1
|
Aquino AP, Li W, Lele A, Lazureanu D, Hampton MF, Do RM, Lafrades MC, Barajas MG, Batres AA, McNally FJ. Inward transport of organelles drives outward migration of the spindle during C. elegans meiosis. Cell Rep 2025; 44:115458. [PMID: 40121661 PMCID: PMC12077383 DOI: 10.1016/j.celrep.2025.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Cortical positioning of the meiotic spindle within an oocyte is required to expel chromosomes into polar bodies to generate a zygote with the correct number of chromosomes. In C. elegans, yolk granules and mitochondria are packed inward, away from the cortex, while the spindle moves outward, both in a kinesin-dependent manner. The kinesin-dependent inward packing of yolk granules suggests the existence of microtubules with minus ends at the cortex and plus ends extending inward, making it unclear how kinesin moves the spindle outward. We hypothesize that the inward packing of organelles might indirectly force the spindle outward by volume exclusion. To test this hypothesis, we generate a strain in which the only kinesin consists of motor domains with no cargo-binding tail optogenetically attached to mitochondria. This mitochondria-only kinesin packs mitochondria into a tight ball and efficiently moves the meiotic spindle to the cortex, supporting the volume exclusion hypothesis.
Collapse
Affiliation(s)
- Alma P Aquino
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Wenzhe Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Aastha Lele
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Denisa Lazureanu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Megan F Hampton
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Rebecca M Do
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Melissa C Lafrades
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Maria G Barajas
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Antonio A Batres
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
2
|
Roby N, Rauzi M. Nuclear position controls the activity of cortical actomyosin networks powering simultaneous morphogenetic events. Nat Commun 2025; 16:1587. [PMID: 39939308 PMCID: PMC11822195 DOI: 10.1038/s41467-025-56880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue morphogenesis shapes epithelial sheets via cell remodelling to form functional living organisms. While the mechanisms underlying single morphogenetic events are well studied, how one tissue undergoes multiple concomitant shape changes remains largely unexplored. To tackle this, we study the process of simultaneous mesoderm folding and extension in the gastrulating Drosophila embryo. This composite transformation relies on a sharply timed reorganization of the cortical actomyosin network into two distinct subcellular tiers to drive concomitant cell apical constriction and lateral intercalation for tissue folding and convergence-extension, respectively. Here we elucidate the spatio-temporal control of the two-tiered actomyosin network. We show that, within the geometric constraints imposed by the columnar shape of mesoderm epithelial cells, the nucleus acts as a barrier shielding the lateral cortex from interactions with the microtubule network, thereby regulating the distribution of the key signalling molecule RhoGEF2. The relocation of the nucleus, driven by the contraction of the first actomyosin tier and the resulting cytoplasmic flow, unshields the lateral cortex for RhoGEF2 delivery to direct the stereotypic formation of the second tier. Thus, the nucleus and its position function as a spatio-temporal cytoskeleton compartmentalizer establishing a modular scaffold powering multiple simultaneous cell remodeling for composite morphogenesis.
Collapse
Affiliation(s)
- Nicolas Roby
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France.
| |
Collapse
|
3
|
Beath EA, Bailey C, Mahantesh Magadam M, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13, and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. eLife 2024; 13:RP97812. [PMID: 39078879 PMCID: PMC11288632 DOI: 10.7554/elife.97812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| |
Collapse
|
4
|
Beath EA, Bailey C, Magadum MM, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13 and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584242. [PMID: 38559153 PMCID: PMC10979973 DOI: 10.1101/2024.03.12.584242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fertilization occurs before completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
5
|
Fujii K, Kondo T, Kimura A. Enucleation of the C. elegans embryo revealed dynein-dependent spacing between microtubule asters. Life Sci Alliance 2024; 7:e202302427. [PMID: 37931957 PMCID: PMC10627822 DOI: 10.26508/lsa.202302427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The intracellular positioning of the centrosome, a major microtubule-organizing center, is important for cellular functions. One of the features of centrosome positioning is the spacing between centrosomes; however, the underlying mechanisms are not fully understood. To characterize the spacing activity in Caenorhabditis elegans embryos, a genetic setup was developed to produce enucleated embryos. The centrosome was duplicated multiple times in the enucleated embryo, which enabled us to characterize the chromosome-independent spacing activity between sister and non-sister centrosome pairs. We found that the timely spacing depended on cytoplasmic dynein, and we propose a stoichiometric model of cortical and cytoplasmic pulling forces for the spacing between centrosomes. We also observed dynein-independent but non-muscle myosin II-dependent movement of centrosomes in the later cell cycle phase. The spacing mechanisms revealed in this study are expected to function between centrosomes in general, regardless of the presence of a chromosome/nucleus between them, including centrosome separation and spindle elongation.
Collapse
Affiliation(s)
- Ken Fujii
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Tomo Kondo
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| | - Akatsuki Kimura
- Department of Genetics, School of Life Science, Sokendai (Graduate University for Advanced Studies) Mishima, Japan
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
6
|
Abstract
Cells are the smallest building blocks of all living eukaryotic organisms, usually ranging from a couple of micrometers (for example, platelets) to hundreds of micrometers (for example, neurons and oocytes) in size. In eukaryotic cells that are more than 100 µm in diameter, very often a self-organized large-scale movement of cytoplasmic contents, known as cytoplasmic streaming, occurs to compensate for the physical constraints of large cells. In this Review, we discuss cytoplasmic streaming in multiple cell types and the mechanisms driving this event. We particularly focus on the molecular motors responsible for cytoplasmic movements and the biological roles of cytoplasmic streaming in cells. Finally, we describe bulk intercellular flow that transports cytoplasmic materials to the oocyte from its sister germline cells to drive rapid oocyte growth.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| |
Collapse
|
7
|
Self-Organization of the Cell. QUANTITATIVE BIOLOGY 2022. [DOI: 10.1007/978-981-16-5018-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Diversity of the Cell. QUANTITATIVE BIOLOGY 2022. [DOI: 10.1007/978-981-16-5018-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Kimura K, Motegi F. Fluid flow dynamics in cellular patterning. Semin Cell Dev Biol 2021; 120:3-9. [PMID: 34274213 DOI: 10.1016/j.semcdb.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
The development of complex forms of multicellular organisms depends on the spatial arrangement of cellular architecture and functions. The interior design of the cell is patterned by spatially biased distributions of molecules and biochemical reactions in the cytoplasm and/or on the plasma membrane. In recent years, a dynamic change in the cytoplasmic fluid flow has emerged as a key physical process of driving long-range transport of molecules to particular destinations within the cell. Here, recent experimental advances in the understanding of the generation of the various types of cytoplasmic flows and contributions to intracellular patterning are reviewed with a particular focus on feedback mechanisms between the mechanical properties of fluid flow and biochemical signaling during animal cell polarization.
Collapse
Affiliation(s)
- Kenji Kimura
- School of Science and Technology, Kwansei Gakuin University, Japan.
| | - Fumio Motegi
- Instiute for Genetic Medicine, Hokkaido University, Japan; Temasek Lifesciences Laboratory, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Danlasky BM, Panzica MT, McNally KP, Vargas E, Bailey C, Li W, Gong T, Fishman ES, Jiang X, McNally FJ. Evidence for anaphase pulling forces during C. elegans meiosis. J Cell Biol 2020; 219:e202005179. [PMID: 33064834 PMCID: PMC7577052 DOI: 10.1083/jcb.202005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis J. McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
11
|
Gubieda AG, Packer JR, Squires I, Martin J, Rodriguez J. Going with the flow: insights from Caenorhabditis elegans zygote polarization. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190555. [PMID: 32829680 PMCID: PMC7482210 DOI: 10.1098/rstb.2019.0555] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Cell polarity is the asymmetric distribution of cellular components along a defined axis. Polarity relies on complex signalling networks between conserved patterning proteins, including the PAR (partitioning defective) proteins, which become segregated in response to upstream symmetry breaking cues. Although the mechanisms that drive the asymmetric localization of these proteins are dependent upon cell type and context, in many cases the regulation of actomyosin cytoskeleton dynamics is central to the transport, recruitment and/or stabilization of these polarity effectors into defined subcellular domains. The transport or advection of PAR proteins by an actomyosin flow was first observed in the Caenorhabditis elegans zygote more than a decade ago. Since then a multifaceted approach, using molecular methods, high-throughput screens, and biophysical and computational models, has revealed further aspects of this flow and how polarity regulators respond to and modulate it. Here, we review recent findings on the interplay between actomyosin flow and the PAR patterning networks in the polarization of the C. elegans zygote. We also discuss how these discoveries and developed methods are shaping our understanding of other flow-dependent polarizing systems. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
| | | | | | | | - Josana Rodriguez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
12
|
Schlientz AJ, Bowerman B. C. elegans CLASP/CLS-2 negatively regulates membrane ingression throughout the oocyte cortex and is required for polar body extrusion. PLoS Genet 2020; 16:e1008751. [PMID: 33027250 PMCID: PMC7571700 DOI: 10.1371/journal.pgen.1008751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/19/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022] Open
Abstract
The requirements for oocyte meiotic cytokinesis during polar body extrusion are not well understood. In particular, the relationship between the oocyte meiotic spindle and polar body contractile ring dynamics remains largely unknown. We have used live cell imaging and spindle assembly defective mutants lacking the function of CLASP/CLS-2, kinesin-12/KLP-18, or katanin/MEI-1 to investigate the relationship between meiotic spindle structure and polar body extrusion in C. elegans oocytes. We show that spindle bipolarity and chromosome segregation are not required for polar body contractile ring formation and chromosome extrusion in klp-18 mutants. In contrast, oocytes with similarly severe spindle assembly defects due to loss of CLS-2 or MEI-1 have penetrant and distinct polar body extrusion defects: CLS-2 is required early for contractile ring assembly or stability, while MEI-1 is required later for contractile ring constriction. We also show that CLS-2 both negatively regulates membrane ingression throughout the oocyte cortex during meiosis I, and influences the dynamics of the central spindle-associated proteins Aurora B/AIR-2 and MgcRacGAP/CYK-4. We suggest that proper regulation by CLS-2 of both oocyte cortical stiffness and central spindle protein dynamics may influence contractile ring assembly during polar body extrusion in C. elegans oocytes.
Collapse
Affiliation(s)
- Aleesa J. Schlientz
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
13
|
Kimura K, Kimura A. Cytoplasmic streaming drifts the polarity cue and enables posteriorization of the Caenorhabditis elegans zygote at the side opposite of sperm entry. Mol Biol Cell 2020; 31:1765-1773. [PMID: 32459552 PMCID: PMC7521852 DOI: 10.1091/mbc.e20-01-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell polarization is required to define body axes during development. The position of spatial cues for polarization is critical to direct the body axes. In Caenorhabditis elegans zygotes, the sperm-derived pronucleus/centrosome complex (SPCC) serves as the spatial cue to specify the anterior-posterior axis. Approximately 30 min after fertilization, the contractility of the cell cortex is relaxed near the SPCC, which is the earliest sign of polarization and called symmetry breaking (SB). It is unclear how the position of SPCC at SB is determined after fertilization. Here, we show that SPCC drifts dynamically through the cell-wide flow of the cytoplasm, called meiotic cytoplasmic streaming. This flow occasionally brings SPCC to the opposite side of the sperm entry site before SB. Our results demonstrate that cytoplasmic flow determines stochastically the position of the spatial cue of the body axis, even in an organism like C. elegans for which development is stereotyped.
Collapse
Affiliation(s)
- Kenji Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Biological Science, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| |
Collapse
|
14
|
Vargas E, McNally KP, Cortes DB, Panzica MT, Danlasky BM, Li Q, Maddox AS, McNally FJ. Spherical spindle shape promotes perpendicular cortical orientation by preventing isometric cortical pulling on both spindle poles during C. elegans female meiosis. Development 2019; 146:dev.178863. [PMID: 31575646 DOI: 10.1242/dev.178863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Meiotic spindles are positioned perpendicular to the oocyte cortex to facilitate segregation of chromosomes into a large egg and a tiny polar body. In C. elegans, spindles are initially ellipsoid and parallel to the cortex before shortening to a near-spherical shape with flattened poles and then rotating to the perpendicular orientation by dynein-driven cortical pulling. The mechanistic connection between spindle shape and rotation has remained elusive. Here, we have used three different genetic backgrounds to manipulate spindle shape without eliminating dynein-dependent movement or dynein localization. Ellipsoid spindles with flattened or pointed poles became trapped in either a diagonal or a parallel orientation. Mathematical models that recapitulated the shape dependence of rotation indicated that the lower viscous drag experienced by spherical spindles prevented recapture of the cortex by astral microtubules emanating from the pole pivoting away from the cortex. In addition, maximizing contact between pole dynein and cortical dynein stabilizes flattened poles in a perpendicular orientation, and spindle rigidity prevents spindle bending that can lock both poles at the cortex. Spindle shape can thus promote perpendicular orientation by three distinct mechanisms.
Collapse
Affiliation(s)
- Elizabeth Vargas
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Karen P McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel B Cortes
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brennan M Danlasky
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Qianyan Li
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Amy Shaub Maddox
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
16
|
Almonacid M, Terret ME, Verlhac MH. Control of nucleus positioning in mouse oocytes. Semin Cell Dev Biol 2018; 82:34-40. [DOI: 10.1016/j.semcdb.2017.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022]
|
17
|
UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Sci Rep 2018; 8:8938. [PMID: 29895958 PMCID: PMC5997755 DOI: 10.1038/s41598-018-27211-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
We investigate the role of axonal transport in regulating neuronal mitochondrial density. We show that the density of mitochondria in the touch receptor neuron (TRN) of adult Caenorhabditis elegans is constant. Mitochondrial density and transport are controlled both by the Kinesin heavy chain and the Dynein-Dynactin complex. However, unlike in other models, the presence of mitochondria in C. elegans TRNs depends on a Kinesin light chain as well. Mutants in the three C. elegans miro genes do not alter mitochondrial density in the TRNs. Mutants in the Kinesin-1 associated proteins, UNC-16/JIP3 and UNC-76/FEZ1, show increased mitochondrial density and also have elevated levels of both the Kinesin Heavy and Light Chains in neurons. Genetic analyses suggest that, the increased mitochondrial density at the distal end of the neuronal process in unc-16 and unc-76 depends partly on Dynein. We observe a net anterograde bias in the ratio of anterograde to retrograde mitochondrial flux in the neuronal processes of unc-16 and unc-76, likely due to both increased Kinesin-1 and decreased Dynein in the neuronal processes. Our study shows that UNC-16 and UNC-76 indirectly limit mitochondrial density in the neuronal process by maintaining a balance in anterograde and retrograde mitochondrial axonal transport.
Collapse
|
18
|
Panzica MT, McNally FJ. Mechanisms that prevent catastrophic interactions between paternal chromosomes and the oocyte meiotic spindle. Cell Cycle 2018; 17:529-534. [PMID: 29375006 DOI: 10.1080/15384101.2018.1431495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes.
Collapse
Affiliation(s)
- Michelle T Panzica
- a Department of Molecular and Cellular Biology , University of California , Davis , Davis , CA , USA
| | - Francis J McNally
- a Department of Molecular and Cellular Biology , University of California , Davis , Davis , CA , USA
| |
Collapse
|
19
|
Panzica MT, Marin HC, Reymann AC, McNally FJ. F-actin prevents interaction between sperm DNA and the oocyte meiotic spindle in C. elegans. J Cell Biol 2017. [PMID: 28637747 PMCID: PMC5551714 DOI: 10.1083/jcb.201702020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After fertilization, interactions between sperm and egg DNA must be prevented before the completion of female meiosis. Panzica et al. show that cortical tethering by F-actin prevents contact between the paternal DNA and the meiotic spindle. Fertilization occurs during female meiosis in most animals, which raises the question of what prevents the sperm DNA from interacting with the meiotic spindle. In this study, we find that Caenorhabditis elegans sperm DNA stays in a fixed position at the opposite end of the embryo from the meiotic spindle while yolk granules are transported throughout the embryo by kinesin-1. In the absence of F-actin, the sperm DNA, centrioles, and organelles were transported as a unit with the yolk granules, resulting in sperm DNA within 2 µm of the meiotic spindle. F-actin imaging revealed a cytoplasmic meshwork that might restrict transport in a size-dependent manner. However, increasing yolk granule size did not slow their velocity, and the F-actin moved with the yolk granules. Instead, sperm contents connect to the cortical F-actin to prevent interaction with the meiotic spindle.
Collapse
Affiliation(s)
- Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Harold C Marin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | | | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| |
Collapse
|
20
|
Kimura K, Mamane A, Sasaki T, Sato K, Takagi J, Niwayama R, Hufnagel L, Shimamoto Y, Joanny JF, Uchida S, Kimura A. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming. Nat Cell Biol 2017; 19:399-406. [PMID: 28288129 DOI: 10.1038/ncb3490] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/09/2017] [Indexed: 02/06/2023]
Abstract
Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.
Collapse
Affiliation(s)
- Kenji Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Alexandre Mamane
- Physicochimie Curie (Centre National de la Recherche Scientifique-UMR168, UPMC), Institut Curie, PSL Research University, Section de Recherche, Paris 75248, France
| | - Tohru Sasaki
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Kohta Sato
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Jun Takagi
- Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan
| | - Ritsuya Niwayama
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| | - Lars Hufnagel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Yuta Shimamoto
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan.,Quantitative Mechanobiology Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima 411-8540, Japan
| | - Jean-François Joanny
- Physicochimie Curie (Centre National de la Recherche Scientifique-UMR168, UPMC), Institut Curie, PSL Research University, Section de Recherche, Paris 75248, France
| | - Seiichi Uchida
- Human Interface Laboratory, Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.,Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima 411-8540, Japan
| |
Collapse
|
21
|
Crowder ME, Flynn JR, McNally KP, Cortes DB, Price KL, Kuehnert PA, Panzica MT, Andaya A, Leary JA, McNally FJ. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans. Mol Biol Cell 2015; 26:3030-46. [PMID: 26133383 PMCID: PMC4551317 DOI: 10.1091/mbc.e15-05-0290] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/24/2015] [Indexed: 11/11/2022] Open
Abstract
Cytoplasmic dynein accumulates on the cortex of Caenorhabditis elegans female meiotic spindles just before they rotate in a dynein-dependent manner. These spindles also shorten to a spherical shape that might reduce the drag that opposes cortical pulling by dynein. Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin.
Collapse
Affiliation(s)
- Marina E Crowder
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Jonathan R Flynn
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Karen P McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Daniel B Cortes
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Kari L Price
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Paul A Kuehnert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Michelle T Panzica
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Armann Andaya
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Julie A Leary
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
22
|
Kumar M, Pushpa K, Mylavarapu SVS. Splitting the cell, building the organism: Mechanisms of cell division in metazoan embryos. IUBMB Life 2015; 67:575-87. [PMID: 26173082 PMCID: PMC5937677 DOI: 10.1002/iub.1404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022]
Abstract
The unicellular metazoan zygote undergoes a series of cell divisions that are central to its development into an embryo. Differentiation of embryonic cells leads eventually to the development of a functional adult. Fate specification of pluripotent embryonic cells occurs during the early embryonic cleavage divisions in several animals. Early development is characterized by well-known stages of embryogenesis documented across animals--morulation, blastulation, and morphogenetic processes such as gastrulation, all of which contribute to differentiation and tissue specification. Despite this broad conservation, there exist clearly discernible morphological and functional differences across early embryonic stages in metazoans. Variations in the mitotic mechanisms of early embryonic cell divisions play key roles in governing these gross differences that eventually encode developmental patterns. In this review, we discuss molecular mechanisms of both karyokinesis (nuclear division) and cytokinesis (cytoplasmic separation) during early embryonic divisions. We outline the broadly conserved molecular pathways that operate in these two stages in early embryonic mitoses. In addition, we highlight mechanistic variations in these two stages across different organisms. We finally discuss outstanding questions of interest, answers to which would illuminate the role of divergent mitotic mechanisms in shaping early animal embryogenesis.
Collapse
Affiliation(s)
- Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sivaram V. S. Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
23
|
Abstract
Asymmetric cell division (ACD), a mechanism for cell-type diversification in both prokaryotes and eukaryotes, is accomplished through highly coordinated cell-fate segregation, genome partitioning, and cell division. Whereas important paradigms have arisen from the study of animal embryonic divisions, the strategies for choreographing the dynamic subprocesses are, in fact, highly varied. This review examines divergent mechanisms of ACD across different kingdoms. Examples discussed show that there is no obligatory hierarchy among the dynamic events and that asymmetry can emerge from each event, but cell polarization more often occurs as the initial instructive process for patterning ACD especially in the multicellular context.
Collapse
Affiliation(s)
- Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.
| |
Collapse
|
24
|
Berends CWH, Muñoz J, Portegijs V, Schmidt R, Grigoriev I, Boxem M, Akhmanova A, Heck AJR, van den Heuvel S. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo. Mol Biol Cell 2013; 24:2201-15. [PMID: 23699393 PMCID: PMC3708726 DOI: 10.1091/mbc.e13-02-0076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The position of the spindle apparatus determines the plane of cell cleavage and, therefore, the size and position of daughter cells, as well as the decision between symmetric and asymmetric cell division. We show that asymmetry in cortical actin and, remarkably, an endoplasmic reticulum–localized protein contribute to proper spindle positioning in the Caenorhabditis elegans embryo. The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.
Collapse
|
25
|
Barsi-Rhyne BJ, Miller KM, Vargas CT, Thomas AB, Park J, Bremer M, Jarecki JL, VanHoven MK. Kinesin-1 acts with netrin and DCC to maintain sensory neuron position in Caenorhabditis elegans. Genetics 2013; 194:175-87. [PMID: 23475988 PMCID: PMC3632465 DOI: 10.1534/genetics.113.149310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
The organization of neurons and the maintenance of that arrangement are critical to brain function. Failure of these processes in humans can lead to severe birth defects, mental retardation, and epilepsy. Several kinesins have been shown to play important roles in cell migration in vertebrate systems, but few upstream and downstream pathway members have been identified. Here, we utilize the genetic model organism Caenorhabditis elegans to elucidate the pathway by which the C. elegans Kinesin-1 Heavy Chain (KHC)/KIF5 ortholog UNC-116 functions to maintain neuronal cell body position in the PHB sensory neurons. We find that UNC-116/KHC acts in part with the cell and axon migration molecules UNC-6/Netrin and UNC-40/DCC in this process, but in parallel to SAX-3/Robo. We have also identified several potential adaptor, cargo, and regulatory proteins that may provide insight into the mechanism of UNC-116/KHC's function in this process. These include the cargo receptor UNC-33/CRMP2, the cargo adaptor protein UNC-76/FEZ and its regulator UNC-51/ULK, the cargo molecule UNC-69/SCOCO, and the actin regulators UNC-44/Ankyrin and UNC-34/Enabled. These genes also act in cell migration and axon outgrowth; however, many proteins that function in these processes do not affect PHB position. Our findings suggest an active posterior cell migration mediated by UNC-116/KHC occurs throughout development to maintain proper PHB cell body position and define a new pathway that mediates maintenance of neuronal cell body position.
Collapse
Affiliation(s)
| | - Kristine M. Miller
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Christopher T. Vargas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Anthony B. Thomas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Joori Park
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Martina Bremer
- Department of Mathematics, San José State University, San José, California 95192
| | - Jessica L. Jarecki
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Miri K. VanHoven
- Department of Biological Sciences, San José State University, San José, California 95192
| |
Collapse
|
26
|
Abstract
Accurate positioning of spindles is essential for asymmetric mitotic and meiotic cell divisions that are crucial for animal development and oocyte maturation, respectively. The predominant model for spindle positioning, termed "cortical pulling," involves attachment of the microtubule-based motor cytoplasmic dynein to the cortex, where it exerts a pulling force on microtubules that extend from the spindle poles to the cell cortex, thereby displacing the spindle. Recent studies have addressed important details of the cortical pulling mechanism and have revealed alternative mechanisms that may be used when microtubules do not extend from the spindle to the cortex.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
28
|
Maddox AS, Azoury J, Dumont J. Polar body cytokinesis. Cytoskeleton (Hoboken) 2012; 69:855-68. [PMID: 22927361 DOI: 10.1002/cm.21064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/20/2012] [Indexed: 02/04/2023]
Abstract
Polar body cytokinesis is the physical separation of a small polar body from a larger oocyte or ovum. This maternal meiotic division shares many similarities with mitotic and spermatogenic cytokinesis, but there are several distinctions, which will be discussed in this review. We synthesize results from many different model species, including those popular for their genetics and several that are more obscure in modern cell biology. The site of polar body division is determined before anaphase, by the eccentric, cortically associated meiotic spindle. Depending on the species, either the actin or microtubule cytoskeleton is required for spindle anchoring. Chromatin is necessary and sufficient to elicit differentiation of the associated cortex, via Ran-based signaling. The midzone of the anaphase spindle serves as a hub for regulatory complexes that elicit Rho activation, and ultimately actomyosin contractile ring assembly and contraction. Polar body cytokinesis uniquely requires another Rho family GTPase, Cdc42, for dynamic reorganization of the polar cortex. This is perhaps due to the considerable asymmetry of this division, wherein the polar body and the oocyte/ovum have distinct fates and very different sizes. Thus, maternal meiotic cytokinesis appears to occur via simultaneous polar relaxation and equatorial contraction, since the polar body is extruded from the spherical oocyte through the nascent contractile ring. As such, polar body cytokinesis is an interesting and important variation on the theme of cell division.
Collapse
Affiliation(s)
- Amy Shaub Maddox
- Institut de recherche en immunology et en cancerologie (IRIC), Université de Montréal, Montréal, Quebec, Canada.
| | | | | |
Collapse
|
29
|
Espiritu EB, Krueger LE, Ye A, Rose LS. CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo. Dev Biol 2012; 368:242-54. [PMID: 22613359 DOI: 10.1016/j.ydbio.2012.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/26/2012] [Accepted: 05/11/2012] [Indexed: 01/15/2023]
Abstract
Microtubule dynamics are thought to play an important role in regulating microtubule interactions with cortical force generating motor proteins that position the spindle during asymmetric cell division. CLASPs are microtubule-associated proteins that have a conserved role in regulating microtubule dynamics in diverse cell types. Caenorhabditis elegans has three CLASP homologs in its genome. CLS-2 is known to localize to kinetochores and is needed for chromosome segregation at meiosis and mitosis; however CLS-1 and CLS-3 have not been reported to have any role in embryonic development. Here, we show that depletion of CLS-2 in combination with either CLS-1 or CLS-3 results in defects in nuclear rotation, maintenance of spindle length, and spindle displacement in the one-cell embryo. Polarity is normal in these embryos, but reduced numbers of astral microtubules reach all regions of the cortex at the time of spindle positioning. Analysis of the microtubule plus-end tracker EB1 also revealed a reduced number of growing microtubules reaching the cortex in CLASP depleted embryos, but the polymerization rate of astral microtubules was not slower than in wild type. These results indicate that C. elegans CLASPs act partially redundantly to regulate astral microtubules and position the spindle during asymmetric cell division. Further, we show that these spindle pole-positioning roles are independent of the CLS-2 binding proteins HCP-1 and HCP-2.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | |
Collapse
|
30
|
Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis. Trends Cell Biol 2012; 22:241-9. [PMID: 22480579 DOI: 10.1016/j.tcb.2012.02.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 11/24/2022]
Abstract
The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte meiosis is error prone and underlies most birth aneuploidies. Here, we review recent work on acentrosomal spindle formation and chromosome alignment/separation during oocyte meiosis in different animal models.
Collapse
|
31
|
Kinesin-1 prevents capture of the oocyte meiotic spindle by the sperm aster. Dev Cell 2012; 22:788-98. [PMID: 22465668 DOI: 10.1016/j.devcel.2012.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 12/03/2011] [Accepted: 01/12/2012] [Indexed: 11/20/2022]
Abstract
Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a nonmotor mechanism.
Collapse
|
32
|
Centrosomes can initiate a polarity axis from any position within one-cell C. elegans embryos. Curr Biol 2012; 22:583-9. [PMID: 22425158 DOI: 10.1016/j.cub.2012.01.064] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/05/2012] [Accepted: 01/30/2012] [Indexed: 11/22/2022]
Abstract
The stereotyped asymmetry of one-cell C. elegans embryos has proven to be an important model for identifying molecular determinants of cell polarity. How polarity is initiated is less well understood. Polarity establishment depends on centrosomes, which use two molecularly distinct pathways to break symmetry. In both, the centrosome's position adjacent to the cell cortex is thought to determine where polarization starts. Defects in centrosome-cortex juxtaposition correlate with defects in polarity establishment in several mutants, suggesting that these processes may be linked, but there is no direct test of this. Here we assess how centrosome position relative to the cortex affects polarity establishment. We find that centrosomes can initiate polarity from any position within the embryo volume, but centrosome-cortex proximity decreases the time required to initiate polarity. Polarization itself brings about close centrosome-cortex proximity. Prior to polarization, cytoplasmic microtubules constrain centrosome movement near the cortex, expanding the controversial role of microtubules during polarity establishment. The ability of centrosomes to induce a single polarity axis from any position within the egg emphasizes the flexible, self-organizing properties of polarization in C. elegans embryos and contrasts the common view of C. elegans development as invariant.
Collapse
|
33
|
Jain M, Bhat GP, Vijayraghavan K, Inamdar MS. Rudhira/BCAS3 is a cytoskeletal protein that controls Cdc42 activation and directional cell migration during angiogenesis. Exp Cell Res 2012; 318:753-67. [PMID: 22300583 DOI: 10.1016/j.yexcr.2012.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 12/19/2022]
Abstract
Cell migration is a common cellular process in angiogenesis and tumor metastasis. Rudhira/BCAS3 (Breast Cancer Amplified Sequence 3) is a conserved protein expressed in the embryonic vasculature and malignant tumors. Here, we show for the first time that Rudhira plays an active role in directional cell migration. Rudhira depletion in endothelial cells inhibits Matrigel-induced tube formation and retards healing of wounded cell monolayers. We demonstrate that during wound healing, Rudhira rapidly re-localizes and promotes Cdc42 activation and recruitment to the leading edge of migrating cells. Rudhira deficient cells show impaired downstream signaling of Cdc42 leading to dramatic changes in actin organization and classic cell polarity defects such as loss of microtubule organizing center (MTOC) and Golgi re-orientation. Biochemical assays and co-localization studies show that Rudhira interacts with microtubules as well as intermediate filaments. Thus, Rudhira could control directional cell migration and angiogenesis by facilitating crosstalk between cytoskeletal elements.
Collapse
Affiliation(s)
- Mamta Jain
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
34
|
Ellefson ML, McNally FJ. CDK-1 inhibits meiotic spindle shortening and dynein-dependent spindle rotation in C. elegans. ACTA ACUST UNITED AC 2011; 193:1229-44. [PMID: 21690306 PMCID: PMC3216336 DOI: 10.1083/jcb.201104008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Before chromosome expulsion into polar bodies during female meiosis, the APC inhibits CDK-1 to allow dynein-driven spindle rotation. In animals, the female meiotic spindle is positioned at the egg cortex in a perpendicular orientation to facilitate the disposal of half of the chromosomes into a polar body. In Caenorhabditis elegans, the metaphase spindle lies parallel to the cortex, dynein is dispersed on the spindle, and the dynein activators ASPM-1 and LIN-5 are concentrated at spindle poles. Anaphase-promoting complex (APC) activation results in dynein accumulation at spindle poles and dynein-dependent rotation of one spindle pole to the cortex, resulting in perpendicular orientation. To test whether the APC initiates spindle rotation through cyclin B–CDK-1 inactivation, separase activation, or degradation of an unknown dynein inhibitor, CDK-1 was inhibited with purvalanol A in metaphase-I–arrested, APC-depleted embryos. CDK-1 inhibition resulted in the accumulation of dynein at spindle poles and dynein-dependent spindle rotation without chromosome separation. These results suggest that CDK-1 blocks rotation by inhibiting dynein association with microtubules and with LIN-5–ASPM-1 at meiotic spindle poles and that the APC promotes spindle rotation by inhibiting CDK-1.
Collapse
Affiliation(s)
- Marina L Ellefson
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
35
|
Fabritius AS, Ellefson ML, McNally FJ. Nuclear and spindle positioning during oocyte meiosis. Curr Opin Cell Biol 2011; 23:78-84. [PMID: 20708397 PMCID: PMC2994957 DOI: 10.1016/j.ceb.2010.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
Abstract
Female meiosis is unique in that an asymmetrically positioned meiotic spindle expels chromosomes into tiny, non-developing polar bodies. The extrusion of chromosomes into polar bodies is always mediated by meiotic spindles that are attached to the oocyte cortex by one pole. The asymmetric, cortical positioning of the oocyte meiotic spindle preserves the volume and contents of the oocyte. Recent work in C. elegans and mouse has provided mechanistic details of spindle positioning in oocytes.
Collapse
Affiliation(s)
- Amy S. Fabritius
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| | - Marina L. Ellefson
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| | - Francis J. McNally
- Department of Molecular and Cellular Biology University of California, Davis, Davis, CA 95616
| |
Collapse
|