1
|
Huang L, Simonian R, Lopez MA, Karuppasamy M, Sanders VM, English KG, Fabian L, Alexander MS, Dowling JJ. X-linked myopathy with excessive autophagy: characterization and therapy testing in a zebrafish model. EMBO Mol Med 2025; 17:823-840. [PMID: 39994482 PMCID: PMC11982336 DOI: 10.1038/s44321-025-00204-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
X-linked myopathy with excessive autophagy (XMEA), a rare childhood-onset autophagic vacuolar myopathy caused by mutations in VMA21, is characterized by proximal muscle weakness and progressive vacuolation. VMA21 encodes a protein chaperone of the vacuolar hydrogen ion ATPase, the loss of which leads to lysosomal neutralization and impaired function. At present, there is an incomplete understanding of XMEA, its mechanisms, consequences on other systems, and therapeutic strategies. A significant barrier to advancing knowledge and treatments is the lack of XMEA animal models. Therefore, we used CRISPR-Cas9 editing to engineer a loss-of-function mutation in zebrafish vma21. The vma21 mutant zebrafish phenocopy the human disease with impaired motor function and survival, liver dysfunction, and dysregulated autophagy indicated by lysosomal de-acidification, the presence of characteristic autophagic vacuoles in muscle fibers, altered autophagic flux, and reduced lysosomal marker staining. As proof-of-concept, we found that two drugs, edaravone and LY294002, improve swim behavior and survival. In total, we generated and characterized a novel preclinical zebrafish XMEA model and demonstrated its suitability for studying disease pathomechanisms and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Lily Huang
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3K3, Canada
| | - Rebecca Simonian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
| | - Michael A Lopez
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Muthukumar Karuppasamy
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Veronica M Sanders
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
| | - Katherine G English
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA
| | - Lacramioara Fabian
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada
| | - Matthew S Alexander
- Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL, 35294, USA.
- Department of Genetics at the University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3K3, Canada.
- Division of Neurology, Hospital for Sick Children, Toronto, ON, M5G 1E8, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, M5G 1E8, Canada.
| |
Collapse
|
2
|
Shi W, Yi X, Ruan H, Wang D, Wu D, Jiang P, Luo L, Ma X, Jiang F, Li C, Wu W, Luo L, Li L, Wang G, Qiu J, Huang H. An animal model recapitulates human hepatic diseases associated with GATA6 mutations. Proc Natl Acad Sci U S A 2025; 122:e2317801121. [PMID: 39739787 PMCID: PMC11725858 DOI: 10.1073/pnas.2317801121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/21/2024] [Indexed: 01/02/2025] Open
Abstract
Heterozygotic GATA6 mutations are responsible for various congenital diseases in the heart, pancreas, liver, and other organs in humans. However, there is lack of an animal that can comprehensively model these diseases since GATA6 is essential for early embryogenesis. Here, we report the establishment of a gata6 knockout zebrafish which recapitulates most of the symptoms in patients with GATA6 mutations, including cardiac outflow tract defects, pancreatic hypoplasia/agenesis, gallbladder agenesis, and various liver diseases. Particularly in the liver, the zebrafish gata6 model exhibits the paucity of intrahepatic bile ducts, disrupted bile canaliculi, cholestasis, resembling the liver diseases associated with GATA6 mutations. Moreover, an unreported phenotype, hepatic cysts, has been also revealed in the model. Mechanistically, Gata6 interacts with Hhex and binds lrh-1 promoter to synergistically activate its expression, thereby enhancing the Lrh-1-mediated β-catenin signaling which is essential for liver development. This transcriptional activation of lrh-1 is tightly controlled by the negative feedback, in which Lrh1 interacts with Gata6 to weaken its transactivation ability. Moreover, Gata6 level is regulated by Hhex-mediated proteasomal degradation. The orchestration by these three transcription factors precisely modulates Gata6 activity, ensuring β-catenin signaling output and proper liver development in zebrafish. Importantly, the molecular mechanism identified in zebrafish is conserved in human cells. GATA6 mutant variants associated with hepatobiliary malformations in humans interact aberrantly with HHEX, resulting in subsequent impairments of LRH-1 activation. Conclusively, the disease model established here provides both phenotypic and mechanism insights into the human hepatic diseases associated with GATA6 mutations.
Collapse
Affiliation(s)
- Wenpeng Shi
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Donglei Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Dan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Pengfei Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Lisha Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xirui Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Faming Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Cairui Li
- Dali Bai Autonomous Prefecture People’s Hospital, The Third Affiliated Hospital of Dali University, Dali671000, China
| | - Weinan Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang524001, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing400044, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
3
|
Hu Y, Luo Z, Wang M, Wu Z, Liu Y, Cheng Z, Sun Y, Xiong JW, Tong X, Zhu Z, Zhang B. Prox1a promotes liver growth and differentiation by repressing cdx1b expression and intestinal fate transition in zebrafish. J Genet Genomics 2025; 52:66-77. [PMID: 39343095 DOI: 10.1016/j.jgg.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
The liver is a key endoderm-derived multifunctional organ within the digestive system. Prospero homeobox 1 (Prox1) is an essential transcription factor for liver development, but its specific function is not well understood. Here, we show that hepatic development, including the formation of intrahepatic biliary and vascular networks, is severely disrupted in prox1a mutant zebrafish. We find that Prox1a is essential for liver growth and proper differentiation but not required for early hepatic cell fate specification. Intriguingly, prox1a depletion leads to ectopic initiation of a Cdx1b-mediated intestinal program and the formation of intestinal lumen-like structures within the liver. Morpholino knockdown of cdx1b alleviates liver defects in the prox1a mutant zebrafish. Finally, chromatin immunoprecipitation analysis reveals that Prox1a binds directly to the promoter region of cdx1b, thereby repressing its expression. Overall, our findings indicate that Prox1a is required to promote and protect hepatic development by repression of Cdx1b-mediated intestinal cell fate in zebrafish.
Collapse
Affiliation(s)
- Yingying Hu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhou Luo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meiwen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zekai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yunxing Liu
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Shenzhen, Guangdong 518055, China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuhan Sun
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiangjun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zuoyan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Wilson MH, Hensley MR, Shen MC, Lu HY, Quinlivan VH, Busch-Nentwich EM, Rawls JF, Farber SA. Zebrafish are resilient to the loss of major diacylglycerol acyltransferase enzymes. J Biol Chem 2024; 300:107973. [PMID: 39510175 PMCID: PMC11663968 DOI: 10.1016/j.jbc.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
In zebrafish, maternally deposited yolk is the source of nutrients for embryogenesis prior to digestive system maturation. Yolk nutrients are processed and secreted to the growing organism by an extra-embryonic tissue, the yolk syncytial layer (YSL). The export of lipids from the YSL occurs through the production of triacylglycerol-rich lipoproteins. Here we report that mutations in the triacylglycerol synthesis enzyme, diacylglycerol acyltransferase-2 (Dgat2), cause yolk sac opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. Although triacylglycerol synthesis continues, it is not properly coupled to lipoprotein production as dgat2 mutants produce fewer, smaller, ApoB-containing lipoproteins. Unlike DGAT2-null mice, which are lipopenic and die soon after birth, zebrafish dgat2 mutants are viable, fertile, and exhibit normal mass and adiposity. Residual Dgat activity cannot be explained by the activity of other known Dgat isoenzymes, as dgat1a;dgat1b;dgat2 triple mutants continue to produce YSL lipid droplets and remain viable as adults. Further, the newly identified diacylglycerol acyltransferase, Tmem68, is also not responsible for the residual triacylglycerol synthesis activity. Unlike overexpression of Dgat1a and Dgat1b, monoacylglycerol acyltransferase-3 (Mogat3b) overexpression does not rescue yolk opacity, suggesting it does not possess Dgat activity in the YSL. However, mogat3b;dgat2 double mutants exhibit increased yolk opacity and often have structural alterations of the yolk extension. Quadruple mogat3b;dgat1a;dgat1b;dgat2 mutants either have severely reduced viability and stunted growth or do not survive past 3 days post fertilization, depending on the dgat2 mutant allele present. Our study highlights the remarkable ability of vertebrates to synthesize triacylglycerol through multiple biosynthetic pathways.
Collapse
Affiliation(s)
- Meredith H Wilson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Monica R Hensley
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | - Hsiu-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, North Carolina, USA
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA
| | | | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University, Durham, North Carolina, USA
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Barish S, Lin SJ, Maroofian R, Gezdirici A, Alhebby H, Trimouille A, Biderman Waberski M, Mitani T, Huber I, Tveten K, Holla ØL, Busk ØL, Houlden H, Ghayoor Karimiani E, Beiraghi Toosi M, Shervin Badv R, Najarzadeh Torbati P, Eghbal F, Akhondian J, Al Safar A, Alswaid A, Zifarelli G, Bauer P, Marafi D, Fatih JM, Huang K, Petree C, Calame DG, von der Lippe C, Alkuraya FS, Wali S, Lupski JR, Varshney GK, Posey JE, Pehlivan D. Homozygous variants in WDR83OS lead to a neurodevelopmental disorder with hypercholanemia. Am J Hum Genet 2024; 111:2566-2581. [PMID: 39471804 PMCID: PMC11568760 DOI: 10.1016/j.ajhg.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024] Open
Abstract
WD repeat domain 83 opposite strand (WDR83OS) encodes the 106-aa (amino acid) protein Asterix, which heterodimerizes with CCDC47 to form the PAT (protein associated with ER translocon) complex. This complex functions as a chaperone for large proteins containing transmembrane domains to ensure proper folding. Until recently, little was known about the role of WDR83OS or CCDC47 in human disease traits. However, biallelic variants in CCDC47 were identified in four unrelated families with trichohepatoneurodevelopmental syndrome, characterized by a neurodevelopmental disorder (NDD) with liver dysfunction. Three affected siblings in an additional family share a homozygous truncating WDR83OS variant and a phenotype of NDD, dysmorphic features, and liver dysfunction. Using family-based rare variant analyses of exome sequencing (ES) data and case matching through GeneMatcher, we describe the clinical phenotypes of 11 additional individuals in eight unrelated families (nine unrelated families, 14 individuals in total) with biallelic putative truncating variants in WDR83OS. Consistent clinical features include NDD (14/14), facial dysmorphism (13/14), intractable itching (9/14), and elevated bile acids (5/6). Whereas bile acids were significantly elevated in 5/6 of individuals tested, bilirubin was normal and liver enzymes were normal to mildly elevated in all 14 individuals. In three of six individuals for whom longitudinal data were available, we observed a progressive reduction in relative head circumference. A zebrafish model lacking Wdr83os function further supports its role in the nervous system, craniofacial development, and lipid absorption. Taken together, our data support a disease-gene association between biallelic loss-of-function of WDR83OS and a neurological disease trait with hypercholanemia.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hamoud Alhebby
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Aurélien Trimouille
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France; INSERM U1211, Laboratoire Maladies Rares: Génétique et Métabolisme, Bordeaux University, Bordeaux, France
| | | | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ilka Huber
- Department of Pediatrics, Sørlandet Hospital, Arendal, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mehran Beiraghi Toosi
- Department of Pediatric Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Eghbal
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Javad Akhondian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ayat Al Safar
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia; Department of Paediatrics, King Fahd Hospital of University, Al-khobar, Saudi Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, MC 1940, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | | | - Peter Bauer
- CENTOGENE GmbH, Am Strande 7, 18055 Rostock, Germany
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sami Wali
- Division of Gastroenterology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 PMCID: PMC11913794 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Miner GE, Cohen S. Protocol for monitoring fatty acid trafficking from lipid droplets to mitochondria in cultured cells. STAR Protoc 2024; 5:103236. [PMID: 39146189 PMCID: PMC11372805 DOI: 10.1016/j.xpro.2024.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Intracellular trafficking of fatty acids (FAs) between organelles is critical for cells to adjust their metabolism in response to stimuli such as exercise, fasting, and cold exposure. Here, we describe a protocol to monitor trafficking of FAs from lipid droplets to mitochondria. We describe the labeling of organelles in cultured C2C12 myoblasts with transfection and dyes. We detail a pulse-chase labeling paradigm using a fluorescent FA analog, live-cell imaging to visualize trafficking of FAs, and steps to quantify FA trafficking. For complete details on the use and execution of this protocol, please refer to Miner et al.1.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
8
|
Freeburg SH, Shwartz A, Kemény LV, Smith CJ, Weeks O, Miller BM, PenkoffLidbeck N, Fisher DE, Evason KJ, Goessling W. Hepatocyte vitamin D receptor functions as a nutrient sensor that regulates energy storage and tissue growth in zebrafish. Cell Rep 2024; 43:114393. [PMID: 38944835 PMCID: PMC11708751 DOI: 10.1016/j.celrep.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth. Importantly, Vdr impairment exacerbates the starvation-induced hepatic storage of systemic fatty acids, indicating that loss of Vdr signaling elicits hepatocellular energy deficiency. Strikingly, hepatocyte Vdr impairment diminishes diet-induced systemic growth while increasing hepatic and visceral fat in adult fish, revealing that hepatic Vdr signaling is required for complete adaptation to food availability. These data establish hepatocyte Vdr as a regulator of organismal energy expenditure and define an evolutionary function for VDR as a transcriptional effector of environmental nutrient supply.
Collapse
Affiliation(s)
- Scott H Freeburg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; HCEMM-SU Translational Dermatology Research Group, Department of Physiology, Semmelweis University, 1085 Budapest Hungary; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest Hungary
| | - Colton J Smith
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Weeks
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadia PenkoffLidbeck
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kimberley J Evason
- Huntsman Cancer Institute and Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
10
|
Qiu H, Huang L, Wang H, Tao C, Ran Z, Xu J, Sun H, Wang P. Effects of Lactobacillus acidophilus AC on the growth, intestinal flora and metabolism of zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 149:109570. [PMID: 38643956 DOI: 10.1016/j.fsi.2024.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.
Collapse
Affiliation(s)
- Haoyu Qiu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ling Huang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Hanying Wang
- National Marine Facility Aquaculture Engineering and Technology Research Center, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Chenzhi Tao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhiqiang Ran
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiahang Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Haofeng Sun
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Ping Wang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
11
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Frieberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A W Greeley
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
12
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
13
|
Lee S, Memon A, Chae SC, Shin D, Choi TY. Epcam regulates intrahepatic bile duct reconstruction in zebrafish, providing a potential model for primary cholangitis model. Biochem Biophys Res Commun 2024; 696:149512. [PMID: 38224664 DOI: 10.1016/j.bbrc.2024.149512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Epithelial cell adhesion molecules (EpCAMs) have been identified as surface markers of proliferating ductal cells, which are referred to as liver progenitor cells (LPCs), during liver regeneration and correspond to malignancies. These cells can differentiate into hepatocytes and biliary epithelial cells (BECs) in vitro. EpCAM-positive LPCs are involved in liver regeneration following severe liver injury; however, the in vivo function of EpCAMs in the regenerating liver remains unclear. In the present study, we used a zebrafish model of LPC-driven liver regeneration to elucidate the function of EpCAMs in the regenerating liver in vivo. Proliferating ductal cells were observed after severe hepatocyte loss in the zebrafish model. Analyses of the liver size as well as hepatocyte and BEC markers revealed successful conversion of LPCs to hepatocytes and BECs in epcam mutants. Notably, epcam mutants exhibited severe defects in intrahepatic duct maturation and bile acid secretion in regenerating hepatocytes, suggesting that epcam plays a critical role in intrahepatic duct reconstruction during LPC-driven liver regeneration. Our findings provide insights into human diseases involving non-parenchymal cells, such as primary biliary cholangitis, by highlighting the regulatory effect of epcam on intrahepatic duct reconstruction.
Collapse
Affiliation(s)
- Siyeo Lee
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Azra Memon
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tae-Young Choi
- Department of Pathology, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea; Department of Biomedical Science, Graduate School Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
14
|
Liu H, Xu Y, Sun Y, Wu H, Hou J. Tissue-specific toxic effects of nano-copper on zebrafish. ENVIRONMENTAL RESEARCH 2024; 242:117717. [PMID: 37993046 DOI: 10.1016/j.envres.2023.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/23/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Understanding the behavior and potential toxicity of copper nanoparticles (nano-Cu) in the aquatic environment is a primary way to assess their environmental risks. In this study, RNA-seq was performed on three different tissues (gills, intestines, and muscles) of zebrafish exposed to nano-Cu, to explore the potential toxic mechanism of nano-Cu on zebrafish. The results indicated that the toxic mechanism of nano-Cu on zebrafish was tissue-specific. Nano-Cu enables the CB1 receptor of the presynaptic membrane of gill cells to affect short-term synaptic plasticity or long-term synaptic changes (ECB-LTD) through DSI and DSE, causing dysfunction of intercellular signal transmission. Imbalance of de novo synthesis of UMP in intestinal cells and its transformation to UDP, UTP, uridine, and uracil, resulted in many functions involved in the pyrimidine metabolic pathway being blocked. Meanwhile, the toxicity of nano-Cu caused abnormal expression of RAD51 gene in muscle cells, which affects the repair of damaged DNA through Fanconi anemia and homologous recombination pathway, thus causing cell cycle disorder. These results provide insights for us to better understand the differences in toxicity of nano-Cu on zebrafish tissues and are helpful for a comprehensive assessment of nano-Cu's effects on aquatic organisms.
Collapse
Affiliation(s)
- Haiqiang Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing, 100081, China
| | - Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Haodi Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
15
|
Xu L, Liu X, Song Z, Xiang P, Hang T, Yan H. In vitro and in vivo metabolism of 3-Methoxyeticyclidine in human liver microsomes, a zebrafish model, and two human urine samples based on liquid chromatography-high-resolution mass spectrometry. Drug Test Anal 2024; 16:30-37. [PMID: 37125436 DOI: 10.1002/dta.3488] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
3-Methoxyeticyclidine (3-MeO-PCE), a phencyclidine-type substance, has a higher N-methyl-D-aspartate receptor binding affinity than phencyclidine and an involvement in fatal intoxication cases. The aim of this study was to identify new biomarkers and biotransformation pathways for 3-MeO-PCE. In vitro models were established using zebrafish and human liver microsomes for analysis of the phases I and II metabolites of 3-MeO-PCE by liquid chromatography-high-resolution mass spectrometry. Urine samples of known 3-MeO-PCE consumers in forensic cases were then subjected to analysis. Overall, 14 metabolites were identified in zebrafish and human liver microsomes, allowing postulation of the following metabolic pathways: hydroxylation, O-demethylation, N-dealkylation, dehydrogenation, combination, and glucuronidation or sulfation. 3-MeO-PCE and three metabolites (M2, M3, and M6) were detected in urine. We recommended M2 (the hydroxylation product) as a potential biomarker for documenting 3-MeO-PCE intake in clinical and forensic cases.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinze Liu
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zixuan Song
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Taijun Hang
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Yan
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
16
|
Wu C, Zhang W, Luo Y, Cheng C, Wang X, Jiang Y, Li S, Luo L, Yang Y. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis. J Genet Genomics 2023; 50:1004-1013. [PMID: 37271428 DOI: 10.1016/j.jgg.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants associated with PBC is essential to understand the pathogenesis of PBC. Here we identify a zebrafish balloon dog (blg) mutant with intrahepatic bile duct branching defects, exhibiting several key pathological PBC-like features, including immunodominant autoantigen PDC-E2 production, cholangiocyte apoptosis, immune cell infiltration, inflammatory activation, and liver fibrosis. blg encodes the protein phosphatase 1 regulatory subunit 21 (Ppp1r21), which is enriched in the liver and its peripheral tissues and plays a vital role in the early intrahepatic bile duct formation stage. Further studies show an excessive activation of the PI3K/AKT/mTOR pathway in the hepatic tissues in the mutant, while treatment with the pathway inhibitor LY294002 and rapamycin partially rescues intrahepatic bile duct branching defects and alleviates the PBC-like symptoms. These findings implicate the potential role of the Ppp1r21-mediated PI3K/AKT/mTOR pathway in the pathophysiology of PBC.
Collapse
Affiliation(s)
- Chaoying Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yiyu Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Chaoqing Cheng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinjuan Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
17
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
18
|
Karolczak S, Deshwar AR, Aristegui E, Kamath BM, Lawlor MW, Andreoletti G, Volpatti J, Ellis JL, Yin C, Dowling JJ. Loss of Mtm1 causes cholestatic liver disease in a model of X-linked myotubular myopathy. J Clin Invest 2023; 133:e166275. [PMID: 37490339 PMCID: PMC10503795 DOI: 10.1172/jci166275] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a fatal congenital disorder caused by mutations in the MTM1 gene. Currently, there are no approved treatments, although AAV8-mediated gene transfer therapy has shown promise in animal models and preliminarily in patients. However, 4 patients with XLMTM treated with gene therapy have died from progressive liver failure, and hepatobiliary disease has now been recognized more broadly in association with XLMTM. In an attempt to understand whether loss of MTM1 itself is associated with liver pathology, we have characterized what we believe to be a novel liver phenotype in a zebrafish model of this disease. Specifically, we found that loss-of-function mutations in mtm1 led to severe liver abnormalities including impaired bile flux, structural abnormalities of the bile canaliculus, and improper endosome-mediated trafficking of canalicular transporters. Using a reporter-tagged Mtm1 zebrafish line, we established localization of Mtm1 in the liver in association with Rab11, a marker of recycling endosomes, and canalicular transport proteins and demonstrated that hepatocyte-specific reexpression of Mtm1 could rescue the cholestatic phenotype. Last, we completed a targeted chemical screen and found that Dynasore, a dynamin-2 inhibitor, was able to partially restore bile flow and transporter localization to the canalicular membrane. In summary, we demonstrate, for the first time to our knowledge, liver abnormalities that were directly caused by MTM1 mutation in a preclinical model, thus establishing the critical framework for better understanding and comprehensive treatment of the human disease.
Collapse
Affiliation(s)
- Sophie Karolczak
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Ashish R. Deshwar
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics and
| | - Evangelina Aristegui
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Binita M. Kamath
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Lawlor
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | | | - Jonathan Volpatti
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jillian L. Ellis
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology and
- Center for Undiagnosed and Rare Liver Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James J. Dowling
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
20
|
Chang C, Li H, Zhang R. Zebrafish facilitate non-alcoholic fatty liver disease research: Tools, models and applications. Liver Int 2023; 43:1385-1398. [PMID: 37122203 DOI: 10.1111/liv.15601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an increasingly epidemic metabolic disease worldwide. NAFLD can gradually deteriorate from simple liver steatosis, inflammation and fibrosis to liver cirrhosis and/or hepatocellular carcinoma. Zebrafish are vertebrate animal models that are genetically and metabolically conserved with mammals and have unique advantages such as high fecundity, rapid development ex utero and optical transparency. These features have rendered zebrafish an emerging model system for liver diseases and metabolic diseases favoured by many researchers in recent years. In the present review, we summarize a series of tools for zebrafish NAFLD research and the models established through different dietary feeding, hepatotoxic chemical treatments and genetic manipulations via transgenic or genome editing technologies. We also discuss how zebrafish models facilitate NAFLD studies by providing novel insights into NAFLD pathogenesis, toxicology research, and drug evaluation and discovery.
Collapse
Affiliation(s)
- Cheng Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Huicong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
21
|
Wei X, Tan X, Chen Q, Jiang Y, Wu G, Ma X, Fu J, Li Y, Gang K, Yang Q, Ni R, He J, Luo L. Extensive jejunal injury is repaired by migration and transdifferentiation of ileal enterocytes in zebrafish. Cell Rep 2023; 42:112660. [PMID: 37342912 DOI: 10.1016/j.celrep.2023.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
A major cause of intestinal failure (IF) is intestinal epithelium necrosis and massive loss of enterocytes, especially in the jejunum, the major intestinal segment in charge of nutrient absorption. However, mechanisms underlying jejunal epithelial regeneration after extensive loss of enterocytes remain elusive. Here, we apply a genetic ablation system to induce extensive damage to jejunal enterocytes in zebrafish, mimicking the jejunal epithelium necrosis that causes IF. In response to injury, proliferation and filopodia/lamellipodia drive anterior migration of the ileal enterocytes into the injured jejunum. The migrated fabp6+ ileal enterocytes transdifferentiate into fabp2+ jejunal enterocytes to fulfill the regeneration, consisting of dedifferentiation to precursor status followed by redifferentiation. The dedifferentiation is activated by the IL1β-NFκB axis, whose agonist promotes regeneration. Extensive jejunal epithelial damage is repaired by the migration and transdifferentiation of ileal enterocytes, revealing an intersegmental migration mechanism of intestinal regeneration and providing potential therapeutic targets for IF caused by jejunal epithelium necrosis.
Collapse
Affiliation(s)
- Xiangyong Wei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinmiao Tan
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Guozhen Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Gang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
22
|
Park YM, Meyer MR, Müller R, Herrmann J. Optimization of Mass Spectrometry Imaging for Drug Metabolism and Distribution Studies in the Zebrafish Larvae Model: A Case Study with the Opioid Antagonist Naloxone. Int J Mol Sci 2023; 24:10076. [PMID: 37373226 DOI: 10.3390/ijms241210076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish (ZF; Danio rerio) larvae have emerged as a promising in vivo model in drug metabolism studies. Here, we set out to ready this model for integrated mass spectrometry imaging (MSI) to comprehensively study the spatial distribution of drugs and their metabolites inside ZF larvae. In our pilot study with the overall goal to improve MSI protocols for ZF larvae, we investigated the metabolism of the opioid antagonist naloxone. We confirmed that the metabolic modification of naloxone is in high accordance with metabolites detected in HepaRG cells, human biosamples, and other in vivo models. In particular, all three major human metabolites were detected at high abundance in the ZF larvae model. Next, the in vivo distribution of naloxone was investigated in three body sections of ZF larvae using LC-HRMS/MS showing that the opioid antagonist is mainly present in the head and body sections, as suspected from published human pharmacological data. Having optimized sample preparation procedures for MSI (i.e., embedding layer composition, cryosectioning, and matrix composition and spraying), we were able to record MS images of naloxone and its metabolites in ZF larvae, providing highly informative distributional images. In conclusion, we demonstrate that all major ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as part of in vivo pharmacokinetic studies, can be assessed in a simple and cost-effective ZF larvae model. Our established protocols for ZF larvae using naloxone are broadly applicable, particularly for MSI sample preparation, to various types of compounds, and they will help to predict and understand human metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Yu Mi Park
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Markus R Meyer
- Center for Molecular Signaling (PZMS), Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Experimental and Clinical Toxicology, Saarland University, 66421 Homburg, Germany
| | - Rolf Müller
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8 1, Saarland University, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| |
Collapse
|
23
|
Song J, Ma J, Liu X, Huang Z, Li L, Li L, Luo L, Ni R, He J. The MRN complex maintains the biliary-derived hepatocytes in liver regeneration through ATR-Chk1 pathway. NPJ Regen Med 2023; 8:20. [PMID: 37024481 PMCID: PMC10079969 DOI: 10.1038/s41536-023-00294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
When the proliferation of residual hepatocytes is prohibited, biliary epithelial cells (BECs) transdifferentiate into nascent hepatocytes to accomplish liver regeneration. Despite significant interest in transdifferentiation, little is known about the maintenance of nascent hepatocytes in post-injured environments. Here, we perform an N-ethyl-N-nitrosourea (ENU) forward genetic screen and identify a mutant containing a nonsense mutation in the gene nibrin (nbn), which encodes a component of the Mre11-Rad50-Nbn (MRN) complex that activates DNA damage response (DDR). The regenerated hepatocytes cannot be maintained and exhibit apoptosis in the mutant. Mechanistically, the nbn mutation results in the abrogation of ATR-Chk1 signaling and accumulations of DNA damage in nascent hepatocytes, which eventually induces p53-mediated apoptosis. Furthermore, loss of rad50 or mre11a shows similar phenotypes. This study reveals that the activation of DDR by the MRN complex is essential for the survival of BEC-derived hepatocytes, addressing how to maintain nascent hepatocytes in the post-injured environments.
Collapse
Affiliation(s)
- Jingmei Song
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xing Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lianghui Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Linke Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
24
|
Kozan DW, Derrick JT, Ludington WB, Farber SA. From worms to humans: Understanding intestinal lipid metabolism via model organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159290. [PMID: 36738984 PMCID: PMC9974936 DOI: 10.1016/j.bbalip.2023.159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
The intestine is responsible for efficient absorption and packaging of dietary lipids before they enter the circulatory system. This review provides a comprehensive overview of how intestinal enterocytes from diverse model organisms absorb dietary lipid and subsequently secrete the largest class of lipoproteins (chylomicrons) to meet the unique needs of each animal. We discuss the putative relationship between diet and metabolic disease progression, specifically Type 2 Diabetes Mellitus. Understanding the molecular response of intestinal cells to dietary lipid has the potential to undercover novel therapies to combat metabolic syndrome.
Collapse
Affiliation(s)
- Darby W Kozan
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Joshua T Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - William B Ludington
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States.
| |
Collapse
|
25
|
Balamurugan K, Medishetti R, Rao P, K RV, Chatti K, Parsa KV. Protocol to evaluate hyperlipidemia in zebrafish larvae. STAR Protoc 2022; 3:101819. [DOI: 10.1016/j.xpro.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
26
|
Sabharwal A, Wishman MD, Cervera RL, Serres MR, Anderson JL, Holmberg SR, Kar B, Treichel AJ, Ichino N, Liu W, Yang J, Ding Y, Deng Y, Lacey JM, Laxen WJ, Loken PR, Oglesbee D, Farber SA, Clark KJ, Xu X, Ekker SC. Genetic therapy in a mitochondrial disease model suggests a critical role for liver dysfunction in mortality. eLife 2022; 11:e65488. [PMID: 36408801 PMCID: PMC9859037 DOI: 10.7554/elife.65488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The clinical and largely unpredictable heterogeneity of phenotypes in patients with mitochondrial disorders demonstrates the ongoing challenges in the understanding of this semi-autonomous organelle in biology and disease. Previously, we used the gene-breaking transposon to create 1200 transgenic zebrafish strains tagging protein-coding genes (Ichino et al., 2020), including the lrpprc locus. Here, we present and characterize a new genetic revertible animal model that recapitulates components of Leigh Syndrome French Canadian Type (LSFC), a mitochondrial disorder that includes diagnostic liver dysfunction. LSFC is caused by allelic variations in the LRPPRC gene, involved in mitochondrial mRNA polyadenylation and translation. lrpprc zebrafish homozygous mutants displayed biochemical and mitochondrial phenotypes similar to clinical manifestations observed in patients, including dysfunction in lipid homeostasis. We were able to rescue these phenotypes in the disease model using a liver-specific genetic model therapy, functionally demonstrating a previously under-recognized critical role for the liver in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Mark D Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - MaKayla R Serres
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Shannon R Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Anthony J Treichel
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Weibin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Jean M Lacey
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - William J Laxen
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Perry R Loken
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Devin Oglesbee
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of MedicineRochesterUnited States
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for ScienceBaltimoreUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic College of MedicineRochesterUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of MedicineRochesterUnited States
| |
Collapse
|
27
|
Hill JH, Massaquoi MS, Sweeney EG, Wall ES, Jahl P, Bell R, Kallio K, Derrick D, Murtaugh LC, Parthasarathy R, Remington SJ, Round JL, Guillemin K. BefA, a microbiota-secreted membrane disrupter, disseminates to the pancreas and increases β cell mass. Cell Metab 2022; 34:1779-1791.e9. [PMID: 36240759 PMCID: PMC9633563 DOI: 10.1016/j.cmet.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/26/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing β cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand β cells, whereas the pore-forming host defense protein, Reg3, stimulates β cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for β cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.
Collapse
Affiliation(s)
- Jennifer Hampton Hill
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | - Elena S Wall
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Philip Jahl
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Kallio
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Daniel Derrick
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - L Charles Murtaugh
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Raghuveer Parthasarathy
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - S James Remington
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
28
|
Wong LL, Bruxvoort CG, Cejda NI, Delaney MR, Otero JR, Forsthoefel DJ. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nat Commun 2022; 13:3803. [PMID: 35778403 PMCID: PMC9249923 DOI: 10.1038/s41467-022-31385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Collapse
Affiliation(s)
- Lily L Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christina G Bruxvoort
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veteran Affairs Medical Center - Research Services, Oklahoma City, OK, USA
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Center for Biomedical Data Science, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Matthew R Delaney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jannette Rodriguez Otero
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Education, Universidad Interamericana de Puerto Rico, San Juan, Puerto Rico, USA
| | - David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
29
|
Transcriptional Integration of Distinct Microbial and Nutritional Signals by the Small Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 14:465-493. [PMID: 35533983 PMCID: PMC9305020 DOI: 10.1016/j.jcmgh.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.
Collapse
|
30
|
Shi P, Liao K, Xu J, Wang Y, Xu S, Yan X. Eicosapentaenoic acid mitigates palmitic acid-induced heat shock response, inflammation and repair processes in fish intestine. FISH & SHELLFISH IMMUNOLOGY 2022; 124:362-371. [PMID: 35421576 DOI: 10.1016/j.fsi.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Understanding the metabolic effects of fatty acids on fish intestine is critical to the substitution of fish oil with vegetable oils in aquaculture. In this study, the effects of eicosapentaenoic acid (EPA) and palmitic acid (PA) on fish intestine were evaluated in vitro and in vivo. As the first step for in vitro study, an intestinal cell line (SPIF) was established from silver pomfret (Pampus argenteus). Thereafter, the effects of EPA and PA on cell viability, prostaglandin E2 (PGE2) production, and the expression of genes related to heat shock response, inflammation, extracellular matrix (ECM) formation and degradation were examined in SPIF cells. Finally, these metabolic effects of EPA and PA on the intestine were examined in zebrafish (Danio rerio) larvae. Results showed that all tested fatty acids (PA, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, and docosahexaenoic acid) except EPA reduced SPIF viability to distinct degrees at the same concentrations. PA decreased SPIF viability accompanied by an increase in PGE2 level. Meanwhile, PA increased the expression of genes related to heat shock response (grp78, grp94, hsp70, and hsp90) and inflammation (nf-κb, il-1β, and cox2). Furthermore, PA reduced the expression of collagen type I (col1a1a and col1a1b) and extracellular matrix (ECM) degradation-related gene mmp2, while up-regulating timp2 mRNA expression. In vivo, PA also increased hsp70, il-1β, and cox2 mRNA levels and limited the expression of collagen type I in the larval zebrafish intestine. Interestingly, the combination of EPA and PA partially recovered the PA-induced changes in cell viability, PGE2 production, and mRNA expression in vitro and in vivo. These results suggest that PA may result in heat shock and inflammatory responses, as well as alter ECM formation and degradation in fish intestine, while EPA could at least partially mitigate these negative effects caused by PA.
Collapse
Affiliation(s)
- Peng Shi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Kai Liao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China.
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
31
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
32
|
Tel2 regulates redifferentiation of bipotential progenitor cells via Hhex during zebrafish liver regeneration. Cell Rep 2022; 39:110596. [PMID: 35385752 DOI: 10.1016/j.celrep.2022.110596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/27/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Upon extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs via biliary epithelial cell (BEC) transdifferentiation, which includes dedifferentiation of BECs into bipotential progenitor cells (BP-PCs) and then redifferentiation of BP-PCs to nascent hepatocytes and BECs. This BEC-driven liver regeneration involves reactivation of hepatoblast markers, but the underpinning mechanisms and their effects on liver regeneration remain largely unknown. Using a zebrafish extensive hepatocyte ablation model, we perform an N-ethyl-N-nitrosourea (ENU) forward genetic screen and identify a liver regeneration mutant, liver logan (lvl), in which the telomere maintenance 2 (tel2) gene is mutated. During liver regeneration, the tel2 mutation specifically inhibits transcriptional activation of a hepatoblast marker, hematopoietically expressed homeobox (hhex), in BEC-derived cells, which blocks BP-PC redifferentiation. Mechanistic studies show that Tel2 associates with the hhex promoter region and promotes hhex transcription. Our results reveal roles of Tel2 in the BP-PC redifferentiation process of liver regeneration by activating hhex.
Collapse
|
33
|
Zhang W, Wu C, Ni R, Yang Q, Luo L, He J. Formimidoyltransferase cyclodeaminase prevents the starvation-induced liver hepatomegaly and dysfunction through downregulating mTORC1. PLoS Genet 2021; 17:e1009980. [PMID: 34941873 PMCID: PMC8741050 DOI: 10.1371/journal.pgen.1009980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/07/2022] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
The liver is a crucial center in the regulation of energy homeostasis under starvation. Although downregulation of mammalian target of rapamycin complex 1 (mTORC1) has been reported to play pivotal roles in the starvation responses, the underpinning mechanisms in particular upstream factors that downregulate mTORC1 remain largely unknown. To identify genetic variants that cause liver energy disorders during starvation, we conduct a zebrafish forward genetic screen. We identify a liver hulk (lvh) mutant with normal liver under feeding, but exhibiting liver hypertrophy under fasting. The hepatomegaly in lvh is caused by enlarged hepatocyte size and leads to liver dysfunction as well as limited tolerance to starvation. Positional cloning reveals that lvh phenotypes are caused by mutation in the ftcd gene, which encodes the formimidoyltransferase cyclodeaminase (FTCD). Further studies show that in response to starvation, the phosphorylated ribosomal S6 protein (p-RS6), a downstream effector of mTORC1, becomes downregulated in the wild-type liver, but remains at high level in lvh. Inhibition of mTORC1 by rapamycin rescues the hepatomegaly and liver dysfunction of lvh. Thus, we characterize the roles of FTCD in starvation response, which acts as an important upstream factor to downregulate mTORC1, thus preventing liver hypertrophy and dysfunction. Under starvation, the liver initiates a series of metabolic adaptations to maintain energy homeostasis that is critical for survival. During this process, mTORC1 pathway is downregulated to reduce anabolism and promote catabolism, ensuring adequate usage of limited resources. However, mechanisms underlying the downregulation of mTORC1 remain incompletely understood. In a zebrafish genetic screen aiming to characterize factors important for starvation response in the liver, we identify an ftcd mutation that causes liver hypertrophy and dysfunction under fasting. FTCD acts upstream to inactivate mTORC1 in response to starvation. Our work reveals previously unappreciated roles of FTCD in the responses to energy stress through modulating mTORC1 activities, moreover implicates a potential liver disorder risk of FTCD deficiency under the circumstances of starvation.
Collapse
Affiliation(s)
- Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Yubei, Chongqing, China
| | - Chaoying Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- * E-mail: (LL); (JH)
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- * E-mail: (LL); (JH)
| |
Collapse
|
34
|
Fowler LA, Powers AD, Williams MB, Davis JL, Barry RJ, D’Abramo LR, Watts SA. The effects of dietary saturated fat source on weight gain and adiposity are influenced by both sex and total dietary lipid intake in zebrafish. PLoS One 2021; 16:e0257914. [PMID: 34679092 PMCID: PMC8535427 DOI: 10.1371/journal.pone.0257914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
The effects of saturated fat intake on obesity and cardiovascular health remain inconclusive, likely due in part to their varied nature and interactions with other nutrients. Investigating the synergistic effects of different saturated fat sources with other dietary lipid components will help establish more accurate nutritional guidelines for dietary fat intake. Over the past two decades, zebrafish (Danio rerio) have been established as an attractive model system to address questions regarding contributions of dietary lipid intake to diet-induced obesity in humans. The goal of the present study was to assess interactions of three different saturated fat sources (milk fat, palm oil, and coconut oil) with sex and total dietary lipid intake on weight gain and body composition in adult zebrafish. Larvae were raised on live feeds until 28 days post fertilization, and then fed a formulated maintenance diet until three months of age. An eight-week feeding trial was then initiated, in which zebrafish were fed nine experimental low- and high-fat diets varying in saturated fatty acid and long-chain polyunsaturated fatty acid content, in addition to a low-fat and high-fat control diet. At termination of the feeding trial, each treatment was evaluated according to body mass, moisture content, and adiposity. Sex and diet significantly interacted in their effects on body mass (P = 0.026), moisture content (P = 0.044), and adiposity (P = 0.035). The influence of saturated fat source on body mass was observed to be dependent on intake of total dietary lipid. In females, all three saturated fat sources had similar effects on adiposity. From these observations, we hypothesize that impacts of saturated fat intake on energy allocation and obesity-related phenotypes are influenced by both sex and intake of other dietary lipid components. Our results suggest that current nutritional guidelines for saturated fat intake may need to be re-evaluated and take sex-specific recommendations into consideration.
Collapse
Affiliation(s)
- Lauren A. Fowler
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Audrey D. Powers
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael B. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| | - James L. Davis
- University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert J. Barry
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Louis R. D’Abramo
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen A. Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
35
|
Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 2021; 10:e66393. [PMID: 34387191 PMCID: PMC8460263 DOI: 10.7554/elife.66393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytoplasmic lipid droplets are highly dynamic storage organelles that are critical for cellular lipid homeostasis. While the molecular details of lipid droplet dynamics are a very active area of investigation, this work has been primarily performed in cultured cells. Taking advantage of the powerful transgenic and in vivo imaging opportunities available in zebrafish, we built a suite of tools to study lipid droplets in real time from the subcellular to the whole organism level. Fluorescently tagging the lipid droplet-associated proteins, perilipin 2 and perilipin 3, in the endogenous loci permits visualization of lipid droplets in the intestine, liver, and adipose tissue. Using these tools, we found that perilipin 3 is rapidly loaded on intestinal lipid droplets following a high-fat meal and later replaced by perilipin 2. These powerful new tools will facilitate studies on the role of lipid droplets in different tissues, under different genetic and physiological manipulations, and in a variety of human disease models.
Collapse
Affiliation(s)
- Meredith H Wilson
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo ClinicRochesterUnited States
| | - Steven A Farber
- Carnegie Institution for Science Department of EmbryologyBaltimoreUnited States
- Johns Hopkins University Department of BiologyBaltimoreUnited States
| |
Collapse
|
36
|
Subcellular Localizations of Catalase and Exogenously Added Fatty Acid in Chlamydomonas reinhardtii. Cells 2021; 10:cells10081940. [PMID: 34440712 PMCID: PMC8391285 DOI: 10.3390/cells10081940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
Fatty acids are important biological components, yet the metabolism of fatty acids in microalgae is not clearly understood. Previous studies found that Chlamydomonas reinhardtii, the model microalga, incorporates exogenously added fatty acids but metabolizes them differently from animals and yeast. Furthermore, a recent metabolic flux analysis found that the majority of lipid turnover in C. reinhardtii is the recycling of acyl chains from and to membranes, rather than β -oxidation. This indicates that for the alga, the maintenance of existing acyl chains may be more valuable than their breakdown for energy. To gain cell-biological knowledge of fatty acid metabolism in C. reinhardtii, we conducted microscopy analysis with fluorescent probes. First, we found that CAT1 (catalase isoform 1) is in the peroxisomes while CAT2 (catalase isoform 2) is localized in the endoplasmic reticulum, indicating the alga is capable of detoxifying hydrogen peroxide that would be produced during β-oxidation in the peroxisomes. Second, we compared the localization of exogenously added FL-C16 (fluorescently labelled palmitic acid) with fluorescently marked endosomes, mitochondria, peroxisomes, lysosomes, and lipid droplets. We found that exogenously added FL-C16 are incorporated and compartmentalized via a non-endocytic route within 10 min. However, the fluorescence signals from FL-C16 did not colocalize with any marked organelles, including peroxisomes. During triacylglycerol accumulation, the fluorescence signals from FL-C16 were localized in lipid droplets. These results support the idea that membrane turnover is favored over β-oxidation in C. reinhardtii. The knowledge gained in these analyses would aid further studies of the fatty acid metabolism.
Collapse
|
37
|
Wen J, Mercado GP, Volland A, Doden HL, Lickwar CR, Crooks T, Kakiyama G, Kelly C, Cocchiaro JL, Ridlon JM, Rawls JF. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. SCIENCE ADVANCES 2021; 7:eabg1371. [PMID: 34301599 PMCID: PMC8302129 DOI: 10.1126/sciadv.abg1371] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
Bile salt synthesis, secretion into the intestinal lumen, and resorption in the ileum occur in all vertebrate classes. In mammals, bile salt composition is determined by host and microbial enzymes, affecting signaling through the bile salt-binding transcription factor farnesoid X receptor (Fxr). However, these processes in other vertebrate classes remain poorly understood. We show that key components of hepatic bile salt synthesis and ileal transport pathways are conserved and under control of Fxr in zebrafish. Zebrafish bile salts consist primarily of a C27 bile alcohol and a C24 bile acid that undergo multiple microbial modifications including bile acid deconjugation that augments Fxr activity. Using single-cell RNA sequencing, we provide a cellular atlas of the zebrafish intestinal epithelium and uncover roles for Fxr in transcriptional and differentiation programs in ileal and other cell types. These results establish zebrafish as a nonmammalian vertebrate model for studying bile salt metabolism and Fxr signaling.
Collapse
Affiliation(s)
- Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gilberto Padilla Mercado
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Alyssa Volland
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Taylor Crooks
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jordan L Cocchiaro
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Jason M Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
- Department of Animal Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Cancer Center of Illinois, Urbana, IL, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
38
|
Lumaquin D, Johns E, Montal E, Weiss JM, Ola D, Abuhashem A, White RM. An in vivo reporter for tracking lipid droplet dynamics in transparent zebrafish. eLife 2021; 10:e64744. [PMID: 34114952 PMCID: PMC8195600 DOI: 10.7554/elife.64744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/14/2021] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets in vertebrate models rely on static imaging or the use of fluorescent dyes, limiting investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Simultaneously, we performed a large-scale in vitro chemical screen of 1280 compounds and identified several novel regulators of lipolysis in adipocytes. Using our Tg(-3.5ubb:plin2-tdTomato) zebrafish line, we validated several of these novel regulators and revealed an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts using chemical, dietary, or genetic perturbations.
Collapse
Affiliation(s)
- Dianne Lumaquin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
| | - Eleanor Johns
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Emily Montal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joshua M Weiss
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
| | - David Ola
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Abderhman Abuhashem
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD ProgramNew YorkUnited States
- Developmental Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard M White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
39
|
Jacobs SH, Dóró E, Hammond FR, Nguyen-Chi ME, Lutfalla G, Wiegertjes GF, Forlenza M. Occurrence of foamy macrophages during the innate response of zebrafish to trypanosome infections. eLife 2021; 10:64520. [PMID: 34114560 PMCID: PMC8238505 DOI: 10.7554/elife.64520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 12/19/2022] Open
Abstract
A tightly regulated innate immune response to trypanosome infections is critical to strike a balance between parasite control and inflammation-associated pathology. In this study, we make use of the recently established Trypanosoma carassii infection model in larval zebrafish to study the early response of macrophages and neutrophils to trypanosome infections in vivo. We consistently identified high- and low-infected individuals and were able to simultaneously characterise their differential innate response. Not only did macrophage and neutrophil number and distribution differ between the two groups, but also macrophage morphology and activation state. Exclusive to high-infected zebrafish, was the occurrence of foamy macrophages characterised by a strong pro-inflammatory profile and potentially associated with an exacerbated immune response as well as susceptibility to the infection. To our knowledge, this is the first report of the occurrence of foamy macrophages during an extracellular trypanosome infection.
Collapse
Affiliation(s)
- Sem H Jacobs
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Eva Dóró
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ffion R Hammond
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
40
|
MacDonald AJ, Yang YHC, Cruz AM, Beall C, Ellacott KLJ. Brain-Body Control of Glucose Homeostasis-Insights From Model Organisms. Front Endocrinol (Lausanne) 2021; 12:662769. [PMID: 33868184 PMCID: PMC8044781 DOI: 10.3389/fendo.2021.662769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of blood glucose is essential for long term health. Blood glucose levels are defended by the correct function of, and communication between, internal organs including the gastrointestinal tract, pancreas, liver, and brain. Critically, the brain is sensitive to acute changes in blood glucose level and can modulate peripheral processes to defend against these deviations. In this mini-review we highlight select key findings showcasing the utility, strengths, and limitations of model organisms to study brain-body interactions that sense and control blood glucose levels. First, we discuss the large platform of genetic tools available to investigators studying mice and how this field may yet reveal new modes of communication between peripheral organs and the brain. Second, we discuss how rats, by virtue of their size, have unique advantages for the study of CNS control of glucose homeostasis and note that they may more closely model some aspects of human (patho)physiology. Third, we discuss the nascent field of studying the CNS control of blood glucose in the zebrafish which permits ease of genetic modification, large-scale measurements of neural activity and live imaging in addition to high-throughput screening. Finally, we briefly discuss glucose homeostasis in drosophila, which have a distinct physiology and glucoregulatory systems to vertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Kate L. J. Ellacott
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
41
|
Min J, Ningappa M, So J, Shin D, Sindhi R, Subramaniam S. Systems Analysis of Biliary Atresia Through Integration of High-Throughput Biological Data. Front Physiol 2020; 11:966. [PMID: 32848883 PMCID: PMC7426509 DOI: 10.3389/fphys.2020.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Biliary atresia (BA), blockage of the proper bile flow due to loss of extrahepatic bile ducts, is a rare, complex disease of the liver and the bile ducts with unknown etiology. Despite ongoing investigations to understand its complex pathogenesis, BA remains the most common cause of liver failure requiring liver transplantation in children. To elucidate underlying mechanisms, we analyzed the different types of high-throughput genomic and transcriptomic data collected from the blood and liver tissue samples of children suffering from BA. Through use of a novel integrative approach, we identified potential biomarkers and over-represented biological functions and pathways to derive a comprehensive network showing the dysfunctional mechanisms associated with BA. One of the pathways highlighted in the integrative network was hypoxia signaling. Perturbation with hypoxia inducible factor activator, dimethyloxalylglycine, induced the biliary defects of BA in a zebrafish model, serving as a validation for our studies. Our approach enables a systems-level understanding of human BA biology that is highlighted by the interaction between key biological functions such as fibrosis, inflammation, immunity, hypoxia, and development.
Collapse
Affiliation(s)
- Jun Min
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Mylarappa Ningappa
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Departments of Cellular and Molecular Medicine and Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
Wilson MH, Rajan S, Danoff A, White RJ, Hensley MR, Quinlivan VH, Recacha R, Thierer JH, Tan FJ, Busch-Nentwich EM, Ruddock L, Hussain MM, Farber SA. A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 2020; 16:e1008941. [PMID: 32760060 PMCID: PMC7444587 DOI: 10.1371/journal.pgen.1008941] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 08/18/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.
Collapse
Affiliation(s)
- Meredith H. Wilson
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Sujith Rajan
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Aidan Danoff
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Monica R. Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Vanessa H. Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Rosario Recacha
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - James H. Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Frederick J. Tan
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M. Mahmood Hussain
- New York University Long Island School of Medicine, Mineola, New York, United States of America
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 2019; 8:48479. [PMID: 31793875 PMCID: PMC6937151 DOI: 10.7554/elife.48479] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Enteroendocrine cells (EECs) are specialized sensory cells in the intestinal epithelium that sense and transduce nutrient information. Consumption of dietary fat contributes to metabolic disorders, but EEC adaptations to high fat feeding were unknown. Here, we established a new experimental system to directly investigate EEC activity in vivo using a zebrafish reporter of EEC calcium signaling. Our results reveal that high fat feeding alters EEC morphology and converts them into a nutrient insensitive state that is coupled to endoplasmic reticulum (ER) stress. We called this novel adaptation 'EEC silencing'. Gnotobiotic studies revealed that germ-free zebrafish are resistant to high fat diet induced EEC silencing. High fat feeding altered gut microbiota composition including enrichment of Acinetobacter bacteria, and we identified an Acinetobacter strain sufficient to induce EEC silencing. These results establish a new mechanism by which dietary fat and gut microbiota modulate EEC nutrient sensing and signaling.
Collapse
Affiliation(s)
- Lihua Ye
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Jennifer Bagwell
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Michel Bagnat
- Department of Cell Biology, Duke University School of Medicine, Durham, United States
| | - Rodger A Liddle
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, United States
| |
Collapse
|
44
|
Luo H, Li QQ, Wu N, Shen YG, Liao WT, Yang Y, Dong E, Zhang GM, Liu BR, Yue XZ, Tang XQ, Yang HS. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish. Atherosclerosis 2019; 290:125-135. [DOI: 10.1016/j.atherosclerosis.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
|
45
|
Lysosome-Rich Enterocytes Mediate Protein Absorption in the Vertebrate Gut. Dev Cell 2019; 51:7-20.e6. [PMID: 31474562 PMCID: PMC6783362 DOI: 10.1016/j.devcel.2019.08.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
The guts of neonatal mammals and stomachless fish have a limited capacity for luminal protein digestion, which allows oral acquisition of antibodies and antigens. However, how dietary protein is absorbed during critical developmental stages when the gut is still immature is unknown. Here, we show that specialized intestinal cells, which we call lysosome-rich enterocytes (LREs), internalize dietary protein via receptor-mediated and fluid-phase endocytosis for intracellular digestion and trans-cellular transport. In LREs, we identify a conserved endocytic machinery, composed of the scavenger receptor complex Cubilin/Amnionless and Dab2, that is required for protein uptake by LREs and for growth and survival of larval zebrafish. Moreover, impairing LRE function in suckling mice, via conditional deletion of Dab2, leads to stunted growth and severe protein malnutrition reminiscent of kwashiorkor, a devastating human malnutrition syndrome. These findings identify digestive functions and conserved molecular mechanisms in LREs that are crucial for vertebrate growth and survival.
Collapse
|
46
|
Thierer JH, Ekker SC, Farber SA. The LipoGlo reporter system for sensitive and specific monitoring of atherogenic lipoproteins. Nat Commun 2019; 10:3426. [PMID: 31366908 PMCID: PMC6668417 DOI: 10.1038/s41467-019-11259-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein-B (ApoB) is the structural component of atherogenic lipoproteins, lipid-rich particles that drive atherosclerosis by accumulating in the vascular wall. As atherosclerotic cardiovascular disease is the leading cause of death worldwide, there is an urgent need to develop new strategies to prevent lipoproteins from causing vascular damage. Here we report the LipoGlo system, which uses a luciferase enzyme (NanoLuc) fused to ApoB to monitor several key determinants of lipoprotein atherogenicity including particle abundance, size, and localization. Using LipoGlo, we comprehensively characterize the lipoprotein profile of individual larval zebrafish and collect images of atherogenic lipoprotein localization in an intact organism. We report multiple extravascular lipoprotein localization patterns, as well as identify Pla2g12b as a potent regulator of lipoprotein size. ApoB-fusion proteins thus represent a sensitive and specific approach to study atherogenic lipoproteins and their genetic and small molecule modifiers.
Collapse
Affiliation(s)
- James H Thierer
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA
- Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Steven A Farber
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA.
- Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
47
|
Fu J, Gong Z, Bae S. Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:186-196. [PMID: 30677650 DOI: 10.1016/j.jhazmat.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/06/2023]
Abstract
Methyl-triclosan (MTCS), as a biodegradation product from antibacterial triclosan (TCS), has been detected in water catchments, and it has also been verified to accumulate in biota due to its hydrophobicity. There is a lack, however, of toxicity studies on MTCS and its effects on organisms in conjunction with TCS. In this study, exposure experiments were conducted to assess the toxicity to embryonic zebrafish of selected concentrations of MTCS (from 1 ng/L to 400 μg/L) and MTCS/TCS mixtures (from 1 μg/L TCS and 100 ng/L MTCS to 300 μg/L TCS and 30 μg/L MTCS). Specimens were extracted using acetonitrile: isopropanol: water (3:3:2; v/v/v) and then analyzed using Gas chromatography-mass spectrometry (GC-MS) to identify the metabolites based on the Fiehn library database. The results showed that MTCS exposure led to the alterations of the metabolomes of the zebrafish embryos, including level changes of l-valine, d-mannose, d-glucose, and other metabolites. Multivariate analysis (PCA, PLS-DA, sPLS-DA) and univariate analysis (one-way ANOVA) indicated differences between the control and exposure groups of the metabolites, indicating that biological pathways, such as amino acid synthesis, pentose phosphate pathway (PPP), starch and sucrose metabolism were influenced. Moreover, when the embryos were exposed to a mix of TCS and MTCS, TCS dominated the mixture's effect on biological pathways because the concentration ratio within the mixture, which mimics environmental ratio of 10 TCS : 1 MTCS, leads to high bioavailability of TCS.
Collapse
Affiliation(s)
- Jing Fu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Otis JP, Shen MC, Caldwell BA, Reyes Gaido OE, Farber SA. Dietary cholesterol and apolipoprotein A-I are trafficked in endosomes and lysosomes in the live zebrafish intestine. Am J Physiol Gastrointest Liver Physiol 2019; 316:G350-G365. [PMID: 30629468 PMCID: PMC6415739 DOI: 10.1152/ajpgi.00080.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Difficulty in imaging the vertebrate intestine in vivo has hindered our ability to model nutrient and protein trafficking from both the lumenal and basolateral aspects of enterocytes. Our goal was to use live confocal imaging to increase understanding of intestinal trafficking of dietary cholesterol and apolipoprotein A-I (APOA-I), the main structural component of high-density lipoproteins. We developed a novel assay to visualize live dietary cholesterol trafficking in the zebrafish intestine by feeding TopFluor-cholesterol (TF-cholesterol), a fluorescent cholesterol analog, in a lipid-rich, chicken egg yolk feed. Quantitative microscopy of transgenic zebrafish expressing fluorescently tagged protein markers of early, recycling, and late endosomes/lysosomes provided the first evidence, to our knowledge, of cholesterol transport in the intestinal endosomal-lysosomal trafficking system. To study APOA-I dynamics, transgenic zebrafish expressing an APOA-I fluorescent fusion protein (APOA-I-mCherry) from tissue-specific promoters were created. These zebrafish demonstrated that APOA-I-mCherry derived from the intestine accumulated in the liver and vice versa. Additionally, intracellular APOA-I-mCherry localized to endosomes and lysosomes in the intestine and liver. Moreover, live imaging demonstrated that APOA-I-mCherry colocalized with dietary TF-cholesterol in enterocytes, and this colocalization increased with feeding time. This study provides a new set of tools for the study of cellular lipid biology and elucidates a key role for endosomal-lysosomal trafficking of intestinal cholesterol and APOA-I. NEW & NOTEWORTHY A fluorescent cholesterol analog was fed to live, translucent larval zebrafish to visualize intracellular cholesterol and apolipoprotein A-I (APOA-I) trafficking. With this model intestinal endosomal-lysosomal cholesterol trafficking was observed for the first time. A new APOA-I fusion protein (APOA-I-mCherry) expressed from tissue-specific promoters was secreted into the circulation and revealed that liver-derived APOA-I-mCherry accumulates in the intestine and vice versa. Intestinal, intracellular APOA-I-mCherry was observed in endosomes and lysosomes and colocalized with dietary cholesterol.
Collapse
Affiliation(s)
- Jessica P. Otis
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Meng-Chieh Shen
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Blake A. Caldwell
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Oscar E. Reyes Gaido
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Steven A. Farber
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
49
|
Lee WS, Cho HJ, Kim E, Huh YH, Kim HJ, Kim B, Kang T, Lee JS, Jeong J. Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. NANOSCALE 2019; 11:3173-3185. [PMID: 30534785 DOI: 10.1039/c8nr09321k] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As nano- and micro-sized plastics accumulate in the environment and the food chain of animals, including humans, it is imperative to assess the effects of nanoplastics in living organisms in a systematic manner, especially because of their ability to adsorb potential toxicants such as pollutants, heavy metals, and organic macromolecules that coexist in the environment. Using the zebrafish embryo as an animal model, we investigated the bioaccumulation and in vivo toxicity of polystyrene (PS) nanoplastics individually or in combination with the Au ion. We showed that smaller PS nanoplastics readily penetrated the chorion and developing embryos and accumulated throughout the whole body, mostly in lipid-rich regions such as in yolk lipids. We also showed that PS nanoplastics induced only marginal effects on the survival, hatching rate, developmental abnormalities, and cell death of zebrafish embryos but that these effects were synergistically exacerbated by the Au ion in a dose- and size-dependent manner. Such exacerbation of toxicity was well correlated with the production of reactive oxygen species and the pro-inflammatory responses synergized by the presence of PS, supporting the combined toxicity of PS and Au ions. The synergistic effect of PS on toxicity appeared to relate to mitochondrial damage as determined by ultrastructural analysis. Taken together, the effects of PS nanoplastics were marginal but could be a trigger for exacerbating the toxicity induced by other toxicants such as metal ions.
Collapse
Affiliation(s)
- Wang Sik Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cholestasis is a condition that impairs bile flow, resulting in retention of bile fluid in the liver. It may cause significant morbidity and mortality due to pruritus, malnutrition, and complications from portal hypertension secondary to biliary cirrhosis. The zebrafish (Danio rerio) has emerged as a valuable model organism for studying cholestasis that complements with the in vitro systems and rodent models. Its main advantages include conserved mechanisms of liver development and bile formation, rapid external development, ease of monitoring hepatobiliary morphology and function in live larvae, and accessibility to genetic and chemical manipulations. In this chapter, we provide an overview of the existing zebrafish models of cholestatic liver diseases. We discuss the strengths and limitations of using zebrafish to study cholestasis. We also provide step-by-step descriptions of the methodologies for analyzing cholestatic phenotypes in zebrafish.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|