1
|
Zhu S, Huo S, Wang Z, Huang C, Li C, Song H, Yang X, He R, Ding C, Qiu M, Zhu XJ. Follistatin controls the number of murine teeth by limiting TGF-β signaling. iScience 2024; 27:110785. [PMID: 39286503 PMCID: PMC11403059 DOI: 10.1016/j.isci.2024.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor β (TGF-β) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-β signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-β/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-β signaling.
Collapse
Affiliation(s)
- Shicheng Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suman Huo
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhongzheng Wang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Caiyan Huang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuanxu Li
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Cheng Ding
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
2
|
Kantaputra P, Panichkul W, Sillapasorn P, Adisornkanj P, Kitsadayurach P, Kaewgaya M, Intachai W, Olsen B, Ngamphiw C, Leethanakul C, Jatooratthawichot P, Ketudat Cairns JR, Tongsima S. LRP4 mutations, dental anomalies, and oral exostoses. Int J Paediatr Dent 2024; 34:432-441. [PMID: 38013205 DOI: 10.1111/ipd.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/22/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND In order to generate a normal set of teeth, fine-tuning of Wnt/β-catenin signaling is required, in which WNT ligands bind to their inhibitors or WNT inhibitors bind to their co-receptors. Lrp4 regulates the number of teeth and their morphology by modulating Wnt/β-catenin signaling as a Wnt/β-catenin activator or inhibitor, depending on its interactions with the partner proteins, such as Sostdc1 and Dkk1. AIM To investigate genetic etiologies of dental anomalies involving LRP4 in a Thai cohort of 250 children and adults with dental anomalies. DESIGN Oral and radiographic examinations and whole exome sequencing were performed for every patient. RESULTS Two novel (p.Leu1356Arg and p.Ala1702Gly) and three recurrent (p.Arg263His, p.Gly1314Ser, and p.Asn1385Ser) rare variants in low-density lipoprotein receptor-related protein 4 (LRP4: MIM 604270) were identified in 11 patients. Oral exostoses were observed in five patients. CONCLUSION Antagonism of Bmp signaling by Sostdc1 requires the presence of Lrp4. Mice lacking Lrp4 have been demonstrated to have alteration of Wnt-Bmp-Shh signaling and an abnormal number of incisors. Therefore, the LRP4 mutations found in our patients may disrupt Wnt-Bmp-Shh signaling, thereby resulting in dental anomalies and oral exostoses. Root maldevelopment in the patients suggests an important role of LRP4 in root morphogenesis.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Ploy Adisornkanj
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
- Dental Department, Sawang Daen Din Crown Prince Hospital, Sakon Nakhon, Thailand
| | | | - Massupa Kaewgaya
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
| | - Worrachet Intachai
- Center of Excellence in Medical Genetics Research, Chiang Mai University, Chiang Mai, Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| |
Collapse
|
3
|
Ming NR, Noble D, Chussid S, Ziegler A, Chung WK. Caregiver-reported dental manifestations in individuals with genetic neurodevelopmental disorders. Int J Paediatr Dent 2024; 34:145-152. [PMID: 37655712 DOI: 10.1111/ipd.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Children with neurodevelopmental disorders (NDDs) often have poor oral health and dental abnormalities. An increasing number of genes have been associated with neurodevelopmental conditions affecting the oral cavity, but the specific dental features associated with many genes remain unknown. AIM To report the types and frequencies of dental manifestations in children with neurodevelopmental conditions of known genetic cause. DESIGN A 30-question survey assesing ectodermal and dental features was administered through Simons Searchlight, with which formed a recontactable cohort of individuals with genetic NDDs often associated with autism spectrum disorder (ASD). RESULTS Data were collected from a largely paediatric population with 620 affected individuals across 39 genetic conditions and 145 unaffected siblings without NDDs for comparison. Drooling, difficulty accessing dental care, late primary teeth eruption, abnormal primary and permanent teeth formation, misshapen nails, and hair loss were more frequent in individuals with NDDs. Additionally, we evidenced an association between three new pathogenic gene variant/oral manifestation pairs: CSNK2A1/unusual primary teeth, DYRK1A/late primary teeth eruption, and PPP2R5D/sialorrhea. CONCLUSION Our results demonstrate that genetic NDDs caused by mutations in CSNK2A1, DYRK1A, and PP2R5D are associated with unique dental manifestations, and knowledge of these features can be helpful to personalize dental care.
Collapse
Affiliation(s)
- Neil R Ming
- College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Deanna Noble
- College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Steven Chussid
- Department of Paediatric Dentistry, Columbia University Irving Medical Center, New York, New York, USA
| | - Alban Ziegler
- Department of Paediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Department of Paediatrics, Columbia University Irving Medical Center, New York, New York, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Kong X, Lu L, Lin D, Chong L, Wen S, Shi Y, Lin L, Zhou L, Zhang H, Zhang H. FGF10 ameliorates lipopolysaccharide-induced acute lung injury in mice via the BMP4-autophagy pathway. Front Pharmacol 2022; 13:1019755. [PMID: 36618911 PMCID: PMC9813441 DOI: 10.3389/fphar.2022.1019755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Damage to alveolar epithelial cells caused by uncontrolled inflammation is considered to be the main pathophysiological change in acute lung injury. FGF10 plays an important role as a fibroblast growth factor in lung development and lung diseases, but its protective effect against acute lung injury is unclear. Therefore, this study aimed to investigate protective effect and mechanism of FGF10 on acute lung injury in mice. Methods: ALI was induced by intratracheal injection of LPS into 57BL/6J mice. Six hours later, lung bronchoalveolar lavage fluid (BALF) was acquired to analyse cells, protein and the determination of pro-inflammatory factor levels, and lung issues were collected for histologic examination and wet/dry (W/D) weight ratio analysis and blot analysis of protein expression. Results: We found that FGF10 can prevent the release of IL-6, TNF-α, and IL-1β, increase the expression of BMP4 and autophagy pathway, promote the regeneration of alveolar epithelial type Ⅱ cells, and improve acute lung injury. BMP4 gene knockdown decreased the protective effect of FGF10 on the lung tissue of mice. However, the activation of autophagy was reduced after BMP4 inhibition by Noggin. Additionally, the inhibition of autophagy by 3-MA also lowered the protective effect of FGF10 on alveolar epithelial cells induced by LPS. Conclusions: These data suggest that the protective effect of FGF10 is related to the activation of autophagy and regeneration of alveolar epithelial cells in an LPS-induced ALI model, and that the activation of autophagy may depend on the increase in BMP4 expression.
Collapse
Affiliation(s)
- Xiaoxia Kong
- School of Basic Medical Sciences, Institute of Hypoxia Research, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liling Lu
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Ultrasound, Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daopeng Lin
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Nephrology, Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Lei Chong
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shunhang Wen
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaokai Shi
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lidan Lin
- School of Basic Medical Sciences, Institute of Hypoxia Research, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Zhou
- Department of Pharmacy, Zhuji People’s Hospital, The Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Hongyu Zhang
- Department of Pharmacy, Zhuji People’s Hospital, The Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China,School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Hongyu Zhang, ; Hailin Zhang,
| | - Hailin Zhang
- Department of Children’s Respiration, The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Hongyu Zhang, ; Hailin Zhang,
| |
Collapse
|
6
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
7
|
Yoshida Y, Takahashi M, Yamanishi H, Nakazawa Y, Kishimoto J, Ohyama M. Changes in the Expression of Smooth Muscle Cell–Related Genes in Human Dermal Sheath Cup Cells Associated with the Treatment Outcome of Autologous Cell–Based Therapy for Male and Female Pattern Hair Loss. Int J Mol Sci 2022; 23:ijms23137125. [PMID: 35806129 PMCID: PMC9266963 DOI: 10.3390/ijms23137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
In a clinical study of autologous cell–based therapy using dermal sheath cup (DSC) cells, the treatment of hair loss showed improvements. However, the outcomes were variable. Here, correlations between marker gene expression in DSC cells and treatment outcomes were assessed to predict therapeutic efficacy. Overall, 32 DSC cell lines were used to evaluate correlations between marker gene expression and treatment outcomes. Correlations between vascular pericyte and preadipocyte marker expression and treatment outcomes were inconsistent. As smooth muscle cell markers, MYOCD correlated negatively with treatment outcomes and SRF consistently demonstrated an inverse correlation. Additionally, CALD1 correlated negatively and ACTA2 correlated inversely with treatment outcomes. DSC cell lines were divided into good and moderate/poor responders to further investigate the correlations. SRF and CALD1 were lower in a good responder compared with a moderate responder. Next, DSC cells were differentiated toward dermal papilla cells. Dermal papilla markers SOX2 and LEF1 before differentiation had moderate positive and inverse correlations with the treatment outcome, respectively. SOX2 after differentiation more consistently demonstrated a positive correlation. Significant downregulation of smooth muscle–related genes was also observed after differentiation. These findings revealed putative markers for preclinical evaluation of DSC cells to improve hair loss.
Collapse
Affiliation(s)
- Yuzo Yoshida
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
- Correspondence: (Y.Y.); (M.O.)
| | - Miki Takahashi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Haruyo Yamanishi
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Yosuke Nakazawa
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Jiro Kishimoto
- Regenerative Medicine Research & Business Development Section, Shiseido FS Innovation Center, Yokohama 220-0011, Japan; (M.T.); (H.Y.); (Y.N.); (J.K.)
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
- Correspondence: (Y.Y.); (M.O.)
| |
Collapse
|
8
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
9
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
10
|
The concurrent stimulation of Wnt and FGF8 signaling induce differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 2021; 55:8-19. [PMID: 34739612 PMCID: PMC8885561 DOI: 10.1007/s00795-021-00297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/13/2021] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 8 (FGF8) is known to be a potent stimulator of canonical Wnt/β-catenin activity, an essential factor for tooth development. In this study, we analyzed the effects of co-administration of FGF8 and a CHIR99021 (GSK3β inhibitor) on differentiation of dental mesenchymal cells into odontoblasts. Utilizing Cre-mediated EGFP reporter mice, dentin matrix protein 1 (Dmp1) expression was examined in mouse neonatal molar tooth germs. At birth, expression of Dmp1-EGFP was not found in mesenchymal cells but rather epithelial cells, after which Dmp1-positive cells gradually emerged in the mesenchymal area along with disappearance in the epithelial area. Primary cultured mesenchymal cells from neonatal tooth germ specimens showed loss of Dmp1-EGFP positive signals, whereas addition of Wnt3a or the CHIR99021 significantly regained Dmp1 positivity within approximately 2 weeks. Other odontoblast markers such as dentin sialophosphoprotein (Dspp) could not be clearly detected. Concurrent stimulation of primary cultured mesenchymal cells with the CHIR99021 and FGF8 resulted in significant upregulation of odonto/osteoblast proteins. Furthermore, increased expression levels of runt-related transcription factor 2 (Runx2), osterix, and osteocalcin were also observed. The present findings indicate that coordinated action of canonical Wnt/β-catenin and FGF8 signals is essential for odontoblast differentiation of tooth germs in mice.
Collapse
|
11
|
Liu Z, Zhan A, Fan S, Liao L, Lian W. DNCP induces the differentiation of induced pluripotent stem cells into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways. Exp Ther Med 2021; 22:1361. [PMID: 34659507 DOI: 10.3892/etm.2021.10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/11/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, stem cells have been studied for treating tooth loss. The present study aimed to investigate the roles of dentin non-collagen protein (DNCP)-associated microenvironments in the differentiation of induced pluripotent stem cells (iPSCs) into dentin cells. iPSCs were cultured and identified by examining octamer-binding transcription-factor-4 (Oct-4) and sex-determining region-Y-2 (Sox-2) expression. iPSCs were differentiated by culturing DNCP-associated microenvironments (containing specific growth factors), and they were divided into control, DNCP, DNCP+bone morphogenetic proteins (BMPs) and DNCP+Noggin (a BMP inhibitor) groups. Msh homeobox 1 (Msx-1), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) mRNA expression was evaluated using reverse transcription-quantitative PCR. The levels of p38, phosphorylated (p)-p38, Smad and p-Smad were determined by western blotting. Upon treatment with mouse embryonic fibroblasts, iPSCs-dependent embryoid bodies (EBs) were successfully generated. iPSCs exhibited increased Oct-4 and Sox-2 expression. Differentiated iPSCs had higher expression levels of DSPP, DMP-1 and Msx-1 in the DNCP group compared with those in the control group (P<0.05). Noggin treatment significantly downregulated, while BMPs administration significantly increased the expression levels of DSPP, DMP-1 and Msx-1 compared with those of the DNCP group (P<0.05). The ratios of p-p38/p38 and p-Smad/Smad were significantly higher in the DNCP group compared with those in the control group (P<0.05). Noggin and BMPs significantly decreased ratios of p-p38/p38, compared with those of the DNCP group (P<0.05). In conclusion, DNCP induced the differentiation of iPSCs into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Aiping Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sumeng Fan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenwei Lian
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Li D, Wang X, Yao L, Jing H, Qin T, Li M, Zhang S, Chen Z, Zhang L. Sox2 controls asymmetric patterning of ameloblast lineage commitment by regulation of FGF signaling in the mouse incisor. J Mol Histol 2021; 52:1035-1042. [PMID: 34279757 DOI: 10.1007/s10735-021-10005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Mouse incisors are covered by enamel only on the labial side and the lingual side is covered by dentin without enamel. This asymmetric distribution of enamel makes it possible to be abrased on the lingual side, generating the sharp cutting edge of incisor on the labial side. The abrasion of mouse incisors is compensated by the continuous growth throughout life. Epithelium stem cells responsible for its continuous growth are reported to localize within the labial cervical loop. The transcription factor Sox2 plays important roles in the maintenance of stem cell pluripotency and organ formation. We previously found that Sox2 mainly expressed in the dental epithelium. Besides, Sox2 has been reported to be a dental epithelium stem cell marker in the incisor. However, the exact mechanism of Sox2 controlling amelogenesis is still not quite clearly elucidated. Here we report that conditional deletion of Sox2 in the dental epithelium using Shhcre caused impaired ameloblast differentiation in the labial side and induced ectopic ameloblast-like cell differentiation on the lingual side. Abnormal FGF gene expression was detected by RNAscope in situ hybridization in the mutant incisor. Collectively, we speculate that asymmetric ameloblast lineage commitment of mouse incisor might be regulated by Sox2 through FGF signaling.
Collapse
Affiliation(s)
- Dan Li
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Xiaofei Wang
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
- Department of Stomatology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Liping Yao
- Department of Cariology and Endodontology, Yantai Stomatological Hospital, Yantai, 264008, Shandong, China
| | - Huaixiang Jing
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
| | - Tiantian Qin
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China
| | - Mingyue Li
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Shuyu Zhang
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Li Zhang
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China.
- Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.
| |
Collapse
|
13
|
Giffin JL, Franz-Odendaal TA. Quantitative gene expression dynamics of key placode signalling factors in the embryonic chicken scleral ossicle system. Gene Expr Patterns 2020; 38:119131. [PMID: 32755633 DOI: 10.1016/j.gep.2020.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including β-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/β-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and β-catenin had the greatest number of moderate correlations (r = 0.400-0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.
Collapse
Affiliation(s)
- Jennifer L Giffin
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| | - Tamara A Franz-Odendaal
- Department of Biology, Mount Saint Vincent University, 166 Bedford Highway, Halifax, NS, B3M 2J6, Canada.
| |
Collapse
|
14
|
Cui C, Bi R, Liu W, Guan S, Li P, Song D, Xu R, Zheng L, Yuan Q, Zhou X, Fan Y. Role of PTH1R Signaling in Prx1 + Mesenchymal Progenitors during Eruption. J Dent Res 2020; 99:1296-1305. [PMID: 32585127 DOI: 10.1177/0022034520934732] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tooth eruption is a complex process requiring precise interaction between teeth and adjacent tissues. Molecular analysis demonstrates that bone remodeling plays an essential role during eruption, suggesting that a parathyroid hormone 1 receptor (PTH1R) gene mutation is associated with disturbances in bone remodeling and results in primary failure of eruption (PFE). Recent research reveals the function of PTH1R signaling in mesenchymal progenitors, whereas the function of PTH1R in mesenchymal stem cells during tooth eruption remains incompletely understood. We investigated the specific role of PTH1R in Prx1+ progenitor expression during eruption. We found that Prx1+-progenitors occur in mesenchymal stem cells residing in alveolar bone marrow surrounding incisors, at the base of molars and in the dental follicle and pulp of incisors. Mice with conditional deletion of PTH1R using the Prx1 promoter exhibited arrested mandibular incisor eruption and delayed molar eruption. Micro-computed tomography, histomorphometry, and molecular analyses revealed that mutant mice had significantly reduced alveolar bone formation concomitant with downregulated gene expression of key regulators of osteogenesis in PTH1R-deficient cells. Moreover, culturing orofacial bone-marrow-derived mesenchymal stem cells (OMSCs) from Prx1Cre;PTH1Rfl/fl mice or from transfecting Cre recombinase adenovirus in OMSCs from PTH1Rfl/fl mice suggested that lack of Pth1r expression inhibited osteogenic differentiation in vitro. However, bone resorption was not affected by PTH1R ablation, indicating the observed reduced alveolar bone volume was mainly due to impaired bone formation. Furthermore, we found irregular periodontal ligaments and reduced Periostin expression in mutant incisors, implying loss of PTH1R results in aberrant differentiation of periodontal ligament cells. Collectively, these data suggest that PTH1R signaling in Prx1+ progenitors plays a critical role in alveolar bone formation and periodontal ligament development during eruption. These findings have implications for our understanding of the physiologic and pathologic function of PTH1R signaling in tooth eruption and the progression of PFE.
Collapse
Affiliation(s)
- C Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - R Bi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - W Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - S Guan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - P Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - D Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - R Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - L Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Y Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
15
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
16
|
Dhamo B, Nguee AM, Ongkosuwito EM, Jaddoe VWV, Wolvius EB, Kragt L. The role of accelerated dental development on the occurrence of aberrant dental traits that indicate malocclusion. Eur J Orthod 2019; 41:397-403. [PMID: 30476028 DOI: 10.1093/ejo/cjy073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Timing of dental development might help orthodontists to optimize initiation of treatment and to prevent and intercept dental misalignment. This study examines the association between timing of dental development and aberrant dental traits such as crowding, impaction, and hypodontia. METHODS This study was performed using 4446 ten-year-old children from a multiethnic birth cohort, the Generation R Study. Dental development was defined using the Demirjian method. Crowding, impaction, and hypodontia were ascertained from 2D and 3D pictures and radiographs. We built three series of logistic regression models to test the associations of dental age with crowding, impaction, and hypodontia. Similar models were built to investigate the associations of the developmental stages of each left mandibular tooth with crowding, impaction, and hypodontia. RESULTS Inverse associations were found between every 1-year increase in dental age and the presence of crowding [odds ratio (OR) = 0.84, 95% confidence interval (CI): 0.79, 0.89], impaction of teeth (OR = 0.66, 95% CI: 0.52, 0.84), and hypodontia (OR = 0.52, 95% CI: 0.47, 0.56). Lower developmental stages of the second premolar were associated with the presence of crowding (OR = 0.90, 95% CI: 0.83, 0.98). Lower developmental stages of the second premolar (OR = 0.88, 95% CI: 0.79, 0.98), first molar (OR = 0.76, 95% CI: 0.65, 0.90), and the second molar (OR = 0.83, 95% CI: 0.73, 0.94) were associated with the presence of tooth impaction. Lower developmental stages of all mandibular teeth except the central incisor were associated with hypodontia (P < 0.05). CONCLUSION Accelerated dental development is associated with lower occurrence of crowding, impaction, and hypodontia.
Collapse
Affiliation(s)
- Brunilda Dhamo
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Amanda M Nguee
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lea Kragt
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics.,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Chen X, Liu J, Li N, Wang Y, Zhou N, Zhu L, Shi Y, Wu Y, Xiao J, Liu C. Mesenchymal Wnt/β-catenin signaling induces Wnt and BMP antagonists in dental epithelium. Organogenesis 2019; 15:55-67. [PMID: 31240991 DOI: 10.1080/15476278.2019.1633871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies indicated that the elevated mesenchymal Wnt/β-catenin signaling deprived dental mesenchyme of odontogenic fate. By utilizing ex vivo or pharmacological approaches, Wnt/β-catenin signaling in the developing dental mesenchyme was suggested to suppress the odontogenic fate by disrupting the balance between Axin2 and Runx2. In our study, the Osr2-creKI; Ctnnb1ex3f mouse was used to explore how mesenchymal Wnt/β-catenin signaling suppressed the odontogenic fate in vivo. We found that all of the incisor and half of the molar germs of Osr2-creKI; Ctnnb1ex3fmice started to regress at E14.5 and almost disappeared at birth. The expression of Fgf3 and Msx1 was dramatically down-regulated in the E14.5 Osr2-creKI; Ctnnb1ex3f incisor and molar mesenchyme, while Runx2transcription was only diminished in incisor mesenchyme. Intriguingly, in the E14.5 Osr2-creKI; Ctnnb1ex3f incisor epithelium, the expression of Noggin was activated, while Shh was abrogated. Similarly, the Wnt and BMP antagonists, Ectodin and Noggin were also ectopically activated in the E14.5 Osr2-creKI; Ctnnb1ex3f molar epithelium. Recombination of E13.5 Osr2-creKI; Ctnnb1ex3f molar mesenchyme with E10.5 and E13.5 WT dental epithelia failed to develop tooth. Taken together, the mesenchymal Wnt/β-catenin signaling resulted in the loss of odontogenic fate in vivo not only by directly suppressing odontogenic genes expression but also by inducing Wnt and BMP antagonists in dental epithelium.
Collapse
Affiliation(s)
- Xiaoyan Chen
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Jing Liu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Nan Li
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yu Wang
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Nan Zhou
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Lei Zhu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yiding Shi
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Yingzhang Wu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Jing Xiao
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| | - Chao Liu
- a Dalian key laboratory of basic research in oral medicine and Department of Oral Pathology College of Stomatology, Dalian Medical University , Dalian , China
| |
Collapse
|
18
|
Azevedo PL, Oliveira NCA, Corrêa S, Castelo-Branco MTL, Abdelhay E, Binato R. Canonical WNT Signaling Pathway is Altered in Mesenchymal Stromal Cells From Acute Myeloid Leukemia Patients And Is Implicated in BMP4 Down-Regulation. Transl Oncol 2019; 12:614-625. [PMID: 30703678 PMCID: PMC6350721 DOI: 10.1016/j.tranon.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (hMSCs) are key components of the bone marrow microenvironment (BMM). A molecular signature in hMSCs from Acute myeloid leukemia patients (hMSC-AML) has been proposed where BMP4 is decreased and could be regulated by WNT signaling pathway. Therefore, the aim of this work was to verify whether the WNT signaling pathway can regulate the BMP4 gene in hMSCs. The results showed differentially expressed genes in the WNT canonical pathway between hMSC-AML and hMSCs from healthy donors and a real-time quantitative assay corroborated with these findings. Moreover, the main WNT canonical pathway regulators were decreased in hMSC-AML, such as LEF-1, β-catenin and the β-catenin/TCF-LEF regulatory complex in the nucleus. This result, together with functional assays, suggests that the induction of BMP4 expression by the WNT signaling pathway is decreased in hMSC-AML. Overall, the WNT canonical pathway is able to regulate the BMP4 gene in hMSC-AML and its reduced activation could also lead to the lower expression of BMP4 in hMSC-AML. Due to the important role of the BMM, changes in BMP4 expression through the WNT canonical pathway may be a potential mechanism of leukemogenesis.
Collapse
Affiliation(s)
- Pedro L Azevedo
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Nathalia C A Oliveira
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Stephany Corrêa
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Morgana T L Castelo-Branco
- Institute of Biomedical Sciences and Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Renata Binato
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Zhou N, Li N, Liu J, Wang Y, Gao J, Wu Y, Chen X, Liu C, Xiao J. Persistent Wnt/β-catenin signaling in mouse epithelium induces the ectopic Dspp expression in cheek mesenchyme. Organogenesis 2018; 15:1-12. [PMID: 30570432 DOI: 10.1080/15476278.2018.1557026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tooth development is accomplished by a series of epithelial-mesenchyme interactions. Epithelial Wnt/β-catenin signaling is sufficient to initiate tooth development by activating Shh, Bmps, Fgfs and Wnts in dental epithelium, which in turn, triggered the expression of odontogenic genes in the underlying mesenchyme. Although constitutive activation of Wnt/β-catenin signaling in oral ectoderm resulted in the continuous tooth formation throughout the life span, if the epithelial Wnt/β-catenin signaling could induce the mesenchyme other than oral mesenchyme still required to be elucidated. In this study, we found that in the K14-cre; Ctnnb1ex3f mice, the markers of dental epithelium, such as Pitx2, Shh, Bmp2, Fgf4, and Fgf8, were not only activated in the oral ectoderm, but also in the cheek epithelium. Surprisingly, the underlying cheek mesenchymal cells were elongated and expressed Dspp. Further investigations detected that the expression of Msx1 and Runx2 extended from oral to cheek mesenchyme. These findings suggested that epithelial Wnt/β-catenin signaling was capable of inducing Dspp expression in non-dental mesenchyme. Moreover, Dspp expression in the K14-cre; Ctnnb1ex3f oral mesenchyme was activated earlier than that in the wild type littermates. In contrast, although the elongated oral epithelial cells were detected in the K14-cre; Ctnnb1ex3f mice, the Amelogenin expression was suppressed. The differential effects of the persistent epithelial Wnt/β-catenin signaling on ameloblast and odontoblast differentiation might result from the altered BMP signaling. In summary, our findings suggested that the epithelial Wnt/β-catenin signaling could induce craniofacial mesenchyme into odontogenic program and promote odontoblast differentiation.
Collapse
Affiliation(s)
- Nan Zhou
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Nan Li
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Jing Liu
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Yu Wang
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Jun Gao
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Yingzhang Wu
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Xiaoyan Chen
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Chao Liu
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| | - Jing Xiao
- a Department of Oral Pathology , College of Stomatology Dalian Medical University , Dalian , China
| |
Collapse
|
20
|
Shim JS, Kim B, Park HC, Ryu JJ. Temporal Control of WNT Activity Regulates Tooth Number in Fish. J Dent Res 2018; 98:339-346. [PMID: 30513239 DOI: 10.1177/0022034518811322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Wnts determine cell polarity, cell proliferation, and cell differentiation during embryogenesis and play an essential role during tooth development initiation and morphogenesis. Wnt/β-catenin signaling has a time-dependent role in development because various signaling molecules that mutually interact are involved in the pathway, and tight regulation of the pathway is essential for normal development. Studies investigating how the Wnt/β-catenin signaling pathway controls the different stages of tooth development are rare. Specifically, the effects of Wnt/β-catenin signaling loss of function on different stages of tooth development are currently unknown. Here, we report the stage-dependent role of Wnt/β-catenin signaling in tooth development. In vivo loss and gain of function of Wnt/β-catenin signaling were implemented through the genetic overexpression of DKK1 with heat shock-inducible transgenic models and the pharmacologic inhibition of β-catenin destruction complex formation in zebrafish, respectively. We demonstrated that transient inhibition of Wnt/β-catenin signaling interrupted tooth development in a stage-dependent manner and conditional activation of Wnt/β-catenin signaling during 4V morphogenesis inhibited the development of 3V. These findings suggest that Wnt/β-catenin signaling plays an important role in the morphogenesis of teeth and the initiation of sequential tooth development in a stage-dependent manner.
Collapse
Affiliation(s)
- J S Shim
- 1 Department of Prosthodontics, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - B Kim
- 2 Graduate School of Medicine, Korea University, Ansan-si, Republic of Korea
| | - H C Park
- 2 Graduate School of Medicine, Korea University, Ansan-si, Republic of Korea
| | - J J Ryu
- 3 Department of Prosthodontics Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
21
|
Balic A. Concise Review: Cellular and Molecular Mechanisms Regulation of Tooth Initiation. Stem Cells 2018; 37:26-32. [DOI: 10.1002/stem.2917] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Anamaria Balic
- Research Program in Developmental Biology; Institute of Biotechnology, University of Helsinki; Helsinki Finland
| |
Collapse
|
22
|
Huang X, Wang Z, Li D, Huang Z, Dong X, Li C, Lan J. Study of microRNAs targeted Dvl2 on the osteoblasts differentiation of rat BMSCs in hyperlipidemia environment. J Cell Physiol 2018; 233:6758-6766. [PMID: 29226968 DOI: 10.1002/jcp.26392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 01/31/2023]
Abstract
Dishevelled 2 (Dvl-2), a key mediator of the wnt/β-catenin signaling pathway, plays critical roles in osteoblasts differentiation in hyperlipidemia environment. In our previous study, we observed a strong correlation between increased dvl2 expression and decreased new bone formation around implants in a rat hyperlipidemia implant surgery model. However, transcriptional regulation of Dvl2 by microRNAs in this process remains unknown. In the current study, we searched in online database and identified four significantly up-regulated miRNAs, miR-21-5p, miR-29c-3p, miR-138-5p, and miR-351-5p that could potentially regulate Dvl2. Using Western blot and dual-luciferase assays, we confirmed that miR29c-3p suppresses Dvl2 expression by binding to its 3'-UTR. Our results suggest a novel transcriptional regulation mechanism of Dvl2 by miR-29c-3p in osteoblasts differentiation of BMSCs.
Collapse
Affiliation(s)
- Xin Huang
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| | - Zhifeng Wang
- Department of Pediatric Dentistry, School of Dentistry, Shandong University, Jinan, China
| | - Duoduo Li
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| | - Zhengfei Huang
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| | - Xiaofei Dong
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| | - Chuanhua Li
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| | - Jing Lan
- Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| |
Collapse
|
23
|
Järvinen E, Shimomura-Kuroki J, Balic A, Jussila M, Thesleff I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development 2018; 145:dev.158048. [PMID: 29437780 DOI: 10.1242/dev.158048] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/21/2018] [Indexed: 12/29/2022]
Abstract
Tooth agenesis is one of the predominant developmental anomalies in humans, usually affecting the permanent dentition generated by sequential tooth formation and, in most cases, caused by mutations perturbing epithelial Wnt/β-catenin signaling. In addition, loss-of-function mutations in the Wnt feedback inhibitor AXIN2 lead to human tooth agenesis. We have investigated the functions of Wnt/β-catenin signaling during sequential formation of molar teeth using mouse models. Continuous initiation of new teeth, which is observed after genetic activation of Wnt/β-catenin signaling in the oral epithelium, was accompanied by enhanced expression of Wnt antagonists and a downregulation of Wnt/β-catenin signaling in the dental mesenchyme. Genetic and pharmacological activation of mesenchymal Wnt/β-catenin signaling negatively regulated sequential tooth formation, an effect partly mediated by Bmp4. Runx2, a gene whose loss-of-function mutations result in sequential formation of supernumerary teeth in the human cleidocranial dysplasia syndrome, suppressed the expression of Wnt inhibitors Axin2 and Drapc1 in dental mesenchyme. Our data indicate that increased mesenchymal Wnt signaling inhibits the sequential formation of teeth, and suggest that Axin2/Runx2 antagonistic interactions modulate the level of mesenchymal Wnt/β-catenin signaling, underlying the contrasting dental phenotypes caused by human AXIN2 and RUNX2 mutations.
Collapse
Affiliation(s)
- Elina Järvinen
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland.,Merck Oy, Espoo 02150, Finland
| | - Junko Shimomura-Kuroki
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland.,Department of Pediatric Dentistry, The Nippon Dental University, School of Life Dentistry at Niigata, Niigata 951-8580, Japan
| | - Anamaria Balic
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| | - Maria Jussila
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| | - Irma Thesleff
- Institute of Biotechnology, University of Helsinki, Helsinki 007100, Finland
| |
Collapse
|
24
|
Chung DD, Frausto RF, Lin BR, Hanser EM, Cohen Z, Aldave AJ. Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. Invest Ophthalmol Vis Sci 2017; 58:3202-3214. [PMID: 28654985 PMCID: PMC5488878 DOI: 10.1167/iovs.17-21423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the molecular basis of posterior polymorphous corneal dystrophy (PPCD) by examining the PPCD transcriptome and the effect of decreased ZEB1 expression on corneal endothelial cell (CEnC) gene expression. Methods Next-generation RNA sequencing (RNA-seq) analyses of corneal endothelium from two PPCD-affected individuals (one with PPCD3 and one of unknown genetic cause) compared with two age-matched controls, and primary human CEnC (pHCEnC) transfected with siRNA-mediated ZEB1 knockdown. The expression of selected differentially expressed genes was validated by quantitative polymerase chain reaction (qPCR) and/or assessed by in situ hybridization in the corneal endothelium of four independent cases of PPCD (one with PPCD3 and three of unknown genetic cause). Results Expression of 16% and 46% of the 104 protein-coding genes specific to ex vivo corneal endothelium was lost in the endothelium of two individuals with PPCD. Thirty-two genes associated with ZEB1 and 3 genes (BMP4, CCND1, ZEB1) associated with OVOL2 were differentially expressed in the same direction in both individuals with PPCD. Immunohistochemistry staining and RNA-seq analyses demonstrated variable expression of type IV collagens in PPCD corneas. Decreasing ZEB1 expression in pHCEnC altered expression of 711 protein-coding genes, many of which are associated with canonical pathways regulating various cellular processes. Conclusions Identification of the altered transcriptome in PPCD and in a cell-based model of PPCD provided insight into the molecular alterations characterizing PPCD. Further study of the differentially expressed genes associated with ZEB1 and OVOL2 is expected to identify candidate genes for individuals with PPCD and without a ZEB1 or OVOL2 mutation.
Collapse
Affiliation(s)
- Doug D Chung
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Ricardo F Frausto
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Benjamin R Lin
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Evelyn M Hanser
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Zack Cohen
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
25
|
Spatial and temporal expression of Sox9 during murine incisor development. J Mol Histol 2017; 48:321-327. [PMID: 28687932 DOI: 10.1007/s10735-017-9730-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/23/2017] [Indexed: 02/03/2023]
Abstract
Mouse incisors are capable of continuously growing due to the renewal of dental epithelium stem cells and mesenchymal stem cells residing at the proximal ends. The transcription factor Sox9 plays important roles in maintaining the stem cells of hair follicles, retinal progenitor cells and neural crest stem cells. Whether Sox9 is involved during mouse incisor development is not reported yet. In this study, we examined the expression pattern of Sox9 during mouse incisor development by in situ hybridization and immunohistochemistry. Sox9 mRNA and protein showed similar expression pattern from embryonic day (E) 13.5 to postnatal (PN) day 10. At E13.5 and E14.5, Sox9 was strongly expressed in the dental epithelium. At E16.5, Sox9 started to be detected in the mesenchymal cells within the dental pulp, especially the dental pulp cells that adjacent to the labial cervical loop. Similarly with E14.5, Sox9 was strongly detected in the labial cervical loop, including the basal epithelium, the stellate reticulum and the outer enamel epithelium from E16.5 to PN10. The mesenchyme adjacent to the labial cervical loop also showed strong signal of Sox9. The spatiotemporal expression of Sox9 suggested its possible involvement during mouse incisor development.
Collapse
|
26
|
Lu X, Yu F, Liu J, Cai W, Zhao Y, Zhao S, Liu S. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis 2017; 13:71-82. [PMID: 28598258 DOI: 10.1080/15476278.2017.1332554] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xi Lu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Fang Yu
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Junjun Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Wenping Cai
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Yumei Zhao
- b Department of Pediatric Dentistry , School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration , Shanghai , P. R. China
| | - Shouliang Zhao
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| | - Shangfeng Liu
- a Department of Stomatology , Huashan Hospital, Fudan University , Shanghai , P.R. China
| |
Collapse
|
27
|
WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat Commun 2017; 8:15397. [PMID: 28589954 PMCID: PMC5467248 DOI: 10.1038/ncomms15397] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Human WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that β-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that β-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream β-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients. Human WNT10A mutations are associated with dental defects and adult onset ectodermal dysplasia. Xu et al. show that WNT10A-activated ß-catenin plays dual roles in adult epithelial progenitor proliferation and differentiation by complexing with KLF4 in differentiating, but not proliferating, cells.
Collapse
|
28
|
Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol 2017; 214:753-67. [PMID: 27621364 PMCID: PMC5021093 DOI: 10.1083/jcb.201512074] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/17/2016] [Indexed: 12/22/2022] Open
Abstract
During organogenesis, cell fate specification and patterning are regulated by signaling centers, specialized clusters of morphogen-expressing cells. In many organs, initiation of development is marked by bud formation, but the cellular mechanisms involved are ill defined. Here, we use the mouse incisor tooth as a model to study budding morphogenesis. We show that a group of nonproliferative epithelial cells emerges in the early tooth primordium and identify these cells as a signaling center. Confocal live imaging of tissue explants revealed that although these cells reorganize dynamically, they do not reenter the cell cycle or contribute to the growing tooth bud. Instead, budding is driven by proliferation of the neighboring cells. We demonstrate that the activity of the ectodysplasin/Edar/nuclear factor κB pathway is restricted to the signaling center, and its inactivation leads to fewer quiescent cells and a smaller bud. These data functionally link the signaling center size to organ size and imply that the early signaling center is a prerequisite for budding morphogenesis.
Collapse
Affiliation(s)
- Laura Ahtiainen
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Isa Uski
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Irma Thesleff
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
29
|
Dai J, Si J, Ouyang N, Zhang J, Wu D, Wang X, Shen G. Dental and periodontal phenotypes of Dlx2 overexpression in mice. Mol Med Rep 2017; 15:2443-2450. [PMID: 28447749 PMCID: PMC5428916 DOI: 10.3892/mmr.2017.6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
Distal-less homeobox 2 (Dlx2) is a member of the homeodomain family of transcription factors and is important for the development of cranial neural crest cells (CNCCs)-derived craniofacial tissues. Previous studies revealed that Dlx2 was expressed in the cementum and a targeted null mutation disrupted tooth development in mice. However, whether Dlx2 overexpression may impair in vivo tooth morphogenesis remains to be elucidated. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to identify the dental phenotypes in mice by observation, micro-computed tomography and histological examination. The Dlx2-overexpressed mice exhibited tooth abnormalities including incisor cross-bite, shortened tooth roots, increased cementum deposition, periodontal ligament disorganization and osteoporotic alveolar bone. Therefore, Dlx2 overexpression may alter the alveolar bone, cementum and periodontal ligament (PDL) phenotypes in mice.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiawen Si
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Ningjuan Ouyang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jianfei Zhang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Dandan Wu
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
30
|
The association between WNT10A variants and dental development in patients with isolated oligodontia. Eur J Hum Genet 2016; 25:59-65. [PMID: 27650966 DOI: 10.1038/ejhg.2016.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/25/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022] Open
Abstract
In this study we aimed to determine the effect of WNT10A variants on dental development in patients with oligodontia. Forty-three (25 boys and 18 girls) individuals were eligible for this study. Stage of development for each present tooth was assessed using the Demirjian method. In case no corresponding tooth was present, regression equations were applied for dental age to be calculated. The ratio between length of root and length of crown was ascertained for each present tooth in all quadrants. All patients were physically examined by a clinical geneticist and DNA analysis of the WNT10A gene was performed. Linear regression models were applied to analyze the association between WNT10A variants and dental age. The same analysis was applied to study the association between WNT10A variants and root elongation for each present tooth. One ordinal regression model was applied to analyze the association between WNT10A variants and development of present maxillary and mandibular teeth. Thirty-six (84%) patients were detected with WNT10A variants of which six patients displayed evident ectodermal features. Dental age was 1.50 (95% confidence interval (CI): -2.59, -0.42) to 1.96 (95% CI: -3.76, -0.17) years lower in patients with WNT10A variants compared with patients without variants. The development of maxillary canine, maxillary second molar and mandibular second molar was statistically significantly delayed in patients with WNT10A variants compared with patients without variants. The impact of WNT10A variants on dental development increases with presence of the nonsense c.(321C>A p.(C107*)) variant and the number of missing teeth.
Collapse
|
31
|
Puthiyaveetil JSV, Kota K, Chakkarayan R, Chakkarayan J, Thodiyil AKP. Epithelial - Mesenchymal Interactions in Tooth Development and the Significant Role of Growth Factors and Genes with Emphasis on Mesenchyme - A Review. J Clin Diagn Res 2016; 10:ZE05-ZE09. [PMID: 27790596 DOI: 10.7860/jcdr/2016/21719.8502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
Abstract
The recent advancements in medical research field mainly highlights the genetic and molecular aspects of various disease processes and related treatment options, in a specialized "custom-made" approach. The medical and dental field has made tremendous progress in providing even with the smallest insight into pathological entities, thus, making patient management more fruitful. But, short comings have occurred in dental treatments involving odontogenic lesions mainly due to poor understanding of the developmental cycle involved during early stages of developmental process. Multiple numbers of interactions take place during embryo formation and further proliferation of tissue. One such important step is the interaction between epithelium and mesenchyme which tantamount to functional requirements of an individual tooth. The role of extra cellular molecules and genes has to be studied in depth to assess the impact and significance attached to it as the synergistic function of various elements underlines the complex process of development.
Collapse
Affiliation(s)
| | - Kasim Kota
- Professor and Head, Department of Oral Pathology and Microbiology, Kannur Dental College , Kannur, Kerala, India
| | - Roopesh Chakkarayan
- Senior Lecturer, Department of Conservative Dentistry and Endodontics, Kannur Dental College , Kannur, Kerala, India
| | - Jithesh Chakkarayan
- Reader, Department of Orthodontics and Dentofacial Orthopaedics, Kannur Dental College , Kannur, Kerala, India
| | | |
Collapse
|
32
|
Wnt Signaling in Renal Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8060057. [PMID: 27322325 PMCID: PMC4931622 DOI: 10.3390/cancers8060057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/31/2016] [Accepted: 06/12/2016] [Indexed: 01/09/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.
Collapse
|
33
|
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, Zhao L, Ye Y, Zhou H, Hu L, Tian Z, Shang X, Zhang L, Wei X, Zhou W, Li D, Zhang W, Xu X. A splicing mutation inVPS4Bcauses dentin dysplasia I. J Med Genet 2016; 53:624-33. [DOI: 10.1136/jmedgenet-2015-103619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
34
|
Saito K, Takahashi K, Asahara M, Kiso H, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Motokawa M, Slavkin HC, Bessho K. Effects of Usag-1 and Bmp7 deficiencies on murine tooth morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2016; 16:14. [PMID: 27178071 PMCID: PMC4866418 DOI: 10.1186/s12861-016-0117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/09/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Wnt5a and Mrfzb1 genes are involved in the regulation of tooth size, and their expression levels are similar to that of Bmp7 during morphogenesis, including during the cap and early bell stages of tooth formation. We previously reported that Usag-1-deficient mice form supernumerary maxillary incisors. Thus, we hypothesized that BMP7 and USAG-1 signaling molecules may play important roles in tooth morphogenesis. In this study, we established double genetically modified mice to examine the in vivo inter-relationships between Bmp7 and Usag-1. RESULTS We measured the volume and cross-sectional areas of the mandibular incisors using micro-computed tomography (micro-CT) in adult Bmp7- and Usag-1-LacZ knock-in mice and their F2 generation upon interbreeding. The mandibular incisors of adult Bmp7+/- mice were significantly larger than those of wild-type (WT) mice. The mandibular incisors of adult Usag-1-/- mice were the largest of all genotypes examined. In the F2 generation, the effects of these genes were additive; Bmp7+/- was most strongly associated with the increase in tooth size using generalized linear models, and the total area of mandibular supernumerary incisors of Usag-1-/-Bmp7+/- mice was significantly larger than that of Usag-1-/-Bmp7 +/+ mice. At embryonic day 15 (E15), BrdU assays demonstrated that the labeling index of Bmp7+/- embryos was significantly higher than that of WT embryos in the cervical loop. Additionally, the labeling index of Usag-1-/- embryos was significantly the highest of all genotypes examined in dental papilla. CONCLUSIONS Bmp7 heterozygous mice exhibited significantly increased tooth sizes, suggesting that tooth size was controlled by specific gene expression. Our findings may be useful in applications of regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Masakazu Asahara
- College of Liberal Arts and Sciences, Mie University, Mie, Japan
| | - Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Boyen Huang
- School of Dentistry and Health Sciences, Sturt University, Orange, Australia
| | - Manabu Sugai
- Department of Molecular Genetics, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Shimizu
- Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan
| | | | - Harold C Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho 54, Sakyo-ku, Kyoto, 606-8397, Japan
| |
Collapse
|
35
|
Aurrekoetxea M, Irastorza I, García-Gallastegui P, Jiménez-Rojo L, Nakamura T, Yamada Y, Ibarretxe G, Unda FJ. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis. Front Cell Dev Biol 2016; 4:25. [PMID: 27066482 PMCID: PMC4811915 DOI: 10.3389/fcell.2016.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. RESULTS Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. CONCLUSIONS We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Lucia Jiménez-Rojo
- Center of Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Graduate School of Dentistry, Tohoku University Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Fernando J Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
36
|
Yang Z, Balic A, Michon F, Juuri E, Thesleff I. Mesenchymal Wnt/β-Catenin Signaling Controls Epithelial Stem Cell Homeostasis in Teeth by Inhibiting the Antiapoptotic Effect of Fgf10. Stem Cells 2016; 33:1670-81. [PMID: 25693510 DOI: 10.1002/stem.1972] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/17/2015] [Indexed: 01/05/2023]
Abstract
Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/β-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/β-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no β-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/β-catenin. Stem Cells 2015;33:1670-1681.
Collapse
Affiliation(s)
- Zheqiong Yang
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Wuhan University School of Basic Medical Science, Wuhan, Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Li L, Tang Q, Jung HS. The Grooved Rodent Incisor Recapitulates Rudimentary Teeth Characteristics of Ancestral Mammals. J Dent Res 2016; 95:923-30. [DOI: 10.1177/0022034516633153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is known from the paleontology studies of eutherian mammals that incisor numbers were reduced during evolution. The evolutionary lost incisors may remain as vestigial structures at embryonic stages. The recapitulation of the incisor patterns among mammalian species will potentially uncover the mechanisms underlying the phenotypic transition of incisors during evolution. Here, we showed that a minute tooth formed in the presumptive groove region of the gerbil upper incisor at the early developmental stages, during which multiple epithelial swellings and Shh transcription domains spatiotemporally appeared in the dental epithelium, suggests the existence of vestigial dental primordia. Interestingly, when we trimmed the surrounding mesenchyme from incisor tooth germs at or before the bud stage prior to ex vivo culture, the explants developed different incisor phenotypes ranging from triplicated incisors, duplicated incisors, to Lagomorpha-like incisors, corresponding to the incisor patterns in the eutherian mammals. These results imply that the phenotypic transition of incisors during evolution, as well as the achievement of ultimate incisors in adults, arose from differential integrations of primordia. However, when the incisor tooth germ was trimmed at the cap stage, a grooved incisor developed similar to the normal condition. Furthermore, the incisor tooth germ developed a small but smooth incisor after the additional removal of the minute tooth and a lateral rudiment. These results suggest that multiple dental primordia integrated before the cap stage, with the labial primordia contributing to the labial face of the functional incisor. The minute tooth that occupied the boundary of the 2 labial primordia might be implicated in the groove formation. This study sheds light on how rudiments incorporate into functional organs and aids the understanding of incisor evolution.
Collapse
Affiliation(s)
- L. Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Q. Tang
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - H.-S. Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
38
|
Zhang Y, Yeh LK, Zhang S, Call M, Yuan Y, Yasunaga M, Kao WWY, Liu CY. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development 2016; 142:3383-93. [PMID: 26443636 DOI: 10.1242/dev.125393] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of organs with an epithelial parenchyma relies on reciprocal mesenchymal-epithelial communication. Mouse corneal epithelium stratification is the consequence of a coordinated developmental process based on mesenchymal-epithelial interactions. The molecular mechanism underlying these interactions remains unclear. The Wnt/β-catenin signaling pathway is involved in fundamental aspects of development through the regulation of various growth factors. Here, we show that conditional ablation of either β-catenin (Ctnnb1(cKO)) or co-receptors Lrp5/6 (Lrp5/6(cKO)) in corneal stromal cells results in precocious stratification of the corneal epithelium. By contrast, ectopic expression of a murine Ctnnb1 gain-of-function mutant (Ctnnb1(cGOF)) retards corneal epithelium stratification. We also discovered that Bmp4 is upregulated in the absence of β-catenin in keratocytes, which further triggers ERK1/2 (Mapk3/1) and Smad1/5 phosphorylation and enhances transcription factor p63 (Trp63) expression in mouse corneal basal epithelial cells and in a human corneal epithelial cell line (HTCE). Interestingly, mouse neonates given a subconjunctival BMP4 injection displayed a phenotype resembling that of Ctnnb1(cKO). Conditional ablation of Bmp4 eradicates the phenotype produced in Ctnnb1(cKO) mice. Furthermore, ChIP and promoter-luciferase assays show that β-catenin binds to and suppresses Bmp4 promoter activity. These data support the concept that cross-talk between the Wnt/β-catenin/Bmp4 axis (in the stromal mesenchyme) and Bmp4/p63 signaling (in the epithelium) plays a pivotal role in epithelial stratification during corneal morphogenesis.
Collapse
Affiliation(s)
- Yujin Zhang
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan, R.O.C Chang-Gung University College of Medicine, Taoyuan 33302, Taiwan, R.O.C
| | - Suohui Zhang
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA Undergraduate Programs of Biology, Ohio State University, Columbus, OH 43210, USA
| | - Mindy Call
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Yong Yuan
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Mayu Yasunaga
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu 761-0395, Japan
| | - Winston W-Y Kao
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA
| | - Chia-Yang Liu
- Edith J. Crawley Vision Research Center, Department of Ophthalmology, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA School of Optometry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Tian Y, Ma P, Liu C, Yang X, Crawford DM, Yan W, Bai D, Qin C, Wang X. Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors. Eur J Oral Sci 2015; 123:396-402. [PMID: 26465965 DOI: 10.1111/eos.12222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Tooth formation is tightly regulated by epithelial-mesenchymal interactions via hierarchic cascades of signaling molecules. The glycosaminoglycan (GAG) chains covalently attached to the core protein of proteoglycans (PGs) provide docking sites for signaling molecules and their receptors during the morphogenesis of tissues and organs. Although PGs are believed to play important roles in tooth formation, little is known about their exact functions in this developmental process and the relevant molecular basis. Family with sequence similarity member 20-B (FAM20B) is a newly identified kinase that phosphorylates the xylose in the common linkage region connecting the GAG with the protein core of PGs. The phosphorylation of xylose is essential for elongation of the common linkage region and the subsequent GAG assembly. In this study, we generated a Fam20B-floxed allele in mice and found that inactivating Fam20B in the dental epithelium leads to supernumerary maxillary and mandibular incisors. This finding highlights the pivotal role of PGs in tooth morphogenesis and opens a new window for understanding the regulatory mechanism of PG-mediated signaling cascades during tooth formation.
Collapse
Affiliation(s)
- Ye Tian
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA.,Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pan Ma
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiudong Yang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Derrick M Crawford
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Wenjuan Yan
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Ding Bai
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
40
|
Erickson PA, Cleves PA, Ellis NA, Schwalbach KT, Hart JC, Miller CT. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Dev Biol 2015; 401:310-23. [PMID: 25732776 DOI: 10.1016/j.ydbio.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFβ effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFβ signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin T Schwalbach
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - James C Hart
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
41
|
Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal. Curr Top Dev Biol 2015; 115:157-86. [DOI: 10.1016/bs.ctdb.2015.07.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
|
43
|
Canonical Wnt signaling acts synergistically on BMP9-induced osteo/odontoblastic differentiation of stem cells of dental apical papilla (SCAPs). Biomaterials 2014; 39:145-54. [PMID: 25468367 DOI: 10.1016/j.biomaterials.2014.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 12/19/2022]
Abstract
Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. Here, we investigate if BMP9 and Wnt/β-catenin act synergistically on odontogenic differentiation. Using the immortalized SCAPs (iSCAPs) isolated from mouse apical papilla tissue, we demonstrate that Wnt3A effectively induces early osteogenic marker alkaline phosphatase (ALP) in iSCAPs, which is reduced by β-catenin knockdown. While Wnt3A and BMP9 enhance each other's ability to induce ALP activity in iSCAPs, silencing β-catenin significantly diminishes BMP9-induced osteo/odontogenic differentiation. Furthermore, silencing β-catenin reduces BMP9-induced expression of osteocalcin and osteopontin and in vitro matrix mineralization of iSCAPs. In vivo stem cell implantation assay reveals that while BMP9-transduced iSCAPs induce robust ectopic bone formation, iSCAPs stimulated with both BMP9 and Wnt3A exhibit more mature and highly mineralized trabecular bone formation. However, knockdown of β-catenin in iSCAPs significantly diminishes BMP9 or BMP9/Wnt3A-induced ectopic bone formation in vivo. Thus, our results strongly suggest that β-catenin may play an important role in BMP9-induced osteo/ondontogenic signaling and that BMP9 and Wnt3A may act synergistically to induce osteo/odontoblastic differentiation of iSCAPs. It's conceivable that BMP9 and/or Wnt3A may be explored as efficacious biofactors for odontogenic regeneration and tooth engineering.
Collapse
|
44
|
Landin Malt A, Cesario JM, Tang Z, Brown S, Jeong J. Identification of a face enhancer reveals direct regulation of LIM homeobox 8 (Lhx8) by wingless-int (WNT)/β-catenin signaling. J Biol Chem 2014; 289:30289-30301. [PMID: 25190800 DOI: 10.1074/jbc.m114.592014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Development of the mammalian face requires a large number of genes that are expressed with spatio-temporal specificity, and transcriptional regulation mediated by enhancers plays a key role in the precise control of gene expression. Using chromatin immunoprecipitation for a histone marker of active enhancers, we generated a genome-wide map of candidate enhancers from the maxillary arch (primordium for the upper jaw) of mouse embryos. Furthermore, we confirmed multiple novel craniofacial enhancers near the genes implicated in human palate defects through functional assays. We characterized in detail one of the enhancers (Lhx8_enh1) located upstream of Lhx8, a key regulatory gene for craniofacial development. Lhx8_enh1 contained an evolutionarily conserved binding site for lymphoid enhancer factor/T-cell factor family proteins, which mediate the transcriptional regulation by the WNT/β-catenin signaling pathway. We demonstrated in vitro that WNT/β-catenin signaling was indeed essential for the expression of Lhx8 in the maxillary arch cells and that Lhx8_enh1 was a direct target of the WNT/β-catenin pathway. Together, we uncovered a molecular mechanism for the regulation of Lhx8, and we provided valuable resources for further investigation into the gene regulatory network of craniofacial development.
Collapse
Affiliation(s)
- André Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and
| | - Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and
| | - Zuojian Tang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and.
| |
Collapse
|
45
|
Shan T, Zhou C, Yang R, Yan F, Zhang P, Fu Y, Jiang H. Lithium chloride promotes the odontoblast differentiation of hair follicle neural crest cells by activating Wnt/β-catenin signaling. Cell Biol Int 2014; 39:35-43. [PMID: 25044369 DOI: 10.1002/cbin.10340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 06/09/2014] [Indexed: 12/14/2022]
Abstract
The Wnt/β-catenin signalling pathway contributes to the maintenance of pluripotency and partial reprogramming of stem cells. Postnatal neural crest cells (NCCs) can differentiate into odontoblast-like cells due to their multi-potential property, but further endeavors need to be made to promote odontogenic differentiation of hair follicle neural crest cells (hfNCCs). This study investigated whether the Wnt pathway activator lithium chloride (LiCl) promotes odontoblast differentiation of hfNCCs. Change of proliferation, β-catenin and pluripotency markers of hfNCCs were examined after treatment with LiCl. An in vitro odontoblast differentiation model of hfNCCs was built using dental cell conditioned media (DC-CM). The effects of LiCl on odontoblast differentiation of hfNCCs showed that proliferation and expression of β-catenin in the cytosolic and nuclear compartments were increased in the LiCl-treated hfNCCs, and the pluripotency marks, Oct4, Klf4, Sox2 and Nanog, were more highly expressed in the LiCl-treated group than in the control group. The odontoblast markers such as DSP, DMP1 and Runx2, could be detected in hfNCCs induced by DC-CM, but in LiCl -treated group all three markers had stronger expression. Expression of β-catenin in the nuclear of LiCl-treated hfNCCs induced by DC-CM was higher than in the other groups. The data indicate that the Wnt pathway activator LiCl can promote proliferation and odontoblast differentiation of hfNCCs, and chemical approaches are of benefit in obtaining more desirable seed cell types for cell-based therapies.
Collapse
Affiliation(s)
- Tengfei Shan
- Institute of Stomatology, School of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Oral and Maxillofacial Surgery, Zhongda Hospital, Medical College, Southeast University, 87 Hunan Road, Nanjing, 210009, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Kiso H, Takahashi K, Saito K, Togo Y, Tsukamoto H, Huang B, Sugai M, Shimizu A, Tabata Y, Economides AN, Slavkin HC, Bessho K. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1) regulate supernumerary organ formations. PLoS One 2014; 9:e96938. [PMID: 24816837 PMCID: PMC4016158 DOI: 10.1371/journal.pone.0096938] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/13/2014] [Indexed: 11/26/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are highly conserved signaling molecules that are part of the transforming growth factor (TGF)-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1) suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.
Collapse
Affiliation(s)
- Honoka Kiso
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Katsu Takahashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kazuyuki Saito
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yumiko Togo
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroko Tsukamoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Boyen Huang
- Department of Paediatric Dentistry, School of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Manabu Sugai
- Translational Research Center, Kyoto University Hospital, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akira Shimizu
- Laboratory of Host Defense, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aris N. Economides
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Harold C. Slavkin
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Kazuhisa Bessho
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
47
|
Chavez MG, Hu J, Seidel K, Li C, Jheon A, Naveau A, Horst O, Klein OD. Isolation and culture of dental epithelial stem cells from the adult mouse incisor. J Vis Exp 2014. [PMID: 24834972 DOI: 10.3791/51266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest(1-4), and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal's life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.
Collapse
Affiliation(s)
- Miquella G Chavez
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Jimmy Hu
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco
| | - Kerstin Seidel
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco
| | - Chunying Li
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco; Department of Pathology and Research Center, Zhongshan Hospital of Dalian University
| | - Andrew Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco
| | - Adrien Naveau
- Université Paris Descartes, Sorbonne Paris Cite, UMR S872; Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, UMR S872; INSERM U872
| | - Orapin Horst
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco; Division of Endodontics, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco;
| |
Collapse
|
48
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
49
|
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26:11-21. [DOI: 10.1016/j.semcdb.2014.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
50
|
Recurrent chromosome 22 deletions in osteoblastoma affect inhibitors of the Wnt/beta-catenin signaling pathway. PLoS One 2013; 8:e80725. [PMID: 24236197 PMCID: PMC3827481 DOI: 10.1371/journal.pone.0080725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/16/2013] [Indexed: 12/19/2022] Open
Abstract
Osteoblastoma is a bone forming tumor with histological features highly similar to osteoid osteoma; the discrimination between the tumor types is based on size and growth pattern. The vast majority of osteoblastomas are benign but there is a group of so-called aggressive osteoblastomas that can be diagnostically challenging at the histopathological level. The genetic aberrations required for osteoblastoma development are not known and no genetic difference between conventional and aggressive osteoblastoma has been reported. In order to identify recurrent genomic aberrations of importance for tumor development we applied cytogenetic and/or SNP array analyses on nine conventional and two aggressive osteoblastomas. The conventional osteoblastomas showed few or no acquired genetic aberrations while the aggressive tumors displayed heavily rearranged genomes. In one of the aggressive osteoblastomas, three neighboring regions in chromosome band 22q12 were homozygously deleted. Hemizygous deletions of these regions were found in two additional cases, one aggressive and one conventional. In total, 10 genes were recurrently and homozygously lost in osteoblastoma. Four of them are functionally involved in regulating osteogenesis and/or tumorigenesis. MN1 and NF2 have previously been implicated in the development of leukemia and solid tumors, and ZNRF3 and KREMEN1 are inhibitors of the Wnt/beta-catenin signaling pathway. In line with deletions of the latter two genes, high beta-catenin protein expression has previously been reported in osteoblastoma and aberrations affecting the Wnt/beta-catenin pathway have been found in other bone lesions, including osteoma and osteosarcoma.
Collapse
|