, Koenekoop RK, Berry FB, Allison WT, Waskiewicz AJ, Lehmann OJ. Contribution of growth differentiation factor 6-dependent cell survival to early-onset retinal dystrophies. Hum Mol Genet 2013; 22:1432-42. [PMID: 23307924 DOI: 10.1093/hmg/dds560] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Retinal dystrophies are predominantly caused by mutations affecting the visual phototransduction system and cilia, with few genes identified that function to maintain photoreceptor survival. We reasoned that growth factors involved with early embryonic retinal development would represent excellent candidates for such diseases. Here we show that mutations in the transforming growth factor-β (TGF-β) ligand Growth Differentiation Factor 6, which specifies the dorso-ventral retinal axis, contribute to Leber congenital amaurosis. Furthermore, deficiency of gdf6 results in photoreceptor degeneration, so demonstrating a connection between Gdf6 signaling and photoreceptor survival. In addition, in both murine and zebrafish mutant models, we observe retinal apoptosis, a characteristic feature of human retinal dystrophies. Treatment of gdf6-deficient zebrafish embryos with a novel aminopropyl carbazole, P7C3, rescued the retinal apoptosis without evidence of toxicity. These findings implicate for the first time perturbed TGF-β signaling in the genesis of retinal dystrophies, support the study of related morphogenetic genes for comparable roles in retinal disease and may offer additional therapeutic opportunities for genetically heterogeneous disorders presently only treatable with gene therapy.
Collapse
Affiliation(s)
- Mika Asai-Coakwell
- Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Comyn SA, Pilgrim D. Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 2012; 7:e48861. [PMID: 23144999 PMCID: PMC3492250 DOI: 10.1371/journal.pone.0048861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023] Open
Abstract
Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b−/−; unc45a−/− mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b−/− and unc45b−/−; unc45a−/− embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.
Collapse
Affiliation(s)
| | - David Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
46
|
New insights into the mechanism of lens development using zebra fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:1-61. [PMID: 22559937 DOI: 10.1016/b978-0-12-394307-1.00001-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of recent advances in molecular biology, genetics, and live-embryo imaging, direct comparisons between zebra fish and human lens development are being made. The zebra fish has numerous experimental advantages for investigation of fundamental biomedical problems that are often best studied in the lens. The physical characteristics of visible light can account for the highly coordinated cell differentiation during formation of a beautifully transparent, refractile, symmetric optical element, the biological lens. The accessibility of the zebra fish lens for direct investigation during rapid development will result in new knowledge about basic functional mechanisms of epithelia-mesenchymal transitions, cell fate, cell-matrix interactions, cytoskeletal interactions, cytoplasmic crowding, membrane transport, cell adhesion, cell signaling, and metabolic specialization. The lens is well known as a model for characterization of cell and molecular aging. We review the recent advances in understanding vertebrate lens development conducted with zebra fish.
Collapse
|
47
|
Kruse-Bend R, Rosenthal J, Quist TS, Veien ES, Fuhrmann S, Dorsky RI, Chien CB. Extraocular ectoderm triggers dorsal retinal fate during optic vesicle evagination in zebrafish. Dev Biol 2012; 371:57-65. [PMID: 22921921 DOI: 10.1016/j.ydbio.2012.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 08/09/2012] [Indexed: 01/30/2023]
Abstract
Dorsal retinal fate is established early in eye development, via expression of spatially restricted dorsal-specific transcription factors in the optic vesicle; yet the events leading to initiation of dorsal fate are not clear. We hypothesized that induction of dorsal fate would require an extraocular signal arising from a neighboring tissue to pattern the prospective dorsal retina, however no such signal has been identified. We used the zebrafish embryo to determine the source, timing, and identity of the dorsal retina-inducing signal. Extensive cell movements occur during zebrafish optic vesicle morphogenesis, however the location of prospective dorsal cells within the early optic vesicle and their spatial relationship to early dorsal markers is currently unknown. Our mRNA expression and fate mapping analyses demonstrate that the dorsolateral optic vesicle is the earliest region to express dorsal specific markers, and cells from this domain contribute to the dorsal retinal pole at 24 hpf. We show that three bmp genes marking dorsal retina at 25 hpf are also expressed extraocularly before retinal patterning begins. We identified gdf6a as a dorsal initiation signal acting from the extraocular non-neural ectoderm during optic vesicle evagination. We find that bmp2b is involved in dorsal retina initiation, acting upstream of gdf6a. Together, this work has identified the nature and source of extraocular signals required to pattern the dorsal retina.
Collapse
Affiliation(s)
- Renee Kruse-Bend
- Department of Neurobiology and Anatomy, 20 North 1900 East, Room 401 MREB, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Ramel MC, Hill CS. Spatial regulation of BMP activity. FEBS Lett 2012; 586:1929-41. [PMID: 22710177 DOI: 10.1016/j.febslet.2012.02.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/14/2022]
Abstract
The bone morphogenetic protein (BMP) signalling pathway is critical for embryonic development and tissue homeostasis, and impaired BMP signalling has been implicated in multiple diseases. Molecular tools have been developed to visualise BMP activity in vivo and these have allowed a better understanding of the intricate ways in which BMP activity is regulated spatially. In particular, generation and interpretation of BMP activity gradients during development result from the complex interplay between core BMP signalling components and specific regulators. In this essay we discuss the mechanisms by which spatial regulation of BMP activity is achieved and its functional consequences.
Collapse
Affiliation(s)
- Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | | |
Collapse
|
49
|
Jarrin M, Pandit T, Gunhaga L. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells. Mol Biol Cell 2012; 23:3266-74. [PMID: 22718906 PMCID: PMC3418319 DOI: 10.1091/mbc.e12-01-0075] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The roles of BMP and FGF during the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are examined. The results show that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals.
Collapse
Affiliation(s)
- Miguel Jarrin
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
50
|
Li XQ, Cai HC, Zhou SY, Yang JH, Xi YB, Gao XB, Zhao WJ, Li P, Zhao GY, Tong Y, Bao FC, Ma Y, Wang S, Yan YB, Lu CL, Ma X. A novel mutation impairing the tertiary structure and stability of γC-crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens. Hum Mutat 2011; 33:391-401. [DOI: 10.1002/humu.21648] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 10/17/2011] [Indexed: 11/09/2022]
|