1
|
Mirasierra M, Fernández-Pérez A, Lizarbe B, Keiran N, Ruiz-Cañas L, Casarejos MJ, Cerdán S, Vendrell J, Fernández-Veledo S, Vallejo M. Alx3 deficiency disrupts energy homeostasis, alters body composition, and impairs hypothalamic regulation of food intake. Cell Mol Life Sci 2024; 81:343. [PMID: 39129011 PMCID: PMC11335267 DOI: 10.1007/s00018-024-05384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
The coordination of food intake, energy storage, and expenditure involves complex interactions between hypothalamic neurons and peripheral tissues including pancreatic islets, adipocytes, muscle, and liver. Previous research shows that deficiency of the transcription factor Alx3 alters pancreatic islet-dependent glucose homeostasis. In this study we carried out a comprehensive assessment of metabolic alterations in Alx3 deficiency. We report that Alx3-deficient mice exhibit decreased food intake without changes in body weight, along with reduced energy expenditure and altered respiratory exchange ratio. Magnetic resonance imaging reveals increased adiposity and decreased muscle mass, which was associated with markers of motor and sympathetic denervation. By contrast, Alx3-deficient mice on a high-fat diet show attenuated weight gain and improved insulin sensitivity, compared to control mice. Gene expression analysis demonstrates altered lipogenic and lipolytic gene profiles. In wild type mice Alx3 is expressed in hypothalamic arcuate nucleus neurons, but not in major peripheral metabolic organs. Functional diffusion-weighted magnetic resonance imaging reveals selective hypothalamic responses to fasting in the arcuate nucleus of Alx3-deficient mice. Additionally, altered expression of proopiomelanocortin and melanocortin-3 receptor mRNA in the hypothalamus suggests impaired regulation of feeding behavior. This study highlights the crucial role for Alx3 in governing food intake, energy homeostasis, and metabolic nutrient partitioning, thereby influencing body mass composition.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Centro para el Desarrollo Tecnológico e Industrial (CDTI), Madrid, Spain
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biochemistry, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Keiran
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Laura Ruiz-Cañas
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
- Chronic Diseases and Cancer Area 3, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María José Casarejos
- Neuropharmacology Laboratory, Neurobiology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sebastián Cerdán
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Research Unit, Institut d'Investigació Sanitària Pere Virgili (IISPV) - Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, Tarragona, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Guerrero-Peña L, Suarez-Bregua P, Sánchez-Ruiloba L, Méndez-Martínez L, García-Fernández P, Tur R, Tena JJ, Rotllant J. Unraveling the transcriptomic landscape of eye migration and visual adaptations during flatfish metamorphosis. Commun Biol 2024; 7:253. [PMID: 38429383 PMCID: PMC10907633 DOI: 10.1038/s42003-024-05951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Flatfish undergo a remarkable metamorphosis from symmetrical pelagic larvae to fully asymmetrical benthic juveniles. The most distinctive features of this transformation is the migration of one eye. The molecular role of thyroid hormone in the metamorphosis process in flatfishes is well established. However, the regulatory network that facilitates eye movement remains enigmatic. This paper presents a morphological investigation of the metamorphic process in turbot eyes, using advanced imaging techniques and a global view of gene expression. The study covers migrant and non-migrant eyes and aims to identify the genes that are active during ocular migration. Our transcriptomic analysis shows a significant up-regulation of immune-related genes. The analysis of eye-specific genes reveals distinct patterns during the metamorphic process. Myosin is highlighted in the non-migrant eye, while ependymin is highlighted in the migrant eye, possibly involved in optic nerve regeneration. Furthermore, a potential association between the alx3 gene and cranial restructuring has been identified. Additionally, it confirmed simultaneous adaptation to low light in both eyes, as described by changes in opsins expression during the metamorphic process. The study also revealed that ocular migration activates systems asynchronously in both eyes, providing insight into multifaceted reorganization processes during metamorphosis of flatfish.
Collapse
Affiliation(s)
- Laura Guerrero-Peña
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Paula Suarez-Bregua
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Lucía Sánchez-Ruiloba
- Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | - Luis Méndez-Martínez
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain
| | | | - Ricardo Tur
- Nueva Pescanova Biomarine Center, S.L., 36980, O Grove, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - Josep Rotllant
- Aquatic Biotechnology Lab., Institute of Marine Research, Spanish National Research Council (IIM-CSIC), 36208, Vigo, Spain.
| |
Collapse
|
3
|
Nguyen TT, Mitchell JM, Kiel MD, Kenny CP, Li H, Jones KL, Cornell RA, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. Development 2024; 151:dev202095. [PMID: 38063857 PMCID: PMC10820886 DOI: 10.1242/dev.202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underlies facial shape variation, yet how those networks in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest, even during the late migratory phase, results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both TFAP2 family members dysregulates numerous midface GRN components involved in midface morphogenesis, patterning and differentiation. Notably, Alx1, Alx3 and Alx4 (ALX) transcript levels are reduced, whereas ChIP-seq analyses suggest TFAP2 family members directly and positively regulate ALX gene expression. Tfap2a, Tfap2b and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a zebrafish mutants present with abnormal alx3 expression patterns, Tfap2a binds ALX loci and tfap2a-alx3 genetic interactions are observed. Together, these data demonstrate TFAP2 paralogs regulate vertebrate midfacial development in part by activating expression of ALX transcription factor genes.
Collapse
Affiliation(s)
- Timothy T. Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| | - Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D. Kiel
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Colin P. Kenny
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Robert A. Cornell
- Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Trevor J. Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Periodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, IA 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Iyyanar PPR, Qin C, Adhikari N, Liu H, Hu YC, Jiang R, Lan Y. Developmental origin of the mammalian premaxilla. Dev Biol 2023; 503:1-9. [PMID: 37524195 PMCID: PMC10528123 DOI: 10.1016/j.ydbio.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The evolution of jaws has played a major role in the success of vertebrate expansion into a wide variety of ecological niches. A fundamental, yet unresolved, question in craniofacial biology is about the origin of the premaxilla, the most distal bone present in the upper jaw of all amniotes. Recent reports have suggested that the mammalian premaxilla is derived from embryonic maxillary prominences rather than the frontonasal ectomesenchyme as previously shown in studies of chicken embryos. However, whether mammalian embryonic frontonasal ectomesenchyme contributes to the premaxillary bone has not been investigated and a tool to trace the contributions of the frontonasal ectomesenchyme to facial structures in mammals is lacking. The expression of the Alx3 gene is activated highly specifically in the frontonasal ectomesenchyme, but not in the maxillary mesenchyme, from the beginning of facial morphogenesis in mice. Here, we report the generation and characterization of a novel Alx3CreERT2 knock-in mouse line that express tamoxifen-inducible Cre DNA recombinase from the Alx3 locus. Tamoxifen treatment of Alx3CreERT2/+;Rosa26mTmG/+ embryos at E7.5, E8.5, E9.5, and E10.5, each induced specific labeling of the embryonic medial nasal and lateral nasal mesenchyme but not the maxillary mesenchyme. Lineage tracing of Alx3CreERT2-labeled frontonasal mesenchyme from E9.5 to E16.5 clearly showed that the frontonasal mesenchyme cells give rise to the osteoblasts generating the premaxillary bone. Furthermore, we characterize a Dlx1-Cre BAC transgenic mouse line that expresses Cre activity in the embryonic maxillary but not the frontonasal mesenchyme and show that the Dlx1-Cre labeled embryonic maxillary mesenchyme cells contribute to the maxillary bone as well as the soft tissues lateral to both the premaxillary and maxillary bones but not to the premaxillary bone. These results clearly demonstrate the developmental origin of the premaxillary bone from embryonic frontonasal ectomesenchyme cells in mice and confirm the evolutionary homology of the premaxilla across amniotes.
Collapse
Affiliation(s)
- Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Chuanqi Qin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education Key Laboratory of Oral Biomedicine, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nirpesh Adhikari
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Akheralie Z, Scidmore TJ, Pearson BJ. aristaless-like homeobox-3 is wound induced and promotes a low-Wnt environment required for planarian head regeneration. Development 2023; 150:dev201777. [PMID: 37681295 PMCID: PMC10560571 DOI: 10.1242/dev.201777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
The planarian Schmidtea mediterranea is a well-established model of adult regeneration, which is dependent on a large population of adult stem cells called neoblasts. Upon amputation, planarians undergo transcriptional wounding programs and coordinated stem cell proliferation to give rise to missing tissues. Interestingly, the Wnt signaling pathway is key to guiding what tissues are regenerated, yet less known are the transcriptional regulators that ensure proper activation and timing of signaling pathway components. Here, we have identified an aristaless-like homeobox transcription factor, alx-3, that is enriched in a population of putative neural-fated progenitor cells at homeostasis, and is also upregulated in stem cells and muscle cells at anterior-facing wounds upon amputation. Knockdown of alx-3 results in failure of head regeneration and patterning defects in amputated tail fragments. alx-3 is required for the expression of several early wound-induced genes, including the Wnt inhibitor notum, which is required to establish anterior polarity during regeneration. Together, these findings reveal a role for alx-3 as an early wound-response transcriptional regulator in both muscle cells and stem cells that is required for anterior regeneration by promoting a low-Wnt environment.
Collapse
Affiliation(s)
- Zaleena Akheralie
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Tanner J. Scidmore
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| | - Bret J. Pearson
- The Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON M5G0A4, Canada
- University of Toronto, Department of Molecular Genetics, Toronto, ON M5S1A8, Canada
| |
Collapse
|
6
|
Nguyen TT, Mitchell JM, Kiel MD, Jones KL, Williams TJ, Nichols JT, Van Otterloo E. TFAP2 paralogs regulate midfacial development in part through a conserved ALX genetic pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545376. [PMID: 37398373 PMCID: PMC10312788 DOI: 10.1101/2023.06.16.545376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cranial neural crest development is governed by positional gene regulatory networks (GRNs). Fine-tuning of the GRN components underly facial shape variation, yet how those in the midface are connected and activated remain poorly understood. Here, we show that concerted inactivation of Tfap2a and Tfap2b in the murine neural crest even during the late migratory phase results in a midfacial cleft and skeletal abnormalities. Bulk and single-cell RNA-seq profiling reveal that loss of both Tfap2 members dysregulated numerous midface GRN components involved in midface fusion, patterning, and differentiation. Notably, Alx1/3/4 (Alx) transcript levels are reduced, while ChIP-seq analyses suggest TFAP2 directly and positively regulates Alx gene expression. TFAP2 and ALX co-expression in midfacial neural crest cells of both mouse and zebrafish further implies conservation of this regulatory axis across vertebrates. Consistent with this notion, tfap2a mutant zebrafish present abnormal alx3 expression patterns, and the two genes display a genetic interaction in this species. Together, these data demonstrate a critical role for TFAP2 in regulating vertebrate midfacial development in part through ALX transcription factor gene expression.
Collapse
Affiliation(s)
- Timothy T Nguyen
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennyfer M Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michaela D Kiel
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James T Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric Van Otterloo
- Iowa Institute for Oral Health Research, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Periodontics, College of Dentistry & Dental Clinics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, 52242, USA
- Craniofacial Anomalies Research Center, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
7
|
Yoon B, Yeung P, Santistevan N, Bluhm LE, Kawasaki K, Kueper J, Dubielzig R, VanOudenhove J, Cotney J, Liao EC, Grinblat Y. Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biol Open 2022; 11:bio059189. [PMID: 35142342 PMCID: PMC9167625 DOI: 10.1242/bio.059189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.
Collapse
Affiliation(s)
- Baul Yoon
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Pan Yeung
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Nicholas Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren E. Bluhm
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Janina Kueper
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
- Institute of Human Genetics, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
8
|
Mitchell JM, Sucharov J, Pulvino AT, Brooks EP, Gillen AE, Nichols JT. The alx3 gene shapes the zebrafish neurocranium by regulating frontonasal neural crest cell differentiation timing. Development 2021; 148:dev197483. [PMID: 33741714 PMCID: PMC8077506 DOI: 10.1242/dev.197483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022]
Abstract
During craniofacial development, different populations of cartilage- and bone-forming cells develop in precise locations in the head. Most of these cells are derived from pluripotent cranial neural crest cells and differentiate with distinct developmental timing and cellular morphologies. The mechanisms that divide neural crest cells into discrete populations are not fully understood. Here, we use single-cell RNA sequencing to transcriptomically define different populations of cranial neural crest cells. We discovered that the gene family encoding the Alx transcription factors is enriched in the frontonasal population of neural crest cells. Genetic mutant analyses indicate that alx3 functions to regulate the distinct differentiation timing and cellular morphologies among frontonasal neural crest cell subpopulations. This study furthers our understanding of how genes controlling developmental timing shape craniofacial skeletal elements.
Collapse
Affiliation(s)
- Jennyfer M. Mitchell
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony T. Pulvino
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Medicine, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
10
|
Bernabé BP, Woodruff T, Broadbelt LJ, Shea LD. Ligands, Receptors, and Transcription Factors that Mediate Inter-Cellular and Intra-Cellular Communication during Ovarian Follicle Development. Reprod Sci 2020; 27:690-703. [PMID: 31939199 DOI: 10.1007/s43032-019-00075-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023]
Abstract
Reliably producing a competent oocyte entails a deeper comprehension of ovarian follicle maturation, a very complex process that includes meiotic maturation of the female gamete, the oocyte, together with the mitotic divisions of the hormone-producing somatic cells. In this report, we investigate murine ovarian folliculogenesis in vivo using publicly available time-series microarrays from primordial to antral stage follicles. Manually curated protein interaction networks were employed to identify autocrine and paracrine signaling between the oocyte and the somatic cells (granulosa and theca cells) at multiple stages of follicle development. We established plausible protein-binding interactions between expressed genes that encode secreted factors and expressed genes that encode cellular receptors. Some computationally identified signaling interactions are well established, such as the paracrine signaling from the oocyte to the somatic cells through the oocyte-secreted growth factor Gdf9, while others are novel connections in term of ovarian folliculogenesis, such as the possible paracrine connection from somatic-secreted factor Ntn3 to the oocyte receptor Neo1. Additionally, we identified several of the likely transcription factors that might control the dynamic transcriptome during ovarian follicle development, noting that the YAP/TAZ signaling pathway is very active in vivo. This novel dynamic model of signaling and regulation can be employed to generate testable hypotheses regarding follicle development that could be validated experimentally, guiding the improvement of culture media to enhance in vitro ovarian follicle maturation and possibly novel therapeutic targets for reproductive diseases.
Collapse
Affiliation(s)
- Beatriz Peñalver Bernabé
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Teresa Woodruff
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Linda J Broadbelt
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Ly L, Chan D, Landry M, Angle C, Martel J, Trasler J. Impact of mothers' early life exposure to low or high folate on progeny outcome and DNA methylation patterns. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa018. [PMID: 33240529 PMCID: PMC7673481 DOI: 10.1093/eep/dvaa018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/14/2023]
Abstract
The dynamic patterning of DNA and histone methylation during oocyte development presents a potentially susceptible time for epigenetic disruption due to early life environmental exposure of future mothers. We investigated whether maternal exposure to folic acid deficient and supplemented diets starting in utero could affect oocytes and cause adverse developmental and epigenetic effects in next generation progeny. Female BALB/c mice (F0) were placed on one of four amino acid defined diets for 4 weeks before pregnancy and throughout gestation and lactation: folic acid control (rodent recommended daily intake; Ctrl), 7-fold folic acid deficient, 10-fold folic acid supplemented or 20-fold folic acid supplemented diets. F1 female pups were weaned onto Ctrl diets, mated to produce the F2 generation and the F2 offspring were examined at E18.5 for developmental and epigenetic abnormalities. Resorption rates were increased and litter sizes decreased amongst F2 E18.5-day litters in the 20-fold folic acid supplemented group. Increases in abnormal embryo outcomes were observed in all three folic acid deficient and supplemented groups. Subtle genome-wide DNA methylation alterations were found in the placentas and brains of F2 offspring in the 7-fold folic acid deficient , 10-fold folic acid supplemented and 20-fold folic acid supplemented groups; in contrast, global and imprinted gene methylation were not affected. The findings show that early life female environmental exposures to both low and high folate prior to oocyte maturation can compromise oocyte quality, adversely affecting offspring of the next generation, in part by altering DNA methylation patterns.
Collapse
Affiliation(s)
- Lundi Ly
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mylène Landry
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Camille Angle
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Correspondence address. Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Block E.M.0.3211, Montreal, QC, Canada H4A 3J1. Tel: +1-514-934-1934 (ext. 25235); Fax: +1-514-933-9673; E-mail:
| |
Collapse
|
12
|
Shin M, Vaughn A, Momb J, Appling DR. Deletion of neural tube defect-associated gene Mthfd1l causes reduced cranial mesenchyme density. Birth Defects Res 2019; 111:1520-1534. [PMID: 31518072 DOI: 10.1002/bdr2.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/17/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Periconceptional intake of supplemental folic acid can reduce the incidence of neural tube defects by as much as 70%, but the mechanisms by which folic acid supports cellular processes during neural tube closure are unknown. The mitochondrial 10-formyl-tetrahydrofolate synthetase MTHFD1L catalyzes production of formate, thus generating one-carbon units for cytoplasmic processes. Deletion of Mthfd1l causes embryonic lethality, developmental delay, and neural tube defects in mice. METHODS To investigate the role of mitochondrial one-carbon metabolism during cranial neural tube closure, we have analyzed cellular morphology and function in neural tissues in Mthfd1l knockout embryos. RESULTS The head mesenchyme showed significantly lower cellular density in Mthfd1l nullizygous embryos compared to wildtype embryos during the process of neural tube closure. Apoptosis and neural crest cell specification were not affected by deletion of Mthfd1l. Sections from the cranial region of Mthfd1l knockout embryos exhibited decreased cellular proliferation, but only after completion of neural tube closure. Supplementation of pregnant dams with formate improved mesenchymal density and corrected cell proliferation in the nullizygous embryos. CONCLUSIONS Deletion of Mthfd1l causes decreased density in the cranial mesenchyme and this defect is improved with formate supplementation. This study reveals a mechanistic link between folate-dependent mitochondrially produced formate, head mesenchyme formation and neural tube defects.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Amanda Vaughn
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Jessica Momb
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| | - Dean R Appling
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
14
|
He L, Zhou J, Chen M, Lin CS, Kim SG, Zhou Y, Xiang L, Xie M, Bai H, Yao H, Shi C, Coelho PG, Bromage TG, Hu B, Tovar N, Witek L, Wu J, Chen K, Gu W, Zheng J, Sheu TJ, Zhong J, Wen J, Niu Y, Cheng B, Gong Q, Owens DM, Stanislauskas M, Pei J, Chotkowski G, Wang S, Yang G, Zegarelli DJ, Shi X, Finkel M, Zhang W, Li J, Cheng J, Tarnow DP, Zhou X, Wang Z, Jiang X, Romanov A, Rowe DW, Wang S, Ye L, Ling J, Mao J. Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix. NATURE MATERIALS 2019; 18:627-637. [PMID: 31114073 PMCID: PMC7362336 DOI: 10.1038/s41563-019-0368-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 04/09/2019] [Indexed: 02/05/2023]
Abstract
Cells are transplanted to regenerate an organs' parenchyma, but how transplanted parenchymal cells induce stromal regeneration is elusive. Despite the common use of a decellularized matrix, little is known as to the pivotal signals that must be restored for tissue or organ regeneration. We report that Alx3, a developmentally important gene, orchestrated adult parenchymal and stromal regeneration by directly transactivating Wnt3a and vascular endothelial growth factor. In contrast to the modest parenchyma formed by native adult progenitors, Alx3-restored cells in decellularized scaffolds not only produced vascularized stroma that involved vascular endothelial growth factor signalling, but also parenchymal dentin via the Wnt/β-catenin pathway. In an orthotopic large-animal model following parenchyma and stroma ablation, Wnt3a-recruited endogenous cells regenerated neurovascular stroma and differentiated into parenchymal odontoblast-like cells that extended the processes into newly formed dentin with a structure-mechanical equivalency to native dentin. Thus, the Alx3-Wnt3a axis enables postnatal progenitors with a modest innate regenerative capacity to regenerate adult tissues. Depleted signals in the decellularized matrix may be reinstated by a developmentally pivotal gene or corresponding protein.
Collapse
Affiliation(s)
- Ling He
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhou
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Mo Chen
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Sahng G Kim
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Columbia University College of Dental Medicine, New York, NY, USA
| | - Yue Zhou
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Conservative Dentistry, Laboratory of Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Lusai Xiang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Xie
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Hanying Bai
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Hai Yao
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - Changcheng Shi
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Timothy G Bromage
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Bin Hu
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Nick Tovar
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University, New York, NY, USA
| | - Jiaqian Wu
- Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Kenian Chen
- Vivian L. Smith Department of Neurosurgery, Center for Stem Cell and Regenerative Medicine University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Wei Gu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jinxuan Zheng
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Tzong-Jen Sheu
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY, USA
| | - Juan Zhong
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jin Wen
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Niu
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Bin Cheng
- Columbia University Mailman School of Public Health, Department of Biostatistics, New York, NY, USA
| | - Qimei Gong
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - David M Owens
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | - Jasmine Pei
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Sainan Wang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Guodong Yang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Xin Shi
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | | | - Wen Zhang
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junyuan Li
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Jiayi Cheng
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA
| | - Dennis P Tarnow
- Columbia University College of Dental Medicine, New York, NY, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zuolin Wang
- Department of Conservative Dentistry, Laboratory of Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Jiao Tong University, Shanghai, China
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University Medical Center, New York, NY, USA
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Science Center, Farmington, CT, USA
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junqi Ling
- Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatology Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Jeremy Mao
- Columbia University, Center for Craniofacial Regeneration, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Columbia University College of Dental Medicine, New York, NY, USA.
- Department of Orthopedic Surgery, Columbia University Physician and Surgeons, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
15
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
16
|
Deficient Vitamin E Uptake During Development Impairs Neural Tube Closure in Mice Lacking Lipoprotein Receptor SR-BI. Sci Rep 2017; 7:5182. [PMID: 28701710 PMCID: PMC5507922 DOI: 10.1038/s41598-017-05422-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
SR-BI is the main receptor for high density lipoproteins (HDL) and mediates the bidirectional transport of lipids, such as cholesterol and vitamin E, between these particles and cells. During early development, SR-BI is expressed in extraembryonic tissue, specifically in trophoblast giant cells in the parietal yolk sac. We previously showed that approximately 50% of SR-BI-/- embryos fail to close the anterior neural tube and develop exencephaly, a perinatal lethal condition. Here, we evaluated the role of SR-BI in embryonic vitamin E uptake during murine neural tube closure. Our results showed that SR-BI-/- embryos had a very low vitamin E content in comparison to SR-BI+/+ embryos. Whereas SR-BI-/- embryos with closed neural tubes (nSR-BI-/-) had high levels of reactive oxygen species (ROS), intermediate ROS levels between SR-BI+/+ and nSR-BI-/- embryos were detected in SR-BI-/- with NTD (NTD SR-BI-/-). Reduced expression of Pax3, Alx1 and Alx3 genes was found in NTD SR-BI-/- embryos. Maternal α-tocopherol dietary supplementation prevented NTD almost completely (from 54% to 2%, p < 0.001) in SR-BI-/- embryos and normalized ROS and gene expression levels. In sum, our results suggest the involvement of SR-BI in the maternal provision of embryonic vitamin E to the mouse embryo during neural tube closure.
Collapse
|
17
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
18
|
García-Sanz P, Mirasierra M, Moratalla R, Vallejo M. Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Sci Rep 2017; 7:389. [PMID: 28341857 PMCID: PMC5428206 DOI: 10.1038/s41598-017-00334-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.
Collapse
Affiliation(s)
- Patricia García-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
19
|
Developmental mechanisms of stripe patterns in rodents. Nature 2016; 539:518-523. [PMID: 27806375 DOI: 10.1038/nature20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/16/2016] [Indexed: 11/08/2022]
Abstract
Mammalian colour patterns are among the most recognizable characteristics found in nature and can have a profound impact on fitness. However, little is known about the mechanisms underlying the formation and subsequent evolution of these patterns. Here we show that, in the African striped mouse (Rhabdomys pumilio), periodic dorsal stripes result from underlying differences in melanocyte maturation, which give rise to spatial variation in hair colour. We identify the transcription factor ALX3 as a regulator of this process. In embryonic dorsal skin, patterned expression of Alx3 precedes pigment stripes and acts to directly repress Mitf, a master regulator of melanocyte differentiation, thereby giving rise to light-coloured hair. Moreover, Alx3 is upregulated in the light stripes of chipmunks, which have independently evolved a similar dorsal pattern. Our results show a previously undescribed mechanism for modulating spatial variation in hair colour and provide insights into how phenotypic novelty evolves.
Collapse
|
20
|
Mirasierra M, Vallejo M. Glucose-dependent downregulation of glucagon gene expression mediated by selective interactions between ALX3 and PAX6 in mouse alpha cells. Diabetologia 2016; 59:766-75. [PMID: 26739814 DOI: 10.1007/s00125-015-3849-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentration. Paired box 6 (PAX6) is a key transcription factor that regulates the glucagon promoter by binding to the G1 and G3 elements. Here, we investigated the role of the transcription factor aristaless-like homeobox 3 (ALX3) as a glucose-dependent modulator of PAX6 activity in alpha cells. METHODS Experiments were performed in wild-type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein interactions, transfected cells for promoter activity, and small interfering RNA and quantitative RT-PCR for gene expression. RESULTS Elevated glucose concentration resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild-type islets. In ALX3-deficient islets, basal glucagon levels were non-responsive to changes in glucose concentration. In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 could form heterodimers with PAX6 that were permissive for binding to G3 but not to G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter activation and glucagon gene expression. CONCLUSIONS/INTERPRETATION Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.
Collapse
Affiliation(s)
- Mercedes Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain
| | - Mario Vallejo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Calle Arturo Duperier 4, 28029, Madrid, Spain.
| |
Collapse
|
21
|
Pdx1 and USF transcription factors co-ordinately regulate Alx3 gene expression in pancreatic β-cells. Biochem J 2014; 463:287-96. [DOI: 10.1042/bj20140643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the transcriptional mechanisms regulating the expression of Alx3 in pancreatic islets. We found that the transcriptional transactivation of Alx3 in β-cells requires the co-operation of the islet-specific homeoprotein Pdx1 with the transcription factors USF1 and USF2.
Collapse
|
22
|
Kur E, Mecklenburg N, Cabrera RM, Willnow TE, Hammes A. LRP2 mediates folate uptake in the developing neural tube. J Cell Sci 2014; 127:2261-8. [PMID: 24639464 DOI: 10.1242/jcs.140145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2) is a multifunctional cell-surface receptor expressed in the embryonic neuroepithelium. Loss of LRP2 in the developing murine central nervous system (CNS) causes impaired closure of the rostral neural tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs) have previously been attributed to impaired folate metabolism in mice. We therefore asked whether LRP2 might be required for the delivery of folate to neuroepithelial cells during neurulation. Uptake assays in whole-embryo cultures showed that LRP2-deficient neuroepithelial cells are unable to mediate the uptake of folate bound to soluble folate receptor 1 (sFOLR1). Consequently, folate concentrations are significantly reduced in Lrp2(-/-) embryos compared with control littermates. Moreover, the folic-acid-dependent gene Alx3 is significantly downregulated in Lrp2 mutants. In conclusion, we show that LRP2 is essential for cellular folate uptake in the developing neural tube, a crucial step for proper neural tube closure.
Collapse
Affiliation(s)
- Esther Kur
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Nora Mecklenburg
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Robert M Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Annette Hammes
- Max Delbrück Center for Molecular Medicine (MDC), Robert Rössle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
23
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
24
|
Large parietal midline defect with unusual ridge-like structure at the rim and persistent falcine sinus. Childs Nerv Syst 2013; 29:1069-72. [PMID: 23559396 DOI: 10.1007/s00381-013-2096-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Midline cranial defects can be divided into lesions with intracranial tissue herniation (cranium bifidum cysticum) and lesions mainly with ossification failure (cranium bifidum occultum). Herniated cephaloceles mostly require surgical resection, while persisted parietal foramina might become smaller with age. CLINICAL CASE Here, we report a neonate with large symmetric midline skull defect at high parietal area. A mild bulging mass was noticed. Interestingly, unlike sac herniation, it was surrounded by bony ridges extended from the rim of the calvarial defect, which suggests aberrant ossification. Persistent falcine sinus was also detected. At the corrected age of 11 months, the size of the skull defect had decreased spontaneously, favoring the diagnosis of parietal bone ossification defect. Potential mechanisms resulting in the special appearance of skull bone were discussed. CONCLUSION Incomplete closing of the parietal foramina might be expected due to the aberrant ridge formation. We suggest protective measures for the calvarial defect.
Collapse
|
25
|
Matsumoto T, Yamada A, Aizawa R, Suzuki D, Tsukasaki M, Suzuki W, Nakayama M, Maki K, Yamamoto M, Baba K, Kamijo R. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation. PLoS One 2013; 8:e68774. [PMID: 23825702 PMCID: PMC3689002 DOI: 10.1371/journal.pone.0068774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/05/2013] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3) which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp), Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.
Collapse
Affiliation(s)
- Takashi Matsumoto
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- * E-mail:
| | - Ryo Aizawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Periodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Dai Suzuki
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Wataru Suzuki
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Mutsuko Nakayama
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Kazuyoshi Baba
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
26
|
Differential configurations involving binding of USF transcription factors and Twist1 regulate Alx3 promoter activity in mesenchymal and pancreatic cells. Biochem J 2013. [PMID: 23181698 DOI: 10.1042/bj20120962] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the aristaless-type homeodomain protein Alx3 is expressed in the forehead mesenchyme and contributes to the regulation of craniofacial development. In the adult, Alx3 is expressed in pancreatic islets where it participates in the control of glucose homoeostasis. In the present study, we investigated the transcriptional regulation of Alx3 gene expression in these two cell types. We found that the Alx3 promoter contains two E-box regulatory elements, named EB1 and EB2, that provide binding sites for the basic helix-loop-helix transcription factors Twist1, E47, USF (upstream stimulatory factor) 1 and USF2. In primary mouse embryonic mesenchymal cells isolated from the forehead, EB2 is bound by Twist1, whereas EB1 is bound by USF1 and USF2. Integrity of both EB1 and EB2 is required for Twist1-mediated transactivation of the Alx3 promoter, even though Twist1 does not bind to EB1, indicating that binding of USF1 and USF2 to this element is required for Twist1-dependent Alx3 promoter activity. In contrast, in pancreatic islet insulin-producing cells, the integrity of EB2 is not required for proximal promoter activity. The results of the present study indicate that USF1 and USF2 are important regulatory factors for Alx3 gene expression in different cell types, whereas Twist1 contributes to transcriptional transactivation in mesenchymal, but not in pancreatic, cells.
Collapse
|
27
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
28
|
Dee CT, Szymoniuk CR, Mills PED, Takahashi T. Defective neural crest migration revealed by a Zebrafish model of Alx1-related frontonasal dysplasia. Hum Mol Genet 2012; 22:239-51. [PMID: 23059813 DOI: 10.1093/hmg/dds423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Frontonasal dysplasia (FND) refers to a class of midline facial malformations caused by abnormal development of the facial primordia. The term encompasses a spectrum of severities but characteristic features include combinations of ocular hypertelorism, malformations of the nose and forehead and clefting of the facial midline. Several recent studies have drawn attention to the importance of Alx homeobox transcription factors during craniofacial development. Most notably, loss of Alx1 has devastating consequences resulting in severe orofacial clefting and extreme microphthalmia. In contrast, mutations of Alx3 or Alx4 cause milder forms of FND. Whilst Alx1, Alx3 and Alx4 are all known to be expressed in the facial mesenchyme of vertebrate embryos, little is known about the function of these proteins during development. Here, we report the establishment of a zebrafish model of Alx-related FND. Morpholino knock-down of zebrafish alx1 expression causes a profound craniofacial phenotype including loss of the facial cartilages and defective ocular development. We demonstrate for the first time that Alx1 plays a crucial role in regulating the migration of cranial neural crest (CNC) cells into the frontonasal primordia. Abnormal neural crest migration is coincident with aberrant expression of foxd3 and sox10, two genes previously suggested to play key roles during neural crest development, including migration, differentiation and the maintenance of progenitor cells. This novel function is specific to Alx1, and likely explains the marked clinical severity of Alx1 mutation within the spectrum of Alx-related FND.
Collapse
Affiliation(s)
- Chris T Dee
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
29
|
Zohn IE, Sarkar AA. Does the cranial mesenchyme contribute to neural fold elevation during neurulation? ACTA ACUST UNITED AC 2012; 94:841-8. [PMID: 22945385 DOI: 10.1002/bdra.23073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/23/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
The central nervous system is derived from the neural plate, which undergoes a series of complex morphogenetic events resulting in formation of the neural tube in a process known as neurulation. The cellular behaviors driving neurulation in the cranial region involve forces generated by the neural tissue itself as well as the surrounding epithelium and mesenchyme. Of interest, the cranial mesenchyme underlying the neural plate undergoes stereotypical rearrangements hypothesized to drive elevation of the neural folds. As the neural folds rise, the hyaluronate-rich extracellular matrix greatly expands resulting in increased space between individual cranial mesenchyme cells. Based on inhibitor studies, expansion of the extracellular matrix has been implicated in driving neural fold elevation; however, because the surrounding neural and epidermal ectoderm were also affected by inhibitor exposure, these studies are inconclusive. Similarly, treatment of neurulating embryos with teratogenic doses of retinoic acid results in altered organization of the cranial mesenchyme, but alterations in surrounding tissues are also observed. The strongest evidence for a critical role for the cranial mesenchyme in neural fold elevation comes from studies of genes expressed exclusively in the cranial mesenchyme that when mutated result in exencephaly associated with abnormal organization of the cranial mesenchyme. Twist is the best studied of these and is expressed in both the paraxial mesoderm and neural crest derived cranial mesenchyme. In this article, we review the evidence implicating the cranial mesenchyme in providing a driving force for neural fold elevation to evaluate whether there are sufficient data to support this hypothesis.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
30
|
Simultaneous determination of vitamins B2, B9 and C using a heterocyclic conducting polymer modified electrode. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.04.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Cattell M, Lai S, Cerny R, Medeiros DM. A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS One 2011; 6:e22474. [PMID: 21799866 PMCID: PMC3142159 DOI: 10.1371/journal.pone.0022474] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022] Open
Abstract
The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed vertebrates.
Collapse
Affiliation(s)
- Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Su Lai
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Robert Cerny
- Department of Zoology, Charles University in Prague, Prague, Czech Republic
| | - Daniel Meulemans Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
32
|
McGonnell IM, Graham A, Richardson J, Fish JL, Depew MJ, Dee CT, Holland PWH, Takahashi T. Evolution of the Alx homeobox gene family: parallel retention and independent loss of the vertebrate Alx3 gene. Evol Dev 2011; 13:343-51. [PMID: 21740507 PMCID: PMC3166657 DOI: 10.1111/j.1525-142x.2011.00489.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Alx gene family is implicated in craniofacial development and comprises two to four homeobox genes in each vertebrate genome analyzed. Using phylogenetics and comparative genomics, we show that the common ancestor of jawed vertebrates had three Alx genes descendent from the two-round genome duplications (Alx1, Alx3, Alx4), compared with a single amphioxus gene. Later in evolution one of the paralogues, Alx3, was lost independently from at least three different vertebrate lineages, whereas Alx1 and Alx4 were consistently retained. Comparison of spatial gene expression patterns reveals that the three mouse genes have equivalent craniofacial expression to the two chick and frog genes, suggesting that redundancy compensated for gene loss. We suggest that multiple independent loss of one Alx gene was predisposed by extensive and persistent overlap in gene expression between Alx paralogues. Even so, it is unclear whether it was coincidence or evolutionary bias that resulted in the same Alx gene being lost on each occasion, rather than different members of the gene family.
Collapse
Affiliation(s)
- Imelda M McGonnell
- Reproduction and Development, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK
| | - Anthony Graham
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's HouseGuy's Hospital Campus, London SE1 1UL, UK
| | - Joanna Richardson
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's HouseGuy's Hospital Campus, London SE1 1UL, UK
| | - Jennifer L Fish
- Department of Craniofacial Development, King's College London, Guy's HospitalLondon Bridge, London SE1 9RT, UK
| | - Michael J Depew
- Department of Craniofacial Development, King's College London, Guy's HospitalLondon Bridge, London SE1 9RT, UK
- Department of Orthopaedic Surgery, University of California San Francisco2550 24th Street, SFGH Bldg 9, San Francisco, CA 94110, USA
| | - Chris T Dee
- Faculty of Life Sciences, The University of Manchester, Michael Smith BuildingOxford Road, Manchester M13 9PT, UK
| | - Peter WH Holland
- Department of Zoology, University of OxfordTinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Tokiharu Takahashi
- Faculty of Life Sciences, The University of Manchester, Michael Smith BuildingOxford Road, Manchester M13 9PT, UK
| |
Collapse
|
33
|
Moore CM, Dick EJ, Hubbard GB, Gardner SM, Dunn BG, Brothman AR, Williams V, Prajapati SI, Keller C, Davis MD. Craniorachischisis and omphalocele in a stillborn cynomolgus monkey (Macaca fascicularis). Am J Med Genet A 2011; 155A:1367-73. [PMID: 21567905 DOI: 10.1002/ajmg.a.33627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/01/2010] [Indexed: 01/13/2023]
Abstract
Nonhuman primates have been a common animal model to evaluate experimentally induced malformations. Reports on spontaneous malformations are important in determining the background incidence of congenital anomalies in specific species and in evaluating experimental results. Here we report on a stillborn cynomolgus monkey (Macaca fascicularis) with multiple congenital anomalies from the colony maintained at the Southwest National Primate Research Center at the Texas Biomedical Research Institute, San Antonio, Texas. Physical findings included low birth weight, craniorachischisis, facial abnormalities, omphalocele, malrotation of the gut with areas of atresia and intussusception, a Meckel diverticulum, arthrogryposis, patent ductus arteriosus, and patent foramen ovale. The macaque had normal male external genitalia, but undescended testes. Gestational age was unknown but was estimated from measurements of the limbs and other developmental criteria. Although cytogenetic analysis was not possible due to the tissues being in an advanced state of decomposition, array Comparative Genomic Hybridization analysis using human bacterial artificial chromosome clones was successful in effectively eliminating aneuploidy or any copy number changes greater than approximately 3-5 Mb as a cause of the malformations. Further evaluation of the animal included extensive imaging of the skeletal and neural tissue defects. The animal's congenital anomalies are discussed in relation to the current hypotheses attempting to explain the frequent association of neural tube defects with other abnormalities.
Collapse
Affiliation(s)
- Charleen M Moore
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mirasierra M, Fernández-Pérez A, Díaz-Prieto N, Vallejo M. Alx3-deficient mice exhibit decreased insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia 2011; 54:403-14. [PMID: 21104068 DOI: 10.1007/s00125-010-1975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Homeodomain transcription factors play an important role in the regulation of pancreatic islet function. In previous studies we determined that aristaless-like homeobox 3 (ALX3) is produced in islet cells, binds to the promoter of the insulin gene and regulates its expression. The purpose of the present study was to investigate the functional role of ALX3 in pancreatic islets and its possible involvement in the regulation of glucose homeostasis in vivo. METHODS Alx3-knockout mice were used. Glucose and insulin tolerance tests were carried out, and serum insulin concentrations were determined. Isolated islets were used to test insulin secretion and gene expression. The pancreatic islets were also studied using both confocal and conventional microscopy. RESULTS ALX3 deficiency resulted in increased blood glucose levels and impaired glucose tolerance in the presence of normal serum insulin concentrations. Insulin, glucagon and glucokinase expression were reduced in Alx3-null pancreatic islets. Reduced insulin content was reflected by decreased insulin secretion from isolated islets. Alx3-deficient islets also showed increased apoptosis, and morphometric analyses indicated that they were, on average, of smaller size than islets from control mice. ALX3 deficiency resulted in reduced beta cell mass. Finally, mature Alx3-null mice developed age-dependent insulin resistance due to impaired peripheral insulin receptor signalling. CONCLUSIONS/INTERPRETATION ALX3 participates in the regulation of the expression of essential genes for the function of pancreatic islets, and its deficiency alters the regulation of glucose homeostasis in vivo. We suggest that ALX3 constitutes a potential candidate to consider in the aetiopathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- M Mirasierra
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Mayanil CS, Ichi S, Farnell BM, Boshnjaku V, Tomita T, McLone DG. Maternal intake of folic acid and neural crest stem cells. VITAMINS AND HORMONES 2011; 87:143-73. [PMID: 22127242 DOI: 10.1016/b978-0-12-386015-6.00028-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Maternal folic acid (FA) intake has beneficial effects in preventing neural tube defects and may also play a role in the prevention of adult onset diseases such as Alzheimer's disease, dementia, neuropsychiatric disorders, cardiovascular diseases, and cerebral ischemia. This review will focus on the effects of maternal FA intake on neural crest stem cell proliferation and differentiation. Although FA is generally considered beneficial, it has the potential of promoting cell proliferation at the expense of differentiation. In some situations, this may lead to miscarriage or postnatal developmental abnormalities. Therefore, a blind approach such as "FA for everyone" is not necessarily the best course of action. Ultimately, the best approach for FA supplementation, and potentially other nutritional supplements, will include customized patient genomic profiles for determining dose and duration.
Collapse
Affiliation(s)
- Chandra S Mayanil
- Developmental Biology Program, Children's Memorial Research Center, Department of Pediatric Neurosurgery, Children's Memorial Medical Center and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|