1
|
Matias NR, Gallicchio L, Lu D, Kim JJ, Perez J, Detweiler AM, Lu C, Bolival B, Fuller MT. A cell-type specific surveillance complex represses cryptic promoters during differentiation in an adult stem cell lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640250. [PMID: 40060570 PMCID: PMC11888433 DOI: 10.1101/2025.02.25.640250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Regulators of chromatin accessibility play key roles in cell fate transitions, triggering onset of novel transcription programs as cells differentiate. In the Drosophila male germ line stem cell lineage, tMAC, a master regulator of spermatocyte differentiation that binds thousands of loci, is required for local opening of chromatin, allowing activation of spermatocyte-specific promoters. Here we show that a cell-type specific surveillance system involving the multiple zinc finger protein Kmg and the pipsqueak domain protein Dany dampens transcriptional output from weak tMAC dependent promoters and blocks tMAC binding at thousands of additional cryptic promoters, thus preventing massive expression of aberrant protein-coding transcripts. ChIP-seq showed Kmg enriched at the tMAC-bound promoters it repressed, consistent with direct action. In contrast, Kmg and Dany did not repress highly expressed tMAC dependent genes, where they colocalized with their binding partner, the chromatin modeler Mi-2 (NuRD), along the transcribed regions rather than at the promoter. Mi-2 has been shown to preferentially bind RNA over chromatin (Ullah et al. 2022). We propose that at highly expressed genes binding of Mi-2 to the abundant nascent RNA pulls the Kmg/Dany complex away from promoters, providing a mechanism to effectively repress ectopic promoters while protecting robust transcription.
Collapse
Affiliation(s)
- Neuza R Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dan Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jongmin J Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current address: Department of Biomedical Sciences, Cornell University, Ithaca NY, 14853, USA
| | - Julian Perez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin Bolival
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Zhang R, Shi P, Xu S, Ming Z, Liu Z, He Y, Dai J, Matunis E, Xu J, Ma Q. Soma-germline communication drives sex maintenance in the Drosophila testis. Natl Sci Rev 2024; 11:nwae215. [PMID: 39183747 PMCID: PMC11342250 DOI: 10.1093/nsr/nwae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 08/27/2024] Open
Abstract
In adult gonads, disruption of somatic sexual identity leads to defective gametogenesis and infertility. However, the underlying mechanisms by which somatic signals regulate germline cells to achieve proper gametogenesis remain unclear. In our previous study, we introduced the chinmoSex Transformation (chinmoST ) mutant Drosophila testis phenotype as a valuable model for investigating the mechanisms underlying sex maintenance. In chinmoST testes, depletion of the Janus Kinase-Signal Transducer and Activator of Transcription downstream effector Chinmo from somatic cyst stem cells (CySCs) feminizes somatic cyst cells and arrests germline differentiation. Here, we use single-cell RNA sequencing to uncover chinmoST -specific cell populations and their transcriptomic changes during sex transformation. Comparative analysis of intercellular communication networks between wild-type and chinmoST testes revealed disruptions in several soma-germline signaling pathways in chinmoST testes. Notably, the insulin signaling pathway exhibited significant enhancement in germline stem cells (GSCs). Chinmo cleavage under targets and tagmentation (CUT&Tag) assay revealed that Chinmo directly regulates two male sex determination factors, doublesex (dsx) and fruitless (fru), as well as Ecdysone-inducible gene L2 (ImpL2), a negative regulator of the insulin signaling pathway. Further genetic manipulations confirmed that the impaired gametogenesis observed in chinmoST testes was partly contributed by dysregulation of the insulin signaling pathway. In summary, our study demonstrates that somatic sex maintenance promotes normal spermatogenesis through Chinmo-mediated conserved sex determination and the insulin signaling pathway. Our work offers new insights into the complex mechanisms of somatic stem cell sex maintenance and soma-germline communication at the single-cell level. Additionally, our discoveries highlight the potential significance of stem cell sex instability as a novel mechanism contributing to testicular tumorigenesis.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Erika Matunis
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Hoareau M, Rincheval-Arnold A, Gaumer S, Guénal I. DREAM a little dREAM of DRM: Model organisms and conservation of DREAM-like complexes: Model organisms uncover the mechanisms of DREAM-mediated transcription regulation. Bioessays 2024; 46:e2300125. [PMID: 38059789 DOI: 10.1002/bies.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
DREAM complexes are transcriptional regulators that control the expression of hundreds to thousands of target genes involved in the cell cycle, quiescence, differentiation, and apoptosis. These complexes contain many subunits that can vary according to the considered target genes. Depending on their composition and the nature of the partners they recruit, DREAM complexes control gene expression through diverse mechanisms, including chromatin remodeling, transcription cofactor and factor recruitment at various genomic binding sites. This complexity is particularly high in mammals. Since the discovery of the first dREAM complex (drosophila Rb, E2F, and Myb) in Drosophila melanogaster, model organisms such as Caenorhabditis elegans, and plants allowed a deeper understanding of the processes regulated by DREAM-like complexes. Here, we review the conservation of these complexes. We discuss the contribution of model organisms to the study of DREAM-mediated transcriptional regulatory mechanisms and their relevance in characterizing novel activities of DREAM complexes.
Collapse
Affiliation(s)
- Marion Hoareau
- Université Paris-Saclay, UVSQ, LGBC, Versailles, France
- Université PSL, EPHE, Paris, France
| | | | | | | |
Collapse
|
4
|
Rapid Divergence of Key Spermatogenesis Genes in nasuta-Subgroup of Drosophila. J Mol Evol 2021; 90:2-16. [PMID: 34807291 DOI: 10.1007/s00239-021-10037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The crosses between closely related Drosophila species usually produce sterile hybrid males with spermatogenesis disrupted at post-meiotic phase, especially in sperm individualization stage than the pre-meiotic stage. This is possibly due to the rapid interspecies divergence of male sex and reproduction-related genes. Here we annotated 11 key spermatogenesis genes in 35 strains of species belonging to nasuta-subgroup of Drosophila, where many interspecies crosses produce sterile males. We characterized the divergence and polymorphism in the protein coding regions by employing gene-wide, codon-wide, and lineage-specific selection analysis to test the mode and strength of selection acting on these genes. Our analysis showed signature of positive selection at bag of marbles (bam) and benign gonial cell neoplasma (bgcn) despite the selection constrains and the absence of endosymbiont infection which could potentially drive rapid divergence due to an arms race while roughex (rux) showed lineage-specific rapid divergence in frontal sheen complex of nasuta-subgroup. cookie monster (comr) showed rapid divergence consistent with the possibility of meiotic arrest observed in sterile hybrids of Drosophila species. Rapid divergence observed at don juan (dj) and Mst98Ca-like was consistent with fused sperm-tail abnormality observed in the hybrids of Drosophila nasuta and Drosophila albomicans. These findings highlight the potential role of rapid nucleotide divergence in bringing about hybrid incompatibility in the form of male sterility; however, additional genetic manipulation studies can widen our understanding of hybrid incompatibilities. Furthermore, our study emphasizes the importance of young species belonging to nasuta-subgroup of Drosophila in studying post-zygotic reproductive isolation mechanisms.
Collapse
|
5
|
Lu D, Sin HS, Lu C, Fuller MT. Developmental regulation of cell type-specific transcription by novel promoter-proximal sequence elements. Genes Dev 2020; 34:663-677. [PMID: 32217666 PMCID: PMC7197356 DOI: 10.1101/gad.335331.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Cell type-specific transcriptional programs that drive differentiation of specialized cell types are key players in development and tissue regeneration. One of the most dramatic changes in the transcription program in Drosophila occurs with the transition from proliferating spermatogonia to differentiating spermatocytes, with >3000 genes either newly expressed or expressed from new alternative promoters in spermatocytes. Here we show that opening of these promoters from their closed state in precursor cells requires function of the spermatocyte-specific tMAC complex, localized at the promoters. The spermatocyte-specific promoters lack the previously identified canonical core promoter elements except for the Inr. Instead, these promoters are enriched for the binding site for the TALE-class homeodomain transcription factors Achi/Vis and for a motif originally identified under tMAC ChIP-seq peaks. The tMAC motif resembles part of the previously identified 14-bp β2UE1 element critical for spermatocyte-specific expression. Analysis of downstream sequences relative to transcription start site usage suggested that ACA and CNAAATT motifs at specific positions can help promote efficient transcription initiation. Our results reveal how promoter-proximal sequence elements that recruit and are acted upon by cell type-specific chromatin binding complexes help establish a robust, cell type-specific transcription program for terminal differentiation.
Collapse
Affiliation(s)
- Dan Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ho-Su Sin
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
6
|
Gärtner SM, Hundertmark T, Nolte H, Theofel I, Eren-Ghiani Z, Tetzner C, Duchow TB, Rathke C, Krüger M, Renkawitz-Pohl R. Stage-specific testes proteomics of Drosophila melanogaster identifies essential proteins for male fertility. Eur J Cell Biol 2019; 98:103-115. [DOI: 10.1016/j.ejcb.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 02/01/2023] Open
|
7
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
8
|
Drosophila melanogaster tPlus3a and tPlus3b ensure full male fertility by regulating transcription of Y-chromosomal, seminal fluid, and heat shock genes. PLoS One 2019; 14:e0213177. [PMID: 30845228 PMCID: PMC6405060 DOI: 10.1371/journal.pone.0213177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
Spermatogenesis in Drosophila melanogaster is characterized by a specific transcriptional program during the spermatocyte stage. Transcription of thousands of genes is regulated by the interaction of several proteins or complexes, including a tTAF-containing TFIID variant, tMAC, Mediator, and chromatin interactors, e.g., bromodomain proteins. We addressed how distinct subsets of target genes are selected. We characterized the highly similar proteins tPlus3a and tPlus3b, which contain a Plus3 domain and are enriched in the testis, mainly in spermatocytes. In tPlus3a and tplus3b deletion mutants generated using the CRISPR/Cas9 system, fertility was severely reduced and sperm showed defects during individualization. tPlus3a and tPlus3b heterodimerized with the bromodomain protein tBRD-1. To elucidate the role of the tPlus3a and tPlus3b proteins in transcriptional regulation, we determined the transcriptomes of tplus3a-tplus3b and tbrd-1 deletion mutants using next-generation sequencing (RNA-seq) and compared them to that of the wild-type. tPlus3a and tPlus3b positively or negatively regulated the expression of nearly 400 genes; tBRD-1 regulated 1,500 genes. Nearly 200 genes were regulated by both tPlus3a and tPlus3b and tBRD-1. tPlus3a and tPlus3b activated the Y-chromosomal genes kl-3 and kl-5, which indicates that tPlus3a and tPlus3b proteins are required for the function of distinct classes of genes. tPlus3a and tPlus3b and tBRD-1 repress genes relevant for seminal fluid and heat shock. We hypothesize that tPlus3a and tPlus3b proteins are required to specify the general transcriptional program in spermatocytes.
Collapse
|
9
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
10
|
Abstract
The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb-MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.
Collapse
|
11
|
Laktionov PP, Maksimov DA, Romanov SE, Antoshina PA, Posukh OV, White-Cooper H, Koryakov DE, Belyakin SN. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics Chromatin 2018; 11:14. [PMID: 29609617 PMCID: PMC5879934 DOI: 10.1186/s13072-018-0183-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During Drosophila spermatogenesis, testis-specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors (tTAF) contribute to activation of hundreds of genes required for meiosis and spermiogenesis. Intriguingly, tMAC is paralogous to the broadly expressed complex Myb-MuvB (MMB)/dREAM and Mip40 protein is shared by both complexes. tMAC acts as a gene activator in spermatocytes, while MMB/dREAM was shown to repress gene activity in many cell types. RESULTS Our study addresses the intricate interplay between tMAC, tTAF, and MMB/dREAM during spermatogenesis. We used cell type-specific DamID to build the DNA-binding profiles of Cookie monster (tMAC), Cannonball (tTAF), and Mip40 (MMB/dREAM and tMAC) proteins in male germline cells. Incorporating the whole transcriptome analysis, we characterized the regulatory effects of these proteins and identified their gene targets. This analysis revealed that tTAFs complex is involved in activation of achi, vis, and topi meiosis arrest genes, implying that tTAFs may indirectly contribute to the regulation of Achi, Vis, and Topi targets. To understand the relationship between tMAC and MMB/dREAM, we performed Mip40 DamID in tTAF- and tMAC-deficient mutants demonstrating meiosis arrest phenotype. DamID profiles of Mip40 were highly dynamic across the stages of spermatogenesis and demonstrated a strong dependence on tMAC in spermatocytes. Integrative analysis of our data indicated that MMB/dREAM represses genes that are not expressed in spermatogenesis, whereas tMAC recruits Mip40 for subsequent gene activation in spermatocytes. CONCLUSIONS Discovered interdependencies allow to formulate a renewed model for tMAC and tTAFs action in Drosophila spermatogenesis demonstrating how tissue-specific genes are regulated.
Collapse
Affiliation(s)
- Petr P Laktionov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Polina A Antoshina
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | | | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090.,Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
12
|
Maksimov DA, Laktionov PP, Posukh OV, Belyakin SN, Koryakov DE. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster. Chromosoma 2017; 127:85-102. [DOI: 10.1007/s00412-017-0647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
|
13
|
Trost M, Blattner AC, Leo S, Lehner CF. Drosophila dany is essential for transcriptional control and nuclear architecture in spermatocytes. Development 2017; 143:2664-76. [PMID: 27436041 DOI: 10.1242/dev.134759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]
Abstract
The terminal differentiation of adult stem cell progeny depends on transcriptional control. A dramatic change in gene expression programs accompanies the transition from proliferating spermatogonia to postmitotic spermatocytes, which prepare for meiosis and subsequent spermiogenesis. More than a thousand spermatocyte-specific genes are transcriptionally activated in early Drosophila spermatocytes. Here we describe the identification and initial characterization of dany, a gene required in spermatocytes for the large-scale change in gene expression. Similar to tMAC and tTAFs, the known major activators of spermatocyte-specific genes, dany has a recent evolutionary origin, but it functions independently. Like dan and danr, its primordial relatives with functions in somatic tissues, dany encodes a nuclear Psq domain protein. Dany associates preferentially with euchromatic genome regions. In dany mutant spermatocytes, activation of spermatocyte-specific genes and silencing of non-spermatocyte-specific genes are severely compromised and the chromatin no longer associates intimately with the nuclear envelope. Therefore, as suggested recently for Dan/Danr, we propose that Dany is essential for the coordination of change in cell type-specific expression programs and large-scale spatial chromatin reorganization.
Collapse
Affiliation(s)
- Martina Trost
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Ariane C Blattner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Stefano Leo
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| | - Christian F Lehner
- Institute of Molecular Life Sciences (IMLS), University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
14
|
Estrogen related receptor is required for the testicular development and for the normal sperm axoneme/mitochondrial derivatives in Drosophila males. Sci Rep 2017; 7:40372. [PMID: 28094344 PMCID: PMC5240334 DOI: 10.1038/srep40372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 12/06/2016] [Indexed: 12/22/2022] Open
Abstract
Estrogen related receptors (ERRs), categorized as orphan nuclear receptors, are critical for energy homeostasis and somatic development. However, significance of ERRs in the development of reproductive organs/organelles/cells remain poorly understood, albeit their homology to estrogen receptors. In this context, here, we show that knockdown of ERR in the testes leads to improperly developed testes with mis-regulation of genes (aly, mia, bruce, bam, bgcn, fzo and eya) involved in spermatogenesis, resulting in reduced male fertility. The observed testicular deformity is consistent with the down-regulation of SOX-E group of gene (SOX100B) in Drosophila. We also show dispersion/disintegration of fusomes (microtubule based structures associated with endoplasmic reticulum derived vesicle, interconnecting spermatocytes) in ERR knockdown testes. A few ERR knockdown testes go through spermatogenesis but have significantly fewer sperm. Moreover, flagella of these sperm are defective with abnormal axoneme and severely reduced mitochondrial derivatives, suggesting a possible role for ERR in mitochondrial biogenesis, analogous to mammalian ERRα. Interestingly, similar knockdown of remaining seventeen nuclear receptors did not yield a detectable reproductive or developmental defect in Drosophila. These findings add newer dimensions to the functions envisaged for ERR and provide the foundation for deciphering the relevance of orphan nuclear receptors in ciliopathies and testicular dysgenesis.
Collapse
|
15
|
Cruz-Becerra G, Juárez M, Valadez-Graham V, Zurita M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol 2016; 6:rsob.160222. [PMID: 27805905 PMCID: PMC5090060 DOI: 10.1098/rsob.160222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mandy Juárez
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
16
|
Fuller MT. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage. Curr Top Dev Biol 2016; 116:375-90. [PMID: 26970629 DOI: 10.1016/bs.ctdb.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation.
Collapse
Affiliation(s)
- Margaret T Fuller
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
17
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
White-Cooper H. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. SPERMATOGENESIS 2014; 2:11-22. [PMID: 22553486 PMCID: PMC3341242 DOI: 10.4161/spmg.19088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Drosophila testis has numerous advantages for the study of basic cellular processes, as production of sperm requires a highly orchestrated and complex combination of morphological changes and developmentally regulated transitions. Experimental genetics using Drosophila melanogaster has advanced dramatically with the advent of systems for ectopic expression of genetic elements in specific cells. However the genetic tools used in Drosophila research have rarely been generated with the testes in mind, and the utility of relatively few systems has been documented for this tissue. Here I will summarize ectopic expression systems that are known to work for the testis, and provide advice for selection of the most appropriate expression system in specific experimental situations.
Collapse
|
19
|
Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. SPERMATOGENESIS 2014; 2:158-166. [PMID: 23087835 PMCID: PMC3469439 DOI: 10.4161/spmg.21775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Drosophila spermatogenesis has become a paradigmatic system for the study of mechanisms that regulate adult stem cell maintenance, proliferation and differentiation. The dramatic cellular differentiation process from germline stem cell (GSC) to mature sperm is accompanied by dynamic changes in gene expression, which are regulated at transcriptional, post-transcriptional (including translational) and post-translational levels. Post-transcriptional regulation has been proposed as a unique feature of germ cells. However, recent studies have provided new insights into transcriptional regulation during Drosophila spermatogenesis. Both signaling pathways and epigenetic mechanisms act to orchestrate the transcriptional regulation of distinct genes at different germ cell differentiation stages. Many of the regulatory pathways that control male gamete differentiation in Drosophila are conserved in mammals. Therefore, studies using Drosophila spermatogenesis will provide insight into the molecular mechanisms that regulate mammalian germ cell differentiation pathways.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
20
|
El-Sharnouby S, Redhouse J, White RAH. Genome-wide and cell-specific epigenetic analysis challenges the role of polycomb in Drosophila spermatogenesis. PLoS Genet 2013; 9:e1003842. [PMID: 24146626 PMCID: PMC3798269 DOI: 10.1371/journal.pgen.1003842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila spermatogenesis cell differentiation pathway involves the activation of a large set of genes in primary spermatocytes. Most of these genes are activated by testis-specific TATA-binding protein associated factors (tTAFs). In the current model for the activation mechanism, Polycomb plays a key role silencing these genes in the germline precursors, and tTAF-dependent activation in primary spermatocytes involves the displacement of Polycomb from gene promoters. We investigated the genome-wide binding of Polycomb in wild type and tTAF mutant testes. According to the model we expected to see a clear enhancement in Polycomb binding at tTAF-dependent spermatogenesis genes in tTAF mutant testes. However, we find little evidence for such an enhancement in tTAF mutant testes compared to wild type. To avoid problems arising from cellular heterogeneity in whole testis analysis, we further tested the model by analysing Polycomb binding in purified germline precursors, representing cells before tTAF-dependent gene activation. Although we find Polycomb associated with its canonical targets, we find little or no evidence of Polycomb at spermatogenesis genes. The lack of Polycomb at tTAF-dependent spermatogenesis genes in precursor cells argues against a model where Polycomb displacement is the mechanism of spermatogenesis gene activation.
Collapse
Affiliation(s)
- Sherif El-Sharnouby
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Juliet Redhouse
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert A. H. White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Lu C, Kim J, Fuller MT. The polyubiquitin gene Ubi-p63E is essential for male meiotic cell cycle progression and germ cell differentiation in Drosophila. Development 2013; 140:3522-31. [PMID: 23884444 DOI: 10.1242/dev.098947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) regulates many biological pathways by post-translationally ubiquitylating proteins for degradation. Although maintaining a dynamic balance between free ubiquitin and ubiquitylated proteins is key to UPS function, the mechanisms that regulate ubiquitin homeostasis in different tissues through development are not clear. Here we show, via analysis of the magellan (magn) complementation group, that loss of function of the Drosophila polyubiquitin Ubi-p63E results specifically in meiotic arrest sterility in males. Ubi-p63E contributes predominantly to maintaining the free ubiquitin pool in testes. The function of Ubi-p63E is required cell-autonomously for proper meiotic chromatin condensation, cell cycle progression and spermatid differentiation. magn mutant germ cells develop normally to the spermatocyte stage but arrest at the G2/M transition of meiosis I, with lack of protein expression of the key meiotic cell cycle regulators Boule and Cyclin B. Loss of Ubi-p63E function did not strongly affect the spermatocyte transcription program regulated by the testis TBP-associated factor (tTAF) or meiosis arrest complex (tMAC) genes. Knocking down proteasome function specifically in spermatocytes caused a different meiotic arrest phenotype, suggesting that the magn phenotype might not result from general defects in protein degradation. Our results suggest a conserved role of polyubiquitin genes in male meiosis and a potential mechanism leading to meiosis I maturation arrest.
Collapse
Affiliation(s)
- Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
22
|
Caporilli S, Yu Y, Jiang J, White-Cooper H. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLoS Genet 2013; 9:e1003526. [PMID: 23754955 PMCID: PMC3674997 DOI: 10.1371/journal.pgen.1003526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex.
Collapse
Affiliation(s)
- Simona Caporilli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yachuan Yu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jianqiao Jiang
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
23
|
Bjorum SM, Simonette RA, Alanis R, Wang JE, Lewis BM, Trejo MH, Hanson KA, Beckingham KM. The Drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors. PLoS One 2013; 8:e61270. [PMID: 23620738 PMCID: PMC3631165 DOI: 10.1371/journal.pone.0061270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate behaviors have their origins in the specification of neural fates during development. Within Drosophila, BTB (Bric-a-brac,Tramtrack, Broad) domain proteins such as Fruitless are known to play key roles in the neural differentiation underlying such responses. We previously identified a gene, which we have termed jim lovell (lov), encoding a BTB protein with a role in gravity responses. To understand more fully the behavioral roles of this gene we have investigated its function through several approaches. Transcript and protein expression patterns have been examined and behavioral phenotypes of new lov mutations have been characterized. Lov is a nuclear protein, suggesting a role as a transcriptional regulator, as for other BTB proteins. In late embryogenesis, Lov is expressed in many CNS and PNS neurons. An examination of the PNS expression indicates that lov functions in the late specification of several classes of sensory neurons. In particular, only two of the five abdominal lateral chordotonal neurons express Lov, predicting functional variation within this highly similar group. Surprisingly, Lov is also expressed very early in embryogenesis in ways that suggests roles in morphogenetic movements, amnioserosa function and head neurogenesis. The phenotypes of two new lov mutations that delete adjacent non-coding DNA regions are strikingly different suggesting removal of different regulatory elements. In lov47, Lov expression is lost in many embryonic neurons including the two lateral chordotonal neurons. lov47 mutant larvae show feeding and locomotor defects including spontaneous backward movement. Adult lov47 males perform aberrant courtship behavior distinguished by courtship displays that are not directed at the female. lov47 adults also show more defective negative gravitaxis than the previously isolated lov91Y mutant. In contrast, lov66 produces largely normal behavior but severe female sterility associated with ectopic lov expression in the ovary. We propose a negative regulatory role for the DNA deleted in lov66.
Collapse
Affiliation(s)
- Sonia M. Bjorum
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Rebecca A. Simonette
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Raul Alanis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Jennifer E. Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Benjamin M. Lewis
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Michael H. Trejo
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Keith A. Hanson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Kathleen M. Beckingham
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
White-Cooper H, Caporilli S. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:47-61. [PMID: 23696351 DOI: 10.1007/978-94-007-6621-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.
Collapse
|
25
|
Radchuk V, Radchuk R, Pirko Y, Vankova R, Gaudinova A, Korkhovoy V, Yemets A, Weber H, Weschke W, Blume YB. A somaclonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5497-506. [PMID: 22888132 PMCID: PMC3444265 DOI: 10.1093/jxb/ers200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The SE7 somaclonal line of finger millet (Eleusine coracana) achieved increased grain yield in field trials that apparently resulted from a higher number of inflorescences and seeds per plant, compared with the wild type. Levels of endogenous cytokinins, especially those of highly physiologically active iso-pentenyl adenine, were increased during early inflorescence development in SE7 plants. Transcript levels of cytokinin-degrading enzymes but not of a cytokinin-synthesizing enzyme were also decreased in young leaves, seedlings, and initiating inflorescences of SE7. These data suggest that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels that stimulate meristem activity and result in production of more inflorescences. Gene expression was compared between SE7 and wild-type young inflorescences using the barley 12K cDNA array. The largest fraction of up-regulated genes in SE7 was related to transcription, translation, and cell proliferation, cell wall assembly/biosynthesis, and to growth regulation of young and meristematic tissues including floral formation. Other up-regulated genes were associated with protein and lipid degradation and mitochondrial energy production. Down-regulated genes were related to pathogen defence and stress response, primary metabolism, glycolysis, and the C:N balance. The results indicate a prolonged proliferation phase in SE7 young inflorescences characterized by up-regulated protein synthesis, cytokinesis, floral formation, and energy production. In contrast, wild-type inflorescences are similar to a more differentiated status characterized by regulated protein degradation, cell elongation, and defence/stress responses. It is concluded that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels, which stimulate meristem activity, inflorescence formation, and seed set.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Drosophila lin-52 acts in opposition to repressive components of the Myb-MuvB/dREAM complex. Mol Cell Biol 2012; 32:3218-27. [PMID: 22688510 DOI: 10.1128/mcb.00432-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila melanogaster Myb-MuvB/dREAM complex (MMB/dREAM) participates in both the activation and repression of developmentally regulated genes and origins of DNA replication. Mutants in MMB subunits exhibit diverse phenotypes, including lethality, eye defects, reduced fecundity, and sterility. Here, we used P-element excision to generate mutations in lin-52, which encodes the smallest subunit of the MMB/dREAM complex. lin-52 is required for viability, as null mutants die prior to pupariation. The generation of somatic and germ line mutant clones indicates that lin-52 is required for adult eye development and for early embryogenesis via maternal effects. Interestingly, the maternal-effect embryonic lethality, larval lethality, and adult eye defects could be suppressed by mutations in other subunits of the MMB/dREAM complex. These results suggest that a partial MMB/dREAM complex is responsible for the lethality and eye defects of lin-52 mutants. Furthermore, these findings support a model in which the Lin-52 and Myb proteins counteract the repressive activities of the other members of the MMB/dREAM complex at specific genomic loci in a developmentally controlled manner.
Collapse
|
27
|
Leser K, Awe S, Barckmann B, Renkawitz-Pohl R, Rathke C. The bromodomain-containing protein tBRD-1 is specifically expressed in spermatocytes and is essential for male fertility. Biol Open 2012; 1:597-606. [PMID: 23213453 PMCID: PMC3509448 DOI: 10.1242/bio.20121255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By a conserved cellular differentiation process, spermatogenesis leads to formation of haploid sperm for successful reproduction. In Drosophila and in mammals, post-meiotic spermatid differentiation depends on several translationally repressed and stored mRNAs that are often expressed exclusively in the testis through a cell type specific transcriptional program. In Drosophila, the mRNAs of proteins required for post-meiotic chromatin reorganisation, like ProtB and Mst77F, are transcribed in meiotic spermatocytes and subjected to translational repression for days. Transcription of many of these translationally repressed mRNAs depends on testis-specific homologs of TATA box binding protein-associated factors (tTAFs). Here, we identified the testis-specific bromodomain protein, tBRD-1, that is only expressed in primary spermatocytes. Bromodomain proteins are able to recognise and bind acetylated histones and non-histone proteins. We generated tbrd-1 mutant flies and observed that function of tBRD-1 is required for male fertility. tBRD-1 partially colocalised with tTAFs, TAF1 and Polycomb to a Fibrillarin-deficient region within the spermatocyte nucleolus. The nucleolar localisation of tBRD-1 depended on tTAF function but not the other way round. Further, we could show that ectopically expressed tBRD-1-eGFP is able to bind to the interbands of polytene chromosomes. By inhibitor treatment of cultured testis we observed that sub-cellular localisation of tBRD-1 may depend on the acetylation status of primary spermatocytes.
Collapse
Affiliation(s)
- Katja Leser
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie , Karl-von-Frisch Strasse 8, 35043 Marburg , Germany
| | | | | | | | | |
Collapse
|
28
|
Bhaskar PK, Mukherjee A, Mutsuddi M. Dynamic pattern of expression of dlin52, a member of the Myb/MuvB complex, during Drosophila development. Gene Expr Patterns 2012; 12:77-84. [PMID: 22178095 DOI: 10.1016/j.gep.2011.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 01/24/2023]
Abstract
The DREAM (DP, RB, E2F and MuvB) complex is required in humans to arrest the expression of cell cycle genes during quiescence. One of its members LIN52 has been isolated from the repressor complex but little is known about its molecular function. It has been reported recently that the serine residue 28 of LIN52 is phosphorylated by DYRK1A, and point mutation of this residue or down regulation of DYRK1A (which phosphorylates LIN52) leads to disruption of DREAM complex assembly, which is needed for G(0) arrest. Function of all the members of the dMyb complex (homologue of DREAM complex) in Drosophila melanogaster is not well characterized. We have studied the Drosophila orthologue of LIN52, known as dlin52, which is strongly conserved across various taxa from worms to human. dlin52 is reported to be present in a large protein complex containing important transcriptional regulators of cell proliferation and cell death like dE2F1, dMyb and dRbf. We have examined the expression of dlin52 transcripts and protein during development. Strong nuclear expression of dlin52 is seen in larval eye-antennal discs, brain, fat body, wing discs and salivary glands. dlin52 is abundantly expressed in endoreplicated tissues like salivary glands, fat body, and certain regions of the gut, and the nurse cells from adult ovaries. dlin52 is also expressed in the larval optic lobe, as well as in the developing neurons of ventral ganglion, indicating that this gene has an important role to play in cell cycle regulation and neuronal development. Robust expression of dlin52 protein was observed in quiescent cells like that of the imaginal cells of larval salivary gland, while marginal expression was seen in the germarium of adult ovary. Study of the spatial and temporal pattern of expression of this gene will help in better understanding of the function of this protein during various developmental processes.
Collapse
Affiliation(s)
- Pradeep Kumar Bhaskar
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi 221005, India
| | | | | |
Collapse
|