1
|
Bogart AH, Brooks ER. Canonical Wnt pathway modulation is required to correctly execute multiple independent cellular dynamic programs during cranial neural tube closure. Dev Biol 2025; 523:115-131. [PMID: 40280384 DOI: 10.1016/j.ydbio.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Defects in cranial neural tube closure are among the most common and deleterious human structural birth defects. Correct cranial closure requires the coordination of multiple cell dynamic programs including cell proliferation and cell shape change. Mutations that impact Wnt signaling, including loss of the pathway co-receptor LRP6, lead to defects in cranial neural tube closure, but the cellular dynamics under control of the Wnt pathway during this critical morphogenetic process remain unclear. Here, we use mice mutant for LRP6 to examine the consequences of conditional and global reduction in Wnt signaling and mutants with conditional inactivation of APC to examine the consequences of pathway hyperactivation. Strikingly, we find that regulated Wnt signaling is required for two independent events during cranial neural tube closure. First, global reduction of Wnt leads to a surprising hyperplasia of the cranial neural folds driven by excessive cell proliferation at early pre-elevation stages, with the increased tissue volume creating a mechanical blockade to efficient closure despite normal apical constriction and cell polarization at later stages. Conversely, conditional hyperactivation of the pathway at later elevation stages prevents correct actin organization, blocking apical constriction and neural fold elevation without impacting tissue scaling. Together these data reveal that Wnt signaling levels must be modulated to restrict proliferation at early stages and promote apical constriction at later elevation stages to drive efficient closure of the cranial neural tube.
Collapse
Affiliation(s)
- Amber Huffine Bogart
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, United States
| | - Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, United States.
| |
Collapse
|
2
|
Hamazaki N, Yang W, Kubo CA, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols EK, Pendyala S, Bradley N, Fowler DM, Lee C, Daza RM, Srivatsan S, Shendure J. Retinoic acid induces human gastruloids with posterior embryo-like structures. Nat Cell Biol 2024; 26:1790-1803. [PMID: 39164488 PMCID: PMC11469962 DOI: 10.1038/s41556-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Bradley
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
3
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
4
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
5
|
Gamit N, Dharmarajan A, Sethi G, Warrier S. Want of Wnt in Parkinson's disease: Could sFRP disrupt interplay between Nurr1 and Wnt signaling? Biochem Pharmacol 2023; 212:115566. [PMID: 37088155 DOI: 10.1016/j.bcp.2023.115566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Nuclear receptor related 1 (Nurr1) is a transcription factor known to regulate the development and maintenance of midbrain dopaminergic (mDA) neurons. Reports have confirmed that defect or obliteration of Nurr1 results in neurodegeneration and motor function impairment leading to Parkinson's disease (PD). Studies have also indicated that Nurr1 regulates the expression of alpha-synuclein (α-SYN) and mutations in Nurr1 cause α-SYN overexpression, thereby increasing the risk of PD. Nurr1 is modulated via various pathways including Wnt signaling pathway which is known to play an important role in neurogenesis and deregulation of it contributes to PD pathogenesis. Both Wnt/β-catenin dependent and independent pathways are implicated in the activation of Nurr1 and subsequent downregulation of α-SYN. This review highlights the interaction between Nurr1 and Wnt signaling pathways in mDA neuronal development. We further hypothesize how modulation of Wnt signaling pathway by its antagonist, secreted frizzled related proteins (sFRPs) could be a potential route to treat PD.
Collapse
Affiliation(s)
- Naisarg Gamit
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India; School of Pharmacy and Biomedical Sciences, Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia; School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore 117 600, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India.
| |
Collapse
|
6
|
An itch for things remote: The journey of Wnts. Curr Top Dev Biol 2022; 150:91-128. [DOI: 10.1016/bs.ctdb.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
de Castro LF, Sworder BJ, Mui B, Futrega K, Berendsen A, Phillips MD, Burbach NJ, Cherman N, Kuznetsov S, Gabet Y, Holmbeck K, Robey PG. Secreted frizzled related-protein 2 (Sfrp2) deficiency decreases adult skeletal stem cell function in mice. Bone Res 2021; 9:49. [PMID: 34857734 PMCID: PMC8639730 DOI: 10.1038/s41413-021-00169-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/21/2021] [Accepted: 06/27/2021] [Indexed: 12/18/2022] Open
Abstract
In a previous transcriptomic study of human bone marrow stromal cells (BMSCs, also known as bone marrow-derived "mesenchymal stem cells"), SFRP2 was highly over-represented in a subset of multipotent BMSCs (skeletal stem cells, SSCs), which recreate a bone/marrow organ in an in vivo ectopic bone formation assay. SFRPs modulate WNT signaling, which is essential to maintain skeletal homeostasis, but the specific role of SFRP2 in BMSCs/SSCs is unclear. Here, we evaluated Sfrp2 deficiency on BMSC/SSC function in models of skeletal organogenesis and regeneration. The skeleton of Sfrp2-deficient (KO) mice is overtly normal; but their BMSCs/SSCs exhibit reduced colony-forming efficiency, reflecting low SSC self-renewal/abundancy. Sfrp2 KO BMSCs/SSCs formed less trabecular bone than those from WT littermates in the ectopic bone formation assay. Moreover, regeneration of a cortical drilled hole defect was dramatically impaired in Sfrp2 KO mice. Sfrp2-deficient BMSCs/SSCs exhibited poor in vitro osteogenic differentiation as measured by Runx2 and Osterix expression and calcium accumulation. Interestingly, activation of the Wnt co-receptor, Lrp6, and expression of Wnt target genes, Axin2, C-myc and Cyclin D1, were reduced in Sfrp2-deficient BMSCs/SSCs. Addition of recombinant Sfrp2 restored most of these activities, suggesting that Sfrp2 acts as a Wnt agonist. We demonstrate that Sfrp2 plays a role in self-renewal of SSCs and in the recruitment and differentiation of adult SSCs during bone healing. SFRP2 is also a useful marker of BMSC/SSC multipotency, and a factor to potentially improve the quality of ex vivo expanded BMSC/SSC products.
Collapse
Affiliation(s)
- Luis Fernandez de Castro
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| | - Brian J. Sworder
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.189504.10000 0004 1936 7558Department of Molecular Medicine, Boston University, Boston, MA USA
| | - Byron Mui
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Kathryn Futrega
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Agnes Berendsen
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Matthew D. Phillips
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Nathan J. Burbach
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA ,grid.17635.360000000419368657School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN USA
| | - Natasha Cherman
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Sergei Kuznetsov
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Yankel Gabet
- grid.12136.370000 0004 1937 0546Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Kenn Holmbeck
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| | - Pamela G. Robey
- grid.94365.3d0000 0001 2297 5165Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
8
|
Brown HM, Murray SA, Northrup H, Au KS, Niswander LA. Snx3 is important for mammalian neural tube closure via its role in canonical and non-canonical WNT signaling. Development 2020; 147:147/22/dev192518. [PMID: 33214242 DOI: 10.1242/dev.192518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Disruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3-/- mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3-/- embryos and a defect in convergent extension of the neural epithelium. Snx3-/- cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3-/- embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.
Collapse
Affiliation(s)
- Heather Mary Brown
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
van Loon K, Huijbers EJM, Griffioen AW. Secreted frizzled-related protein 2: a key player in noncanonical Wnt signaling and tumor angiogenesis. Cancer Metastasis Rev 2020; 40:191-203. [PMID: 33140138 PMCID: PMC7897195 DOI: 10.1007/s10555-020-09941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022]
Abstract
Secreted frizzled-related proteins (SFRP) are glycoproteins containing a so-called frizzled-like cysteine-rich domain. This domain enables them to bind to Wnt ligands or frizzled (FzD) receptors, making potent regulators of Wnt signaling. As Wnt signaling is often altered in cancer, it is not surprising that Wnt regulators such as SFRP proteins are often differentially expressed in the tumor microenvironment, both in a metastatic and non-metastatic setting. Indeed, SFRP2 is shown to be specifically upregulated in the tumor vasculature of several types of cancer. Several studies investigated the functional role of SFRP2 in the tumor vasculature, showing that SFRP2 binds to FzD receptors on the surface of tumor endothelial cells. This activates downstream Wnt signaling and which is, thereby, stimulating angiogenesis. Interestingly, not the well-known canonical Wnt signaling pathway, but the noncanonical Wnt/Ca2+ pathway seems to be a key player in this event. In tumor models, the pro-angiogenic effect of SFRP2 could be counteracted by antibodies targeting SFRP2, without the occurrence of toxicity. Since tumor angiogenesis is an important process in tumorigenesis and metastasis formation, specific tumor endothelial markers such as SFRP2 show great promise as targets for anti-cancer therapies. This review discusses the role of SFRP2 in noncanonical Wnt signaling and tumor angiogenesis, and highlights its potential as anti-angiogenic therapeutic target in cancer.
Collapse
Affiliation(s)
- Karlijn van Loon
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Cancer Center Amsterdam, Department of Medical Oncology, VU University Medical Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Esteve P, Crespo I, Kaimakis P, Sandonís A, Bovolenta P. Sfrp1 Modulates Cell-signaling Events Underlying Telencephalic Patterning, Growth and Differentiation. Cereb Cortex 2020; 29:1059-1074. [PMID: 30084950 DOI: 10.1093/cercor/bhy013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/βcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Inmaculada Crespo
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Africa Sandonís
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
11
|
Kim BB, Kim M, Park YH, Park JB. Dexamethasone Leads to Upregulation of BMP6 and ACHE Suppression of SMAD3 and ESR1 Genes in Human Mesenchymal Stem Cells. BIOCHIP JOURNAL 2018; 12:222-230. [DOI: 10.1007/s13206-017-2306-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
|
12
|
Miao N, Bian S, Lee T, Mubarak T, Huang S, Wen Z, Hussain G, Sun T. Opposite Roles of Wnt7a and Sfrp1 in Modulating Proper Development of Neural Progenitors in the Mouse Cerebral Cortex. Front Mol Neurosci 2018; 11:247. [PMID: 30065628 PMCID: PMC6056652 DOI: 10.3389/fnmol.2018.00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
The Wingless (Wnt)-mediated signals are involved in many important aspects of development of the mammalian cerebral cortex. How Wnts interact with their modulators in cortical development is still unclear. Here, we show that Wnt7a and secreted frizzled-related protein 1 (Sfrp1), a soluble modulator of Wnts, are co-expressed in mouse embryonic cortical neural progenitors (NPs). Knockout of Wnt7a in mice causes microcephaly due to reduced NP population and neurogenesis, and Sfrp1 has an opposing effect compared to Wnt7a. Similar to Dkk1, Sfrp1 decreases the Wnt1 and Wnt7a activity in vitro. Our results suggest that Wnt7a and Sfrp1 play opposite roles to ensure proper NP progeny in the developing cortex.
Collapse
Affiliation(s)
- Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Taufif Mubarak
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Shiying Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zhihong Wen
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
13
|
Vincent KM, Postovit LM. Matricellular proteins in cancer: a focus on secreted Frizzled-related proteins. J Cell Commun Signal 2018; 12:103-112. [PMID: 28589318 PMCID: PMC5842174 DOI: 10.1007/s12079-017-0398-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/02/2017] [Indexed: 12/31/2022] Open
Abstract
Tumours are complex entities, wherein cancer cells interact with myriad soluble, insoluble and cell associated factors. These microenvironmental mediators regulate tumour growth, progression and metastasis, and are produced by cancer cells and by stromal components such as fibroblast, adipocytes and immune cells. Through their ability to bind to extracellular matrix proteins, cell surface receptors and growth factors, matricellular proteins enable a dynamic reciprocity between cancer cells and their microenvironment. Hence, matricellular proteins play a critical role in tumour progression by regulating where and when cancer cells are exposed to key growth factors and regulatory proteins. Recent studies suggest that, in addition to altering Wingless (Wnt) signalling, certain members of the Secreted Frizzled Related Protein (sFRP) family are matricellular in nature. In this review, we outline the importance of matricellular proteins in cancer, and discuss how sFRPs may function to both inhibit and promote cancer progression in a context-dependent manner. By considering the matricellular functionality of sFRPs, we may better understand their apparently paradoxical roles in cancers.
Collapse
Affiliation(s)
- Krista Marie Vincent
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7 Canada
| | - Lynne-Marie Postovit
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 114th St and 87th Ave, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
14
|
Fujimura N. WNT/β-Catenin Signaling in Vertebrate Eye Development. Front Cell Dev Biol 2016; 4:138. [PMID: 27965955 PMCID: PMC5127792 DOI: 10.3389/fcell.2016.00138] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/09/2016] [Indexed: 01/04/2023] Open
Abstract
The vertebrate eye is a highly specialized sensory organ, which is derived from the anterior neural plate, head surface ectoderm, and neural crest-derived mesenchyme. The single central eye field, generated from the anterior neural plate, divides to give rise to the optic vesicle, which evaginates toward the head surface ectoderm. Subsequently, the surface ectoderm, in conjunction with the optic vesicle invaginates to form the lens vesicle and double-layered optic cup, respectively. This complex process is controlled by transcription factors and several intracellular and extracellular signaling pathways including WNT/β-catenin signaling. This signaling pathway plays an essential role in multiple developmental processes and has a profound effect on cell proliferation and cell fate determination. During eye development, the activity of WNT/β-catenin signaling is tightly controlled. Faulty regulation of WNT/β-catenin signaling results in multiple ocular malformations due to defects in the process of cell fate determination and differentiation. This mini-review summarizes recent findings on the role of WNT/β-catenin signaling in eye development. Whilst this mini-review focuses on loss-of-function and gain-of-function mutants of WNT/β-catenin signaling components, it also highlights some important aspects of β-catenin-independent WNT signaling in the eye development at later stages.
Collapse
Affiliation(s)
- Naoko Fujimura
- Laboratory of Eye Biology, BIOCEV Division, Institute of Molecular Genetics Prague, Czechia
| |
Collapse
|
15
|
The atypical cadherin Celsr1 functions non-cell autonomously to block rostral migration of facial branchiomotor neurons in mice. Dev Biol 2016; 417:40-9. [PMID: 27395006 DOI: 10.1016/j.ydbio.2016.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/23/2022]
Abstract
The caudal migration of facial branchiomotor (FBM) neurons from rhombomere (r) 4 to r6 in the hindbrain is an excellent model to study neuronal migration mechanisms. Although several Wnt/Planar Cell Polarity (PCP) components are required for FBM neuron migration, only Celsr1, an atypical cadherin, regulates the direction of migration in mice. In Celsr1 mutants, a subset of FBM neurons migrates rostrally instead of caudally. Interestingly, Celsr1 is not expressed in the migrating FBM neurons, but rather in the adjacent floor plate and adjoining ventricular zone. To evaluate the contribution of different expression domains to neuronal migration, we conditionally inactivated Celsr1 in specific cell types. Intriguingly, inactivation of Celsr1 in the ventricular zone of r3-r5, but not in the floor plate, leads to rostral migration of FBM neurons, greatly resembling the migration defect of Celsr1 mutants. Dye fill experiments indicate that the rostrally-migrated FBM neurons in Celsr1 mutants originate from the anterior margin of r4. These data suggest strongly that Celsr1 ensures that FBM neurons migrate caudally by suppressing molecular cues in the rostral hindbrain that can attract FBM neurons.
Collapse
|
16
|
sFRP-mediated Wnt sequestration as a potential therapeutic target for Alzheimer’s disease. Int J Biochem Cell Biol 2016; 75:104-11. [DOI: 10.1016/j.biocel.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023]
|
17
|
Anderson MJ, Schimmang T, Lewandoski M. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension. PLoS Genet 2016; 12:e1006018. [PMID: 27144312 PMCID: PMC4856314 DOI: 10.1371/journal.pgen.1006018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/08/2016] [Indexed: 01/08/2023] Open
Abstract
During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is a major advance toward understanding how these tissue layers interact during axis extension with important implications in human disease. During embryological development, the vertebrate embryo undergoes profound growth in a head-to-tail direction. During this process, formation of different structures within adjacent tissue layers must occur in a coordinated fashion. Insights into how these adjacent tissues molecularly communicate with each other is essential to understanding both basic embryology and the underlying causes of human birth defects. Mice lacking Fgf3, which encodes a secreted signaling factor, have long been known to have premature axis termination, but the underlying mechanism has not been studied until now. Through a series of complex genetic experiments, we show that FGF3 is an essential factor for coordination of neural tube development and axis extension. FGF3 is secreted from the mesodermal layer, which is the major driver of extending the axis, and negatively regulates expression of another class of secreted signaling molecules in the neuroepithelium, BMPs. In the absence of FGF3, excessive BMP signals cause a delay in neural tube closure, premature specification of neural crest cells and negatively affect the mesoderm, causing a premature termination of the embryological axis. Our work suggests that FGF3 may be a player in the complex etiology of the human birth defect, spina bifida, the failure of posterior neural tube closure.
Collapse
Affiliation(s)
- Matthew J. Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Thomas Schimmang
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
18
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
19
|
Carter MG, Smagghe BJ, Stewart AK, Rapley JA, Lynch E, Bernier KJ, Keating KW, Hatziioannou VM, Hartman EJ, Bamdad CC. A Primitive Growth Factor, NME7AB , Is Sufficient to Induce Stable Naïve State Human Pluripotency; Reprogramming in This Novel Growth Factor Confers Superior Differentiation. Stem Cells 2016; 34:847-59. [PMID: 26749426 DOI: 10.1002/stem.2261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/10/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022]
Abstract
Scientists have generated human stem cells that in some respects mimic mouse naïve cells, but their dependence on the addition of several extrinsic agents, and their propensity to develop abnormal karyotype calls into question their resemblance to a naturally occurring "naïve" state in humans. Here, we report that a recombinant, truncated human NME7, referred to as NME7AB here, induces a stable naïve-like state in human embryonic stem cells and induced pluripotent stem cells without the use of inhibitors, transgenes, leukemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), feeder cells, or their conditioned media. Evidence of a naïve state includes reactivation of the second X chromosome in female source cells, increased expression of naïve markers and decreased expression of primed state markers, ability to be clonally expanded and increased differentiation potential. RNA-seq analysis shows vast differences between the parent FGF2 grown, primed state cells, and NME7AB converted cells, but similarities to altered gene expression patterns reported by others generating naïve-like stem cells via the use of biochemical inhibitors. Experiments presented here, in combination with our previous work, suggest a mechanistic model of how human stem cells regulate self-replication: an early naïve state driven by NME7, which cannot itself limit self-replication and a later naïve state regulated by NME1, which limits self-replication when its multimerization state shifts from the active dimer to the inactive hexamer.
Collapse
Affiliation(s)
- M G Carter
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - B J Smagghe
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - A K Stewart
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - J A Rapley
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - E Lynch
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - K J Bernier
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | - K W Keating
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | | | - E J Hartman
- Minerva Biotechnologies, Waltham, Massachusetts, USA
| | | |
Collapse
|
20
|
van den Bosch MH, Gleissl TA, Blom AB, van den Berg WB, van Lent PL, van der Kraan PM. Wnts talking with the TGF-β superfamily: WISPers about modulation of osteoarthritis. Rheumatology (Oxford) 2015; 55:1536-47. [PMID: 26667213 DOI: 10.1093/rheumatology/kev402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
The Wnt signalling pathway is gaining increasing attention in the field of joint pathologies, attributable to its role in the development and homeostasis of the tissues found in the joint, including bone and cartilage. Imbalance in this pathway has been implicated in the development and progression of OA, and interference with the pathway might therefore depict an effective treatment strategy. Though offering multiple opportunities, it is yet to be decided which starting point will bring forth the most promising results. The complexity of the pathway and its interaction with other pathways (such as the TGF-β signalling pathway, which also has a central role in the maintenance of joint homeostasis) means that acting directly on proteins in this signalling cascade entails a high risk of undesired side effects. Therefore, interference with Wnt-induced proteins, such as WISP1, might be an overall more effective and safer therapeutic approach to inhibit the pathological events that take place during OA.
Collapse
Affiliation(s)
- Martijn H van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teresa A Gleissl
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Wang F, Fisher SA, Zhong J, Wu Y, Yang P. Superoxide Dismutase 1 In Vivo Ameliorates Maternal Diabetes Mellitus-Induced Apoptosis and Heart Defects Through Restoration of Impaired Wnt Signaling. ACTA ACUST UNITED AC 2015; 8:665-76. [PMID: 26232087 DOI: 10.1161/circgenetics.115.001138] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/21/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oxidative stress is manifested in embryos exposed to maternal diabetes mellitus, yet specific mechanisms for diabetes mellitus-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes mellitus-induced oxidative stress impairs Wnt signaling, thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger superoxide dismutase 1 (SOD1). METHODS AND RESULTS Wild-type (WT) and SOD1-overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes mellitus increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis and suppressed cell proliferation. Diabetes mellitus suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. CONCLUSIONS The oxidative stress of diabetes mellitus impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of congenital heart defects in fetuses of diabetic pregnancies.
Collapse
Affiliation(s)
- Fang Wang
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Steven A Fisher
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Jianxiang Zhong
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Yanqing Wu
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore
| | - Peixin Yang
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (F.W., J.Z., Y.W., P.Y.), Medicine (S.A.F.), and Biochemistry and Molecular Biology (P.Y.), School of Medicine, University of Maryland, Baltimore.
| |
Collapse
|
22
|
West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, Jean JC, Hemnes AR, Menon S, Bloodworth NC, Fessel JP, Kropski JA, Irwin D, Ware LB, Wheeler L, Hong CC, Meyrick B, Loyd JE, Bowman AB, Ess KC, Klemm DJ, Young PP, Merryman WD, Kotton D, Majka SM. Identification of a common Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am J Physiol Cell Physiol 2014; 307:C415-30. [PMID: 24871858 PMCID: PMC4154073 DOI: 10.1152/ajpcell.00057.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/24/2022]
Abstract
Understanding differences in gene expression that increase risk for pulmonary arterial hypertension (PAH) is essential to understanding the molecular basis for disease. Previous studies on patient samples were limited by end-stage disease effects or by use of nonadherent cells, which are not ideal to model vascular cells in vivo. These studies addressed the hypothesis that pathological processes associated with PAH may be identified via a genetic signature common across multiple cell types. Expression array experiments were initially conducted to analyze cell types at different stages of vascular differentiation (mesenchymal stromal and endothelial) derived from PAH patient-specific induced pluripotent stem (iPS) cells. Molecular pathways that were altered in the PAH cell lines were then compared with those in fibroblasts from 21 patients, including those with idiopathic and heritable PAH. Wnt was identified as a target pathway and was validated in vitro using primary patient mesenchymal and endothelial cells. Taken together, our data suggest that the molecular lesions that cause PAH are present in all cell types evaluated, regardless of origin, and that stimulation of the Wnt signaling pathway was a common molecular defect in both heritable and idiopathic PAH.
Collapse
Affiliation(s)
- James D West
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee
| | - Christa Gaskill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Shennea Marriott
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Rubin Baskir
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Ganna Bilousova
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | | | - Anna R Hemnes
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Swapna Menon
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | | | - Joshua P Fessel
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee
| | - Johnathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Lisa Wheeler
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Charles C Hong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Veterans Administration Hospital, Nashville, Tennessee
| | - Barbara Meyrick
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee
| | - James E Loyd
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Aaron B Bowman
- Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee; Department of Neurology, Vanderbilt Brain Institute, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - Dwight J Klemm
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | | - Susan M Majka
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee; Vanderbilt Center for Stem Cell Biology, Nashville, Tennessee; Vanderbilt Vascular Biology Center, Nashville, Tennessee; Pulmonary Vascular Research Institute, Kochi, and AnalyzeDat Consulting Services, Kerala, India; and
| |
Collapse
|
23
|
Le Dréau G, Martí E. The multiple activities of BMPs during spinal cord development. Cell Mol Life Sci 2013; 70:4293-305. [PMID: 23673983 PMCID: PMC11113619 DOI: 10.1007/s00018-013-1354-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 10-15, 08028 Barcelona, Spain
| | - Elisa Martí
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 10-15, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Sugiyama Y, Shelley EJ, Wen L, Stump RJW, Shimono A, Lovicu FJ, McAvoy JW. Sfrp1 and Sfrp2 are not involved in Wnt/β-catenin signal silencing during lens induction but are required for maintenance of Wnt/β-catenin signaling in lens epithelial cells. Dev Biol 2013; 384:181-93. [PMID: 24140542 DOI: 10.1016/j.ydbio.2013.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023]
Abstract
During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute, The University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Schemmer J, Araúzo-Bravo MJ, Haas N, Schäfer S, Weber SN, Becker A, Eckert D, Zimmer A, Nettersheim D, Schorle H. Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice. PLoS One 2013; 8:e71113. [PMID: 23967156 PMCID: PMC3742748 DOI: 10.1371/journal.pone.0071113] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022] Open
Abstract
Maintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tfap2c in embryonic stem cells and primordial germ cell-like cells. We show that loss of Tfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation of maturation markers and induction of markers indicative for somatic differentiation, cell cycle, epigenetic remodeling and pluripotency. Chromatin-immunoprecipitation analyses demonstrated binding of TFAP2C to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of TFAP2C in primordial germ cells. Since Tfap2c deficient primordial germ cell-like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tfap2c develop with high incidence germ cell cancer resembling human pediatric germ cell tumors. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate that mice with a heterozygous deletion of the TFAP2C target gene Nanos3 are also prone to develop teratomas. These data highlight TFAP2C as a critical and dose-sensitive regulator of germ cell fate.
Collapse
Affiliation(s)
- Jana Schemmer
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Marcos J. Araúzo-Bravo
- Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, Germany
| | - Natalie Haas
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Sabine Schäfer
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Susanne N. Weber
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Astrid Becker
- University of Bonn Medical School, Institute for Reconstructive Neurobiology, Life&Brain Center, Bonn, Germany
| | - Dawid Eckert
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Andreas Zimmer
- University of Bonn Medical School, Institute for Reconstructive Neurobiology, Life&Brain Center, Bonn, Germany
| | - Daniel Nettersheim
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| | - Hubert Schorle
- University of Bonn Medical School, Institute of Pathology, Department of Developmental Pathology, Bonn, Germany
| |
Collapse
|
26
|
Strobl-Mazzulla PH, Bronner ME. A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. ACTA ACUST UNITED AC 2013; 198:999-1010. [PMID: 22986495 PMCID: PMC3444776 DOI: 10.1083/jcb.201203098] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural crest cells form within the neural tube and then undergo an epithelial to mesenchymal transition (EMT) to initiate migration to distant locations. The transcriptional repressor Snail2 has been implicated in neural crest EMT via an as of yet unknown mechanism. We report that the adaptor protein PHD12 is highly expressed before neural crest EMT. At cranial levels, loss of PHD12 phenocopies Snail2 knockdown, preventing transcriptional shutdown of the adhesion molecule Cad6b (Cadherin6b), thereby inhibiting neural crest emigration. Although not directly binding to each other, PHD12 and Snail2 both directly interact with Sin3A in vivo, which in turn complexes with histone deacetylase (HDAC). Chromatin immunoprecipitation revealed that PHD12 is recruited to the Cad6b promoter during neural crest EMT. Consistent with this, lysines on histone 3 at the Cad6b promoter are hyperacetylated before neural crest emigration, correlating with active transcription, but deacetylated during EMT, reflecting the repressive state. Knockdown of either PHD12 or Snail2 prevents Cad6b promoter deacetylation. Collectively, the results show that PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2, forming a complex at the Cad6b promoter and thus revealing the nature of the in vivo Snail repressive complex that regulates neural crest EMT.
Collapse
Affiliation(s)
- Pablo H Strobl-Mazzulla
- Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, 7130 Chascomús, Argentina
| | | |
Collapse
|
27
|
Zhang R, Oyajobi BO, Harris SE, Chen D, Tsao C, Deng HW, Zhao M. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Bone 2013; 52:145-56. [PMID: 23032104 PMCID: PMC3712130 DOI: 10.1016/j.bone.2012.09.029] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/09/2012] [Accepted: 09/22/2012] [Indexed: 11/19/2022]
Abstract
The BMP and Wnt/β-catenin signaling pathways cooperatively regulate osteoblast differentiation and bone formation. Although BMP signaling regulates gene expression of the Wnt pathway, much less is known about whether Wnt signaling modulates BMP expression in osteoblasts. Given the presence of putative Tcf/Lef response elements that bind β-catenin/TCF transcription complex in the BMP2 promoter, we hypothesized that the Wnt/β-catenin pathway stimulates BMP2 expression in osteogenic cells. In this study, we showed that Wnt/β-catenin signaling is active in various osteoblast or osteoblast precursor cell lines, including MC3T3-E1, 2T3, C2C12, and C3H10T1/2 cells. Furthermore, crosstalk between the BMP and Wnt pathways affected BMP signaling activity, osteoblast differentiation, and bone formation, suggesting Wnt signaling is an upstream regulator of BMP signaling. Activation of Wnt signaling by Wnt3a or overexpression of β-catenin/TCF4 both stimulated BMP2 transcription at promoter and mRNA levels. In contrast, transcription of BMP2 in osteogenic cells was decreased by either blocking the Wnt pathway with DKK1 and sFRP4, or inhibiting β-catenin/TCF4 activity with FWD1/β-TrCP, ICAT, or ΔTCF4. Using a site-directed mutagenesis approach, we confirmed that Wnt/β-catenin transactivation of BMP2 transcription is directly mediated through the Tcf/Lef response elements in the BMP2 promoter. These results, which demonstrate that the Wnt/β-catenin signaling pathway is an upstream activator of BMP2 expression in osteoblasts, provide novel insights into the nature of functional cross talk integrating the BMP and Wnt/β-catenin pathways in osteoblastic differentiation and maintenance of skeletal homeostasis.
Collapse
Affiliation(s)
- Rongrong Zhang
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Babatunde O. Oyajobi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stephen E. Harris
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Di Chen
- Department of Biochemistry, Rush University, Chicago, IL, USA
| | - Christopher Tsao
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hong-Wen Deng
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
| | - Ming Zhao
- Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
- Corresponding author at: Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA. (M. Zhao)
| |
Collapse
|
28
|
Eng D, Ma HY, Xu J, Shih HP, Gross MK, Kiouss C. Loss of abdominal muscle in Pitx2 mutants associated with altered axial specification of lateral plate mesoderm. PLoS One 2012; 7:e42228. [PMID: 22860089 PMCID: PMC3409154 DOI: 10.1371/journal.pone.0042228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Sequence specific transcription factors (SSTFs) combinatorially define cell types during development by forming recursively linked network kernels. Pitx2 expression begins during gastrulation, together with Hox genes, and becomes localized to the abdominal lateral plate mesoderm (LPM) before the onset of myogenesis in somites. The somatopleure of Pitx2 null embryos begins to grow abnormally outward before muscle regulatory factors (MRFs) or Pitx2 begin expression in the dermomyotome/myotome. Abdominal somites become deformed and stunted as they elongate into the mutant body wall, but maintain normal MRF expression domains. Subsequent loss of abdominal muscles is therefore not due to defects in specification, determination, or commitment of the myogenic lineage. Microarray analysis was used to identify SSTF families whose expression levels change in E10.5 interlimb body wall biopsies. All Hox9-11 paralogs had lower RNA levels in mutants, whereas genes expressed selectively in the hypaxial dermomyotome/myotome and sclerotome had higher RNA levels in mutants. In situ hybridization analyses indicate that Hox gene expression was reduced in parts of the LPM and intermediate mesoderm of mutants. Chromatin occupancy studies conducted on E10.5 interlimb body wall biopsies showed that Pitx2 protein occupied chromatin sites containing conserved bicoid core motifs in the vicinity of Hox 9-11 and MRF genes. Taken together, the data indicate that Pitx2 protein in LPM cells acts, presumably in combination with other SSTFs, to repress gene expression, that are normally expressed in physically adjoining cell types. Pitx2 thereby prevents cells in the interlimb LPM from adopting the stable network kernels that define sclerotomal, dermomyotomal, or myotomal mesenchymal cell types. This mechanism may be viewed either as lineage restriction or specification.
Collapse
Affiliation(s)
- Diana Eng
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Hsiao-Yen Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Jun Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Hung-Ping Shih
- Department of Pediatrics, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael K. Gross
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Chrissa Kiouss
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
29
|
Shi J, Zhang H, Dowell RD, Klymkowsky MW. sizzled function and secreted factor network dynamics. Biol Open 2012; 1:286-94. [PMID: 23213419 PMCID: PMC3507283 DOI: 10.1242/bio.2012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies on the role of the E-box binding transcription factor Snail2 (Slug) in the induction of neural crest by mesoderm (Shi et al., 2011) revealed an unexpected increase in the level of sizzled RNA in the dorsolateral mesodermal zone (DMLZ) of morphant Xenopus embryos. sizzled encodes a secreted protein with both Wnt and BMP inhibitor activities. Morpholino-mediated down-regulation of sizzled expression in one cell of two cell embryos or the C2/C3 blastomeres of 32-cell embryos, which give rise to the DLMZ, revealed decreased expression of the mesodermal marker brachyury and subsequent defects in neural crest induction, pronephros formation, and muscle patterning. Loss of sizzled expression led to decreases in RNAs encoding the secreted Wnt inhibitor SFRP2 and the secreted BMP inhibitor Noggin; the sizzled morphant phenotype could be rescued by co-injection of RNAs encoding Noggin and either SFRP2 or Dickkopf (a mechanistically distinct Wnt inhibitor). Together, these observations reveal that sizzled, in addition to its established role in dorsal-ventral patterning, is also part of a dynamic BMP and Wnt signaling network involved in both mesodermal patterning and neural crest induction.
Collapse
Affiliation(s)
- Jianli Shi
- Molecular, Cellular and Developmental Biology, University of Colorado , Boulder, CO 80309-0347 , USA
| | | | | | | |
Collapse
|
30
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|
31
|
Esteve P, Sandonìs A, Ibañez C, Shimono A, Guerrero I, Bovolenta P. Secreted frizzled-related proteins are required for Wnt/β-catenin signalling activation in the vertebrate optic cup. Development 2011; 138:4179-84. [PMID: 21896628 DOI: 10.1242/dev.065839] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Secreted frizzled-related proteins (Sfrps) are considered Wnt signalling antagonists but recent studies have shown that specific family members enhance Wnt diffusion and thus positively modulate Wnt signalling. Whether this is a general and physiological property of all Sfrps remains unexplored. It is equally unclear whether disruption of Sfrp expression interferes with developmental events mediated by Wnt signalling activation. Here, we have addressed these questions by investigating the functional consequences of Sfrp disruption in the canonical Wnt signalling-dependent specification of the mouse optic cup periphery. We show that compound genetic inactivation of Sfrp1 and Sfrp2 prevents Wnt/β-catenin signalling activation in this structure, which fails to be specified and acquires neural retina characteristics. Consistent with a positive role of Sfrps in signalling activation, Wnt spreading is impaired in the retina of Sfrp1(-/-);Sfrp2(-/-) mice. Conversely, forced expression of Sfrp1 in the wing imaginal disc of Drosophila, the only species in which the endogenous Wnt distribution can be detected, flattens the Wg gradient, suppresses the expression of high-Wg target genes but expands those typically activated by low Wg concentrations. Collectively, these data demonstrate that, in vivo, the levels of Wnt signalling activation strongly depend on the tissue distribution of Sfrps, which should be viewed as multifunctional regulators of Wnt signalling.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
32
|
Patel N, Sharpe PT, Miletich I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol 2011; 358:156-67. [PMID: 21806977 DOI: 10.1016/j.ydbio.2011.07.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
Branching morphogenesis is a molecularly conserved mechanism that is adopted by several organs, such as the lung, kidney, mammary gland and salivary gland, to maximize the surface area of a tissue within a small volume. Branching occurs through repetitive clefting and elongation of spherical epithelial structures, called endbuds, which invade the surrounding mesenchyme. In the salivary gland, lumen formation takes place alongside branching morphogenesis, but in a controlled manner, so that branching is active at the distal ends of epithelial branches while lumen formation initiates at the proximal ends, and spreads distally. We present here data showing that interaction between FGF signaling and the canonical (β-catenin dependent) and non-canonical branches of Wnt signaling coordinates these two processes. Using the Axin2(lacZ) reporter mice, we find Wnt/β-catenin signaling activity first in the mesenchyme and later, at the time of lumen formation, in the ductal epithelium. Gain and loss of function experiments reveal that this pathway exerts an inhibitory effect on salivary gland branching morphogenesis. We have found that endbuds remain devoid of Wnt/β-catenin signaling activity, a hallmark of ductal structures, through FGF-mediated inhibition of this pathway. Our data also show that FGF signaling has a major role in the control of lumen formation by preventing premature hollowing of epithelial endbuds and slowing down the canalization of presumptive ducts. Concomitantly, FGF signaling strongly represses the ductal marker Cp2l1, most likely via repression of Wnt5b and non-canonical Wnt signaling. Inhibition of canonical and non-canonical Wnt signaling in endbuds by FGF signaling occurs at least in part through sFRP1, a secreted inhibitor of Wnt signaling and downstream target of FGF signaling. Altogether, these findings point to a key function of FGF signaling in the maintenance of an undifferentiated state in endbud cells by inhibition of a ductal fate.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | | | | |
Collapse
|
33
|
SFRPs act as negative modulators of ADAM10 to regulate retinal neurogenesis. Nat Neurosci 2011; 14:562-9. [PMID: 21478884 DOI: 10.1038/nn.2794] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/02/2011] [Indexed: 12/17/2022]
Abstract
It is well established that retinal neurogenesis in mouse embryos requires the activation of Notch signaling, but is independent of the Wnt signaling pathway. We found that genetic inactivation of Sfrp1 and Sfrp2, two postulated Wnt antagonists, perturbs retinal neurogenesis. In retinas from Sfrp1(-/-); Sfrp2(-/-) embryos, Notch signaling was transiently upregulated because Sfrps bind ADAM10 metalloprotease and downregulate its activity, an important step in Notch activation. The proteolysis of other ADAM10 substrates, including APP, was consistently altered in Sfrp mutants, whereas pharmacological inhibition of ADAM10 partially rescued the Sfrp1(-/-); Sfrp2(-/-) retinal phenotype. Conversely, ectopic Sfrp1 expression in the Drosophila wing imaginal disc prevented the expression of Notch targets, and this was restored by the coexpression of Kuzbanian, the Drosophila ADAM10 homolog. Together, these data indicate that Sfrps inhibit the ADAM10 metalloprotease, which might have important implications in pathological events, including cancer and Alzheimer's disease.
Collapse
|
34
|
Wansleeben C, Meijlink F. The planar cell polarity pathway in vertebrate development. Dev Dyn 2011; 240:616-26. [PMID: 21305650 DOI: 10.1002/dvdy.22564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2010] [Indexed: 12/29/2022] Open
Abstract
Directing the orientation of cells in three dimensions is a fundamental aspect of many of the processes underlying the generation of the appropriate shape and function of tissues and organs during embryonic development. In an epithelium, this requires not only the establishment of apicobasal polarity, but also cell arrangement in a specific direction in the plane of the cell sheet. The molecular pathway central to regulating this planar cell polarity (PCP) was originally discovered in the fruit fly Drosophila melanogaster and has more recently been shown to act in a highly analogous way in vertebrates, involving a strongly overlapping set of genes. Mutant studies and molecular analyses have led to insights into the role of ordered planar cell polarity in the development of a wide variety of organs and tissues. In this review, we give an overview of recent developments in the study of planar polarity signaling in vertebrates.
Collapse
|
35
|
Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. ACTA ACUST UNITED AC 2010; 88:653-69. [PMID: 20740593 DOI: 10.1002/bdra.20676] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The number of mouse mutants and strains with neural tube defects (NTDs) now exceeds 240, including 205 representing specific genes, 30 for unidentified genes, and 9 multifactorial strains. These mutants identify genes needed for embryonic neural tube closure. Reports of 50 new NTD mutants since our 2007 review (Harris and Juriloff, 2007) were considered in relation to the previously reviewed mutants to obtain new insights into mechanisms of NTD etiology. In addition to null mutations, some are hypomorphs or conditional mutants. Some mutations do not cause NTDs on their own, but do so in digenic, trigenic, and oligogenic combinations, an etiology that likely parallels the nature of genetic etiology of human NTDs. Mutants that have only exencephaly are fourfold more frequent than those that have spina bifida aperta with or without exencephaly. Many diverse cellular functions and biochemical pathways are involved; the NTD mutants draw new attention to chromatin modification (epigenetics), the protease-activated receptor cascade, and the ciliopathies. Few mutants directly involve folate metabolism. Prevention of NTDs by maternal folate supplementation has been tested in 13 mutants and reduces NTD frequency in six diverse mutants. Inositol reduces spina bifida aperta frequency in the curly tail mutant, and three new mutants involve inositol metabolism. The many NTD mutants are the foundation for a future complete genetic understanding of the processes of neural fold elevation and fusion along mechanistically distinct cranial-caudal segments of the neural tube, and they point to several candidate processes for study in human NTD etiology.
Collapse
Affiliation(s)
- Muriel J Harris
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
36
|
Alfaro MP, Vincent A, Saraswati S, Thorne CA, Hong CC, Lee E, Young PP. sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 2010; 285:35645-53. [PMID: 20826809 DOI: 10.1074/jbc.m110.135335] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for ischemic injury; however, inadequate survival of implanted cells in host tissue is a substantial impediment in the progress of cellular therapy. Secreted Frizzled-related protein 2 (sFRP2) has recently been highlighted as a key mediator of MSC-driven myocardial and wound repair. Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo. We hypothesized that sFRP2 improves MSC engraftment by modulating self-renewal through increasing stem cell survival and by inhibiting differentiation. In previous studies we demonstrated that sFRP2-expressing MSCs exhibited an increased proliferation rate. In the current study, we show that sFRP2 also decreased MSC apoptosis and inhibited both osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred through the inhibition of both Wnt and bone morphogenic protein (BMP) signaling pathways. sFRP2-mediated inhibition of BMP signaling, as assessed by levels of pSMAD 1/5/8, was independent of its effects on the Wnt pathway. We further hypothesized that sFRP2 inhibition of MSC lineage commitment may reduce heterotopic osteogenic differentiation within the injured myocardium, a reported adverse side effect. Indeed, we found that sFRP2-MSC-treated hearts and wound tissue had less ectopic calcification. This work provides important new insight into the mechanisms by which sFRP2 increases MSC self-renewal leading to superior tissue engraftment and enhanced wound healing.
Collapse
Affiliation(s)
- Maria P Alfaro
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Esteve P, Bovolenta P. The advantages and disadvantages of sfrp1 and sfrp2 expression in pathological events. TOHOKU J EXP MED 2010; 221:11-7. [PMID: 20448436 DOI: 10.1620/tjem.221.11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Secreted Frizzled Related Proteins (Sfrps) are a family of secreted proteins that can bind both to Wnt ligands and Frizzled receptors, thereby modulating the Wnt signalling cascades. Recent studies have shown that Sfrps can also interact with Wnt unrelated molecules such as RANKL, a member of the tumor necrosis factor family, Tolloid metalloproteinases or integrin-fibronectin complexes. Alterations in the levels of Sfrp expression have been recently associated with different pathological conditions, including tumor formation and bone and myocardial disorders. Here, we summarise the evidence that relates Sfrps with these diseases and discuss how the proposed multiple Sfrp interactions with Wnt related and unrelated pathways may explain their implication in such diverse pathologies.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal (CSIC), Spain.
| | | |
Collapse
|
38
|
Abstract
Keloids are benign dermal tumors that form during wound healing in genetically susceptible individuals. The mechanism(s) of keloid formation is unknown and there is no satisfactory treatment. We have reported differences between fibroblasts cultured from normal scars and keloids that include a pattern of glucocorticoid resistance and altered regulation of genes in several signaling pathways associated with fibrosis, including Wnt and IGF/IGF-binding protein 5 (IGFBP5). As previously reported for glucocorticoid resistance, decreased expression of the Wnt inhibitor secreted frizzled-related protein 1 (SFRP1), matrix metalloproteinase 3 (MMP3), and dermatopontin (DPT), and increased expression of IGFBP5 and jagged 1 (JAG1) are seen only in fibroblasts cultured from the keloid nodule. In vivo, decreased expression of SFRP1 and SFRP2 and increased expression of IGFBP5 proteins are observed only in proliferative keloid tissue. There is no consistent difference in the replicative life span of normal and keloid fibroblasts, and the altered response to hydrocortisone (HC) and differential regulation of a subset of genes in standard culture medium are maintained throughout at least 80% of the culture lifetime. Preliminary studies using ChIP-chip analysis, Trichostatin A, and 5-aza-2'-deoxycytidine further support an epigenetically altered program in keloid fibroblasts that includes an altered pattern of DNA methylation and histone acetylation.
Collapse
|