1
|
Ilchuk LA, Kubekina MV, Okulova YD, Silaeva YY, Tatarskiy VV, Filatov MA, Bruter AV. Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex. Int J Mol Sci 2023; 24:ijms24119330. [PMID: 37298278 DOI: 10.3390/ijms24119330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.
Collapse
Affiliation(s)
- Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Yulia Yu Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology", Ministry of Health of the Russian Federation, Kashirskoe Sh. 24, 115478 Moscow, Russia
| |
Collapse
|
2
|
Cediel-Ulloa A, Yu X, Hinojosa M, Johansson Y, Forsby A, Broberg K, Rüegg J. Methylmercury-induced DNA methylation—From epidemiological observations to experimental evidence. Front Genet 2022; 13:993387. [PMID: 36176303 PMCID: PMC9513252 DOI: 10.3389/fgene.2022.993387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Methylmercury (MeHg) is a developmental neurotoxicant, and one potential mechanism of MeHg toxicity is epigenetic dysregulation. In a recent meta-analysis of epigenome-wide association studies (EWAS), associations between prenatal MeHg exposure and DNA methylation at several genomic sites were identified in blood from newborns and children. While EWASs reveal human-relevant associations, experimental studies are required to validate the relationship between exposure and DNA methylation changes, and to assess if such changes have implications for gene expression. Herein, we studied DNA methylation and gene expression of five of the top genes identified in the EWAS meta-analysis, MED31, MRPL19, GGH, GRK1, and LYSMD3, upon MeHg exposure in human SH-SY5Y cells exposed to 8 or 40 nM of MeHg during differentiation, using bisulfite-pyrosequencing and qPCR, respectively. The concentrations were selected to cover the range of MeHg concentrations in cord blood (2–8.5 μg/L) observed in the cohorts included in the EWAS. Exposure to MeHg increased DNA methylation at MED31, a transcriptional regulator essential for fetal development. The results were in concordance with the epidemiological findings where more MED31 methylation was associated with higher concentrations of MeHg. Additionally, we found a non-significant decrease in DNA methylation at GGH, which corresponds to the direction of change observed in the EWAS, and a significant correlation of GGH methylation with its expression. In conclusion, this study corroborates some of the EWAS findings and puts forward candidate genes involved in MeHg’s effects on the developing brain, thus highlighting the value of experimental validation of epidemiological association studies.
Collapse
Affiliation(s)
| | - Ximiao Yu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- *Correspondence: Joëlle Rüegg,
| |
Collapse
|
3
|
Zhou Z, Yan H, Kim MS, Shim WB. Distinct Function of Mediator Subunits in Fungal Development, Stress Response, and Secondary Metabolism in Maize Pathogen Fusarium verticillioides. PHYTOPATHOLOGY 2022; 112:1730-1738. [PMID: 35271780 DOI: 10.1094/phyto-12-21-0495-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mediator is a nucleus-localized, multisubunit protein complex highly conserved across eukaryotes. It interacts with RNA polymerase II transcription machinery as well as various transcription factors to regulate gene expression. However, systematic characterization of the Mediator complex has not been performed in filamentous fungi. In our study, the goal was to investigate key biological functions of Mediator subunits in a mycotoxigenic plant pathogen Fusarium verticillioides. Although there is some level of divergence in the constituent subunits, the overall structure was conserved between Saccharomyces cerevisiae and F. verticillioides. We generated 11 Mediator subunit deletion mutants and characterized vegetative growth, conidia formation, environmental stress response, carbon and fatty acid use, virulence, and fumonisin B1 (FB1) biosynthesis. Each Mediator subunit deletion mutant showed deficiencies in at least three of the phenotypes tested, suggesting that each subunit has different principal functions in F. verticillioides development, metabolism, and virulence. The deletion of FvMed1 led to increased FB1 production, and we confirmed that FvMed1 is transported from the nucleus to the cytoplasm under fumonisin-producing conditions. Taken together, our study characterized various important functional roles for Mediator subunits in F. verticillioides and suggests that select subunits can perform unique cytoplasmic functions independent of the core Mediator in fungal nucleus.
Collapse
Affiliation(s)
- Zehua Zhou
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Hunan Agricultural University, College of Plant Protection & Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Plant Pests, Furong District, Changsha, Hunan 410128, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, U.S.A
| | - Man S Kim
- Clinical Research Institute, College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
4
|
Dash S, Bhatt S, Falcon KT, Sandell LL, Trainor PA. Med23 Regulates Sox9 Expression during Craniofacial Development. J Dent Res 2020; 100:406-414. [PMID: 33155500 DOI: 10.1177/0022034520969109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The etiology and pathogenesis of craniofacial birth defects are multifactorial and include both genetic and environmental factors. Despite the identification of numerous genes associated with congenital craniofacial anomalies, our understanding of their etiology remains incomplete, and many affected individuals have an unknown genetic diagnosis. Here, we show that conditional loss of a Mediator complex subunit protein, Med23 in mouse neural crest cells (Med23fx/fx;Wnt1-Cre), results in micrognathia, glossoptosis, and cleft palate, mimicking the phenotype of Pierre Robin sequence. Sox9 messenger RNA and protein levels are both upregulated in neural crest cell-derived mesenchyme surrounding Meckel's cartilage and in the palatal shelves in Med23fx/fx;Wnt1-Cre mutant embryos compared to controls. Consistent with these observations, we demonstrate that Med23 binds to the promoter region of Sox9 and represses Sox9 expression in vitro. Interestingly, Sox9 binding to β-catenin is enhanced in Med23fx/fx;Wnt1-Cre mutant embryos, which, together with downregulation of Col2a1 and Wnt signaling target genes, results in decreased proliferation and altered jaw skeletal differentiation and cleft palate. Altogether, our data support a cell-autonomous requirement for Med23 in neural crest cells, potentially linking the global transcription machinery through Med23 to the etiology and pathogenesis of craniofacial anomalies such as micrognathia and cleft palate.
Collapse
Affiliation(s)
- S Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - S Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - K T Falcon
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - L L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, KY, USA
| | - P A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Dash S, Bhatt S, Sandell LL, Seidel CW, Ahn Y, Krumlauf RE, Trainor PA. The Mediator Subunit, Med23 Is Required for Embryonic Survival and Regulation of Canonical WNT Signaling During Cranial Ganglia Development. Front Physiol 2020; 11:531933. [PMID: 33192541 PMCID: PMC7642510 DOI: 10.3389/fphys.2020.531933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Development of the vertebrate head is a complex and dynamic process, which requires integration of all three germ layers and their derivatives. Of special importance are ectoderm-derived cells that form the cranial placodes, which then differentiate into the cranial ganglia and sensory organs. Critical to a fully functioning head, defects in cranial placode and sensory organ development can result in congenital craniofacial anomalies. In a forward genetic screen aimed at identifying novel regulators of craniofacial development, we discovered an embryonically lethal mouse mutant, snouty, which exhibits malformation of the facial prominences, cranial nerves and vasculature. The snouty mutation was mapped to a single nucleotide change in a ubiquitously expressed gene, Med23, which encodes a subunit of the global transcription co-factor complex, Mediator. Phenotypic analyses revealed that the craniofacial anomalies, particularly of the cranial ganglia, were caused by a failure in the proper specification of cranial placode neuronal precursors. Molecular analyses determined that defects in cranial placode neuronal differentiation in Med23 sn/sn mutants were associated with elevated WNT/β-catenin signaling, which can be partially rescued through combined Lrp6 and Wise loss-of-function. Our work therefore reveals a surprisingly tissue specific role for the ubiquitously expressed mediator complex protein Med23 in placode differentiation during cranial ganglia development. This highlights the importance of coupling general transcription to the regulation of WNT signaling during embryogenesis.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | | | - Youngwook Ahn
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Robb E Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
6
|
Cui W, Marcho C, Wang Y, Degani R, Golan M, Tremblay KD, Rivera-Pérez JA, Mager J. MED20 is essential for early embryogenesis and regulates NANOG expression. Reproduction 2020; 157:215-222. [PMID: 30571656 DOI: 10.1530/rep-18-0508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Mediator is an evolutionarily conserved multi-subunit complex, bridging transcriptional activators and repressors to the general RNA polymerase II (Pol II) initiation machinery. Though the Mediator complex is crucial for the transcription of almost all Pol II promoters in eukaryotic organisms, the phenotypes of individual Mediator subunit mutants are each distinct. Here, we report for the first time, the essential role of subunit MED20 in early mammalian embryo development. Although Med20 mutant mouse embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at early post-gastrulation stages. Outgrowth assays show that mutant blastocysts cannot hatch from the zona pellucida, indicating impaired blastocyst function. Assessments of cell death and cell lineage specification reveal that apoptosis, inner cell mass, trophectoderm and primitive endoderm markers are normal in mutant blastocysts. However, the epiblast marker NANOG is ectopically expressed in the trophectoderm of Med20 mutants, indicative of defects in trophoblast specification. These results suggest that MED20 specifically, and the Mediator complex in general, are essential for the earliest steps of mammalian development and cell lineage specification.
Collapse
Affiliation(s)
- Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, Massachusetts, USA
| | - Chelsea Marcho
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Rinat Degani
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Morgane Golan
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jaime A Rivera-Pérez
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
7
|
Wang Y, Liang H, Chen G, Liao C, Wang Y, Hu Z, Xie Q. Molecular and Phylogenetic Analyses of the Mediator Subunit Genes in Solanum lycopersicum. Front Genet 2019; 10:1222. [PMID: 31827491 PMCID: PMC6892441 DOI: 10.3389/fgene.2019.01222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 11/19/2022] Open
Abstract
The Mediator complex is a multi-subunit protein assembly that serves as a central scaffold to help regulate DNA-binding transcription factors (TFs) and RNA polymerase II (Pol II) activity controlled gene expression programmed in response to developmental or environmental factors. However, litter information about Mediator complex subunit (MED) genes in tomato is available, although it is an essential model plant. In this study, we retrieved 46 candidate SlMED genes from the genome of tomato, and a comprehensive analysis was conducted, including their phylogenetic relationship, chromosomal locations, gene structure, cis-regulatory elements prediction, as well as gene expression. The expression profiling of 46 SlMED genes was analyzed using publicly available RNA-seq data. Furthermore, we selected some SlMED genes to evaluate their expression patterns in various tissues and under different abiotic stress treatments by quantitative reverse transcription PCR experiments. This is the first detailed report to elucidate the molecular and phylogenetic features of the MED genes in tomato, and it provides valuable clues for further functional analysis in order to clarify the role of the SlMED genes in diverse plant growth, development and abiotic stress response.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Honglian Liang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Dhar A, Chawla M, Chattopadhyay S, Oswal N, Umar D, Gupta S, Bal V, Rath S, George A, Arimbasseri GA, Basak S. Role of NF-kappaB2-p100 in regulatory T cell homeostasis and activation. Sci Rep 2019; 9:13867. [PMID: 31554891 PMCID: PMC6761191 DOI: 10.1038/s41598-019-50454-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
The immunological roles of the nuclear factor-kappaB (NF-κB) pathway are mediated via the canonical components in immune responses and via non-canonical components in immune organogenesis and homeostasis, although the two components are capable of crosstalk. Regulatory CD4 T cells (Tregs) are homeostatically functional and represent an interesting potential meeting point of these two NF-κB components. We show that mice deficient in the non-canonical NF-κB component gene Nfkb2 (p100) had normal thymic development and suppressive function of Tregs. However, they had enhanced frequencies of peripheral 'effector-phenotype' Tregs (eTregs). In bi-parental chimeras of wild-type (WT) and Nfkb2-/- mice, the Nfkb2-/- genotype was over-represented in Tregs, with a further increase in the relative prominence of eTregs. Consistent with distinct properties of eTregs, the Nfkb2-/- genotype was more prominent in Tregs in extra-lymphoid tissues such as liver in the bi-parental chimeras. The Nfkb2-/- Tregs also displayed greater survival, activation and proliferation in vivo. These Nfkb2-/- Tregs showed higher nuclear NF-κB activity mainly comprising of RelB-containing dimers, in contrast to the prominence of cRel- and RelA-containing dimers in WT Tregs. Since p100 is an inhibitor of RelB activation as well as a participant as cleaved p52 in RelB nuclear activity, we tested bi-parental chimeras of WT and Relb-/- mice, and found normal frequencies of Relb-/- Tregs and eTregs in these chimeric mice. Our findings confirm and extend recent data, and indicate that p100 normally restrains RelB-mediated Treg activation, and in the absence of p100, p50-RelB dimers can contribute to Treg activation.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India
| | | | | | - Neelam Oswal
- National Institute of Immunology, New Delhi, India
| | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | - Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
9
|
Beadle EP, Straub JA, Bunnell BA, Newman JJ. MED31 involved in regulating self-renewal and adipogenesis of human mesenchymal stem cells. Mol Biol Rep 2018; 45:1545-1550. [PMID: 30006772 DOI: 10.1007/s11033-018-4241-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/06/2018] [Indexed: 01/14/2023]
Abstract
Regulation of gene expression is critical for the maintenance of cell state and homeostasis. Aberrant regulation of genes can lead to unwanted cell proliferation or misdirected differentiation. Here we investigate the role of MED31, a highly conserved subunit of the Mediator complex, to determine the role this subunit plays in the maintenance of human mesenchymal stem cell (hMSC) state. Using siRNA-mediated knockdown of MED31 we demonstrate a decrease in self-renewal based on cell assays and monitoring of gene expression. In addition, in the absence of MED31, hMSCs also displayed a reduction in adipogenesis as evidenced by diminished lipid vesicle formation and expression of specific adipogenic markers. These data present evidence for a significant role for MED31 in maintaining adult stem cell homeostasis, thereby introducing potential novel targets for future investigation and use in better understanding stem cell behavior and adipogenesis.
Collapse
Affiliation(s)
- Erik P Beadle
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Joseph A Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
- Departments of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, LA, USA.
| |
Collapse
|
10
|
Abstract
Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning.
Collapse
|
11
|
Ridge LA, Mitchell K, Al-Anbaki A, Shaikh Qureshi WM, Stephen LA, Tenin G, Lu Y, Lupu IE, Clowes C, Robertson A, Barnes E, Wright JA, Keavney B, Ehler E, Lovell SC, Kadler KE, Hentges KE. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet 2017; 13:e1007068. [PMID: 29084269 PMCID: PMC5697871 DOI: 10.1371/journal.pgen.1007068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.
Collapse
Affiliation(s)
- Liam A. Ridge
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karen Mitchell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ali Al-Anbaki
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Louise A. Stephen
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Gennadiy Tenin
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Irina-Elena Lupu
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Abigail Robertson
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Barnes
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Jayne A. Wright
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, Kings College London, London, United Kingdom
| | - Simon C. Lovell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn E. Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Jeronimo C, Langelier MF, Bataille AR, Pascal JM, Pugh BF, Robert F. Tail and Kinase Modules Differently Regulate Core Mediator Recruitment and Function In Vivo. Mol Cell 2016; 64:455-466. [PMID: 27773677 DOI: 10.1016/j.molcel.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
Abstract
Mediator is a highly conserved transcriptional coactivator organized into four modules, namely Tail, Middle, Head, and Kinase (CKM). Previous work suggests regulatory roles for Tail and CKM, but an integrated model for these activities is lacking. Here, we analyzed the genome-wide distribution of Mediator subunits in wild-type and mutant yeast cells in which RNA polymerase II promoter escape is blocked, allowing detection of transient Mediator forms. We found that although all modules are recruited to upstream activated regions (UAS), assembly of Mediator within the pre-initiation complex is accompanied by the release of CKM. Interestingly, our data show that CKM regulates Mediator-UAS interaction rather than Mediator-promoter association. In addition, although Tail is required for Mediator recruitment to UAS, Tailless Mediator nevertheless interacts with core promoters. Collectively, our data suggest that the essential function of Mediator is mediated by Head and Middle at core promoters, while Tail and CKM play regulatory roles.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Marie-France Langelier
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - John M Pascal
- Département de Biochimie et Médecine Moléculaire, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 456A North Frear Laboratory, University Park, PA 16802, USA
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
13
|
García-González E, Escamilla-Del-Arenal M, Arzate-Mejía R, Recillas-Targa F. Chromatin remodeling effects on enhancer activity. Cell Mol Life Sci 2016; 73:2897-910. [PMID: 27026300 PMCID: PMC11108574 DOI: 10.1007/s00018-016-2184-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023]
Abstract
During organism development, a diversity of cell types emerges with disparate, yet stable profiles of gene expression with distinctive cellular functions. In addition to gene promoters, the genome contains enhancer regulatory sequences, which are implicated in cellular specialization by facilitating cell-type and tissue-specific gene expression. Enhancers are DNA binding elements characterized by highly sophisticated and various mechanisms of action allowing for the specific interaction of general and tissue-specific transcription factors (TFs). However, eukaryotic organisms package their genetic material into chromatin, generating a physical barrier for TFs to interact with their cognate sequences. The ability of TFs to bind DNA regulatory elements is also modulated by changes in the chromatin structure, including histone modifications, histone variants, ATP-dependent chromatin remodeling, and the methylation status of DNA. Furthermore, it has recently been revealed that enhancer sequences are also transcribed into a set of enhancer RNAs with regulatory potential. These interdependent processes act in the context of a complex network of chromatin interactions, which together contributes to a renewed vision of how gene activation is coordinated in a cell-type-dependent manner. In this review, we describe the interplay between genetic and epigenetic aspects associated with enhancers and discuss their possible roles on enhancer function.
Collapse
Affiliation(s)
- Estela García-González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Martín Escamilla-Del-Arenal
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York City, NY, 10027, USA
| | - Rodrigo Arzate-Mejía
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México
| | - Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, C.P. 04510, Mexico City, México.
| |
Collapse
|
14
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li W, Yoshida A, Takahashi M, Maekawa M, Kojima M, Sakakibara H, Kyozuka J. SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:282-291. [PMID: 25404280 DOI: 10.1111/tpj.12725] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/01/2014] [Accepted: 11/07/2014] [Indexed: 05/28/2023]
Abstract
The DWARF14 (D14) gene of rice functions within the signaling pathway of strigolactones, a group of plant hormones that inhibits shoot branching. We isolated a recessive mutant named super apical dormant (sad1-1) from a suppressor screen of d14-1. The growth of tillers (vegetative shoot branches) is suppressed in both the d14-1 sad1-1 double mutant and the sad1-1 single mutant. In addition, the sad1-1 mutant shows pleiotropic defects throughout development. SAD1 encodes an ortholog of RPA34.5, a subunit of RNA polymerase I (Pol I). Consequently, the level of ribosomal RNA (rRNA) is severely reduced in the sad1-1 mutant. These results indicate that proper ribosome function is a prerequisite for normal development in plants. The Arabidopsis ortholog of SAD1 was previously isolated as a Mediator-interacting protein. Here we show that SAD1 interacts physically with the Mediator complex through direct binding with OsMED4, a component of the middle module of the Mediator complex in rice. It is known that Mediator interacts with Pol II, which transcribes mRNAs and functions as a central regulator of transcription. This study indicates a novel aspect of Mediator function in Pol I-controlled rRNA transcription. TFIIF2 and RPC53 are the counterparts of RPA34.5 in Pol II and Pol III, respectively. We demonstrate that the rice orthologs of these proteins also interact with OsMED4. Our results suggest that interaction with MED4 in the Mediator complex is a common feature of the three types of RNA polymerases.
Collapse
Affiliation(s)
- Weiqiang Li
- Graduate School of Agriculture and Life Sciences, University of Tokyo, Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Jiang C, Chen H, Shao L, Wang Q. MicroRNA-1 functions as a potential tumor suppressor in osteosarcoma by targeting Med1 and Med31. Oncol Rep 2014; 32:1249-56. [PMID: 24969180 DOI: 10.3892/or.2014.3274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/15/2014] [Indexed: 01/11/2023] Open
Abstract
MicroRNA-1 (miR-1) has been shown to function as a critical gene regulator in multiple types of cancers. However, the role of miR-1 in osteosarcoma has not been totally clarified. In the present study, we investigated the effects of miR-1 on osteosarcoma and the underlying mechanism. We found that miR-1 was downregulated in osteosarcoma tissues and osteosarcoma cell lines. Restoration of miR-1 significantly suppressed osteosarcoma cell proliferation by inhibiting cell cycle progression. Mediator complex subunit 1 (Med1) and 31 (Med31) were validated as targets of miR-1 in osteosarcoma by luciferase reporter assay. Downregulation of Med1 and Med31 suppressed the proliferation of osteosarcoma cells, and overexpression of Med1 and Med31 abrogated the effects of miR-1 on cell proliferation. Furthermore, both miR-1 and knockdown of Med1 or Med31 reduced the expression of met proto-oncogene (MET) and blocked the downstream signaling of MET responding to hepatocyte growth factor (HGF). Taken together, the findings of this study suggest that Med1 and Med31 serve as potential gene therapeutic targets in osteosarcoma and miR-1 may prove to be a promising agent.
Collapse
Affiliation(s)
- Chaoyin Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Hua Chen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Lei Shao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qiaojie Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
17
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
18
|
Gene expression profile of the whole Mediator complex in human osteosarcoma and normal osteoblasts. Med Oncol 2013; 30:739. [PMID: 24101134 DOI: 10.1007/s12032-013-0739-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Mediator complex (MED) is an essential multi-subunit component of the transcription apparatus and plays a key role in the transcription regulation of many genes involved in several diseases, including cancer. Recently, numerous MED subunits have been implicated in cancer development and metastasis, and specific alterations in their coding genes have been found to correlate with some malignancies. It is conceivable that a specific MED alteration pattern can characterize each cancer type. However, to date, no study has reported the complete picture of MED subunits in a specific tumor. Thus, the aim of this study was to investigate for the first time the gene expression profile of the whole MED complex in human osteosarcoma (OS). To this purpose, we have examined all the MED subunit genes in three OS cell lines compared to normal osteoblasts by real-time RT-PCR. Interestingly, our findings indicate that the expression of most of the MED genes is altered in OS. Moreover, a very high overexpression of MED20 and MED31 can be observed in all the analyzed OS cells, thus suggesting for the first time a potential role of these subunits in human malignancies. Overall, this study may open the way to other functional studies exploring the role of the whole complex in cancer development and progression. These findings may lead to the identification of novel biomarkers, which can be used also in combination with imaging techniques for early detection, and/or to develop novel targets for innovative therapeutic approaches.
Collapse
|
19
|
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153:307-19. [PMID: 23582322 DOI: 10.1016/j.cell.2013.03.035] [Citation(s) in RCA: 2944] [Impact Index Per Article: 245.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/25/2013] [Accepted: 03/25/2013] [Indexed: 02/07/2023]
Abstract
Master transcription factors Oct4, Sox2, and Nanog bind enhancer elements and recruit Mediator to activate much of the gene expression program of pluripotent embryonic stem cells (ESCs). We report here that the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state. These domains, which we call super-enhancers, consist of clusters of enhancers that are densely occupied by the master regulators and Mediator. Super-enhancers differ from typical enhancers in size, transcription factor density and content, ability to activate transcription, and sensitivity to perturbation. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. Super-enhancers thus play key roles in the control of mammalian cell identity.
Collapse
Affiliation(s)
- Warren A Whyte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mauldin JP, Lu M, Das S, Park D, Ernst PB, Ravichandran KS. A link between the cytoplasmic engulfment protein Elmo1 and the Mediator complex subunit Med31. Curr Biol 2012; 23:162-7. [PMID: 23273896 DOI: 10.1016/j.cub.2012.11.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 10/29/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
The cytoplasmic Elmo1:Dock180 complex acts as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac and functions downstream of the phagocytic receptor BAI1 during apoptotic cell clearance, and in the entry of Salmonella and Shigella into cells. We discovered an unexpected binding between Elmo1 and the Mediator complex subunit Med31. The Mediator complex is a regulatory hub for nearly all gene transcription via RNA polymerase II, bridging the general transcription machinery with gene-specific regulatory proteins. Med31 is the smallest and the most evolutionarily conserved Mediator subunit, and knockout of Med31 results in embryonic lethality in mice; however, Med31 function in specific biological contexts is poorly understood. We observed that in primary macrophages, during Salmonella infection, Elmo1 and Med31 specifically affected expression of the cytokine genes Il10 and Il33 among the >25 genes monitored. Although endogenous Med31 is predominantly nuclear localized, Elmo1 increased the cytoplasmic localization of Med31. We identify ubiquitination as a novel posttranslational modification of Med31, with the cytoplasmic monoubiquitinated form of Med31 being enhanced by Elmo1. These data identify Elmo1 as a novel regulator of Med31, revealing a previously unrecognized link between cytoplasmic signaling proteins and the Mediator complex.
Collapse
Affiliation(s)
- Joshua P Mauldin
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
21
|
Unraveling framework of the ancestral Mediator complex in human diseases. Biochimie 2011; 94:579-87. [PMID: 21983542 DOI: 10.1016/j.biochi.2011.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 01/13/2023]
Abstract
Mediator (MED) is a fundamental component of the RNA polymerase II-mediated transcription machinery. This multiprotein complex plays a pivotal role in the regulation of eukaryotic mRNA synthesis. The yeast Mediator complex consists of 26 different subunits. Recent studies indicate additional pathogenic roles for Mediator, for example during transcription elongation and non-coding RNA production. Mediator subunits have been emerging also to have pathophysiological roles suggesting MED-dependent therapeutic targets involving in several diseases, such as cancer, cardiovascular disease (CVD), metabolic and neurological disorders.
Collapse
|
22
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
23
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
24
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|