1
|
Mehta K, Daghsni M, Raeisossadati R, Xu Z, Davis E, Naidich A, Wang B, Tao S, Pi S, Chen W, Kostka D, Liu S, Gross JM, Kuwajima T, Aldiri I. A cis-regulatory module underlies retinal ganglion cell genesis and axonogenesis. Cell Rep 2024; 43:114291. [PMID: 38823017 PMCID: PMC11238474 DOI: 10.1016/j.celrep.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Reza Raeisossadati
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emily Davis
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abigail Naidich
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shiyue Tao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Ferreira JR, Caldeira J, Sousa M, Barbosa MA, Lamghari M, Almeida-Porada G, Gonçalves RM. Dynamics of CD44 + bovine nucleus pulposus cells with inflammation. Sci Rep 2024; 14:9156. [PMID: 38644369 PMCID: PMC11033282 DOI: 10.1038/s41598-024-59504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Intervertebral Disc (IVD) degeneration has been associated with a chronic inflammatory response, but knowledge on the contribution of distinct IVD cells, namely CD44, to the progression of IVD degeneration remains elusive. Here, bovine nucleus pulposus (NP) CD44 cells were sorted and compared by gene expression and proteomics with the negative counterpart. NP cells were then stimulated with IL-1b (10 ng/ml) and dynamics of CD44 gene and protein expression was analyzed upon pro-inflammatory treatment. The results emphasize that CD44 has a multidimensional functional role in IVD metabolism, ECM synthesis and production of neuropermissive factors. CD44 widespread expression in NP was partially associated with CD14 and CD45, resulting in the identification of distinct cell subsets. In conclusion, this study points out CD44 and CD44-based cell subsets as relevant targets in the modulation of the IVD pro-inflammatory/degenerative cascade.
Collapse
Affiliation(s)
- J R Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
- Cell & Gene Therapy Safety, Clinical Pharmacology & Safety Science, R&D, AstraZeneca, Molndal, Sweden
| | - J Caldeira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
| | - M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
| | - M A Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - M Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - G Almeida-Porada
- WFIRM-Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - R M Gonçalves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Porto, Portugal.
- INEB-Instituto de Engenharia Biomédica, Universidade Do Porto, Porto, Portugal.
- Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Schultz‐Rogers LE, Thayer ML, Kambakam S, Wierson WA, Helmer JA, Wishman MD, Wall KA, Greig JL, Forsman JL, Puchhalapalli K, Nair S, Weiss TJ, Luiken JM, Blackburn PR, Ekker SC, Kool M, McGrail M. Rbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis. Dev Dyn 2022; 251:1267-1290. [PMID: 35266256 PMCID: PMC9356990 DOI: 10.1002/dvdy.467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.
Collapse
Affiliation(s)
- Laura E. Schultz‐Rogers
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Present address:
Department of Pathology and Lab MedicineUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Michelle L. Thayer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Sekhar Kambakam
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Wesley A. Wierson
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
| | - Jordan A. Helmer
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Mark D. Wishman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kristen A. Wall
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
| | - Jessica L. Greig
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Jaimie L. Forsman
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Kavya Puchhalapalli
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
| | - Siddharth Nair
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| | - Trevor J. Weiss
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Jon M. Luiken
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
| | - Patrick R. Blackburn
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Present address:
Department of PathologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Marcel Kool
- Hopp Children's Cancer (KiTZ)HeidelbergGermany
- Division of Pediatric Neuro‐oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK)HeidelbergGermany
- Princess Maxima Center for Pediatric OncologyUtrechtNetherlands
| | - Maura McGrail
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Genetics and GenomicsIowa State UniversityAmesIowaUSA
- Interdepartmental Graduate Program in Molecular, Cellular and Developmental BiologyIowa State UniversityAmesIowaUSA
- GeneticsIowa State UniversityAmesIowaUSA
- BiologyIowa State UniversityAmesIowaUSA
- Kinesiology and HealthIowa State UniversityAmesUSA
| |
Collapse
|
4
|
Zhao X, Rastogi A, Deton Cabanillas AF, Ait Mohamed O, Cantrel C, Lombard B, Murik O, Genovesio A, Bowler C, Bouyer D, Loew D, Lin X, Veluchamy A, Vieira FRJ, Tirichine L. Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 229:3208-3220. [PMID: 33533496 DOI: 10.1111/nph.17129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
In multicellular organisms, Polycomb Repressive Complex2 (PRC2) is known to deposit tri-methylation of lysine 27 of histone H3 (H3K27me3) to establish and maintain gene silencing, critical for developmentally regulated processes. The PRC2 complex is absent in both widely studied model yeasts, which initially suggested that PRC2 arose with the emergence of multicellularity. However, its discovery in several unicellular species including microalgae questions its role in unicellular eukaryotes. Here, we use Phaeodactylum tricornutum enhancer of zeste E(z) knockouts and show that P. tricornutum E(z) is responsible for di- and tri-methylation of lysine 27 of histone H3. H3K27me3 depletion abolishes cell morphology in P. tricornutum providing evidence for its role in cell differentiation. Genome-wide profiling of H3K27me3 in fusiform and triradiate cells further revealed genes that may specify cell identity. These results suggest a role for PRC2 and its associated mark in cell differentiation in unicellular species, and highlight their ancestral function in a broader evolutionary context than currently is appreciated.
Collapse
Affiliation(s)
- Xue Zhao
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- CNRS UMR6286, UFIP UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière 44322, Nantes Cedex 03, France
| | - Achal Rastogi
- Corteva AgriscienceTM, Ascendas IT Park, 12th floor, Atria, V, Madhapur, Telangana, 500081, India
| | - Anne Flore Deton Cabanillas
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Ouardia Ait Mohamed
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Catherine Cantrel
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Berangère Lombard
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, 26 rue d'Ulm, Cedex 05 Paris, 75248, France
| | - Omer Murik
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Auguste Genovesio
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Daniel Bouyer
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, PSL Research University, 26 rue d'Ulm, Cedex 05 Paris, 75248, France
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Centre de Recherche, College of Ocean Camp; Earth Sciences,, Xiamen University, Xiamen, 361102, China
| | - Alaguraj Veluchamy
- Laboratory of Chromatin Biochemistry, 4700 King Abdullah University of Science and Technology (KAUST), BESE Division Building 2, Level 3, Office B2-3327, Thuwal, 23955-6900, Saudi Arabia
| | - Fabio Rocha Jimenez Vieira
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Leila Tirichine
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
- CNRS UMR6286, UFIP UFR Sciences et Techniques, Université de Nantes, 2 rue de la Houssinière 44322, Nantes Cedex 03, France
| |
Collapse
|
5
|
Park S, Jo SH, Kim JH, Kim SY, Ha JD, Hwang JY, Lee MY, Kang JS, Han TS, Park SG, Kim S, Park BC, Kim JH. Combination Treatment with GSK126 and Pomalidomide Induces B-Cell Differentiation in EZH2 Gain-of-Function Mutant Diffuse Large B-Cell Lymphoma. Cancers (Basel) 2020; 12:2541. [PMID: 32906688 PMCID: PMC7565736 DOI: 10.3390/cancers12092541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022] Open
Abstract
Enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), the catalytic subunit of polycomb repressive complex 2 (PRC2), regulates genes involved in cell lineage and differentiation through methylating lysine 27 on histone H3 (H3K27me3). Recurrent gain-of-function mutations of EZH2 have been identified in various cancer types, in particular, diffuse large B-cell lymphoma (DLBCL), through large-scale genome-wide association studies and EZH2 depletion or pharmacological inhibition has been shown to exert an antiproliferative effect on cancer cells, both in vitro and in vivo. In the current study, a combination of pomalidomide and GSK126 synergistically inhibited the growth of EZH2 gain-of-function mutant Diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, this synergistic effect appeared to be dependent on cereblon (CRBN), a cellular receptor of pomalidomide, but not degradation of IKAROS family zinc finger 1 (IKZF1) or IKAROS family zinc finger 3 (IKZF3). RNA sequencing analyses revealed that co-treatment with GSK126 and pomalidomide induced specific gene sets involved in B-cell differentiation and apoptosis. Synergistic growth inhibition and B-cell differentiation were further validated in xenograft mouse models. Our collective results provide a molecular basis for the mechanisms underlying the combined therapeutic effects of PRC2 inhibitors and pomalidomide on EZH2-mutated DLBCL.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.P.); (S.-H.J.); (S.G.P.)
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - Seung-Hyun Jo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.P.); (S.-H.J.); (S.G.P.)
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Seon-Young Kim
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jae Du Ha
- Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-606, Korea; (J.D.H.); (J.Y.H.)
| | - Jong Yeon Hwang
- Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-606, Korea; (J.D.H.); (J.Y.H.)
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (M.Y.L.); (J.S.K.)
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (M.Y.L.); (J.S.K.)
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.P.); (S.-H.J.); (S.G.P.)
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - Sunhong Kim
- Drug Discovery Center, LG Chem Ltd., Seoul 07796, Korea;
| | - Byoung Chul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.P.); (S.-H.J.); (S.G.P.)
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.P.); (S.-H.J.); (S.G.P.)
- KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34113, Korea;
| |
Collapse
|
6
|
Luz-Madrigal A, Grajales-Esquivel E, Tangeman J, Kosse S, Liu L, Wang K, Fausey A, Liang C, Tsonis PA, Del Rio-Tsonis K. DNA demethylation is a driver for chick retina regeneration. Epigenetics 2020; 15:998-1019. [PMID: 32290791 PMCID: PMC7518676 DOI: 10.1080/15592294.2020.1747742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular reprogramming resets the epigenetic landscape to drive shifts in transcriptional programmes and cell identity. The embryonic chick can regenerate a complete neural retina, after retinectomy, via retinal pigment epithelium (RPE) reprogramming in the presence of FGF2. In this study, we systematically analysed the reprogramming competent chick RPE prior to injury, and during different stages of reprogramming. In addition to changes in the expression of genes associated with epigenetic modifications during RPE reprogramming, we observed dynamic changes in histone marks associated with bivalent chromatin (H3K27me3/H3K4me3) and intermediates of the process of DNA demethylation including 5hmC and 5caC. Comprehensive analysis of the methylome by whole-genome bisulphite sequencing (WGBS) confirmed extensive rearrangements of DNA methylation patterns including differentially methylated regions (DMRs) found at promoters of genes associated with chromatin organization and fibroblast growth factor production. We also identified Tet methylcytosine dioxygenase 3 (TET3) as an important factor for DNA demethylation and retina regeneration, capable of reprogramming RPE in the absence of exogenous FGF2. In conclusion, we demonstrate that injury early in RPE reprogramming triggers genome-wide dynamic changes in chromatin, including bivalent chromatin and DNA methylation. In the presence of FGF2, these dynamic modifications are further sustained in the commitment to form a new retina. Our findings reveal active DNA demethylation as an important process that may be applied to remove the epigenetic barriers in order to regenerate retina in mammals. ABBREVIATIONS bp: Base pair; DMR: Differentially methylated region; DMC: Differentially methylated cytosines; GFP: Green fluorescent protein; PCR: Polymerase chain reaction. TET: Ten-eleven translocation; RPE: retinal pigment epithelium.
Collapse
Affiliation(s)
- Agustín Luz-Madrigal
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Biology and Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Jared Tangeman
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Sarah Kosse
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Lin Liu
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Kai Wang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Andrew Fausey
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| | - Chun Liang
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
- Department of Computer Science and Software Engineering, Miami University, Oxford, OH, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology and Center for Visual Sciences at Miami University, Miami University, Oxford, OH, USA
| |
Collapse
|
7
|
Naruse C, Abe K, Yoshihara T, Kato T, Nishiuchi T, Asano M. Heterochromatin protein 1γ deficiency decreases histone H3K27 methylation in mouse neurosphere neuronal genes. FASEB J 2020; 34:3956-3968. [PMID: 31961023 DOI: 10.1096/fj.201900139r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 11/11/2022]
Abstract
Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kanae Abe
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Toru Yoshihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Kato
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Lindsay C, Kostiuk M, Biron VL. Pharmacoepigenetics of EZH2 Inhibitors. PHARMACOEPIGENETICS 2019:447-462. [DOI: 10.1016/b978-0-12-813939-4.00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
MiR-34 inhibits polycomb repressive complex 2 to modulate chaperone expression and promote healthy brain aging. Nat Commun 2018; 9:4188. [PMID: 30305625 PMCID: PMC6180074 DOI: 10.1038/s41467-018-06592-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aging is a prominent risk factor for neurodegenerative disease. Defining gene expression mechanisms affecting healthy brain aging should lead to insight into genes that modulate susceptibility to disease. To define such mechanisms, we have pursued analysis of miR-34 mutants in Drosophila. The miR-34 mutant brain displays a gene expression profile of accelerated aging, and miR-34 upregulation is a potent suppressor of polyglutamine-induced neurodegeneration. We demonstrate that Pcl and Su(z)12, two components of polycomb repressive complex 2, (PRC2), are targets of miR-34, with implications for age-associated processes. Because PRC2 confers the repressive H3K27me3 mark, we hypothesize that miR-34 modulates PRC2 activity to relieve silencing of genes promoting healthful aging. Gene expression profiling of the brains of hypomorphic mutants in Enhancer of zeste (E(z)), the enzymatic methyltransferase component of PRC2, revealed a younger brain transcriptome profile and identified the small heat shock proteins as key genes reduced in expression with age. miR-34 is known to regulate age-related gene expression in the Drosophila brain, and miR-34 overexpression can attenuate neurodegeneration induced by polyQ-expanded proteins. Here, Kennerdell and colleagues show that miR-34 confers longevity and neuroprotection via an epigenetic regulator Polycomb Repressive Complex 2 and molecular chaperone expression.
Collapse
|
10
|
Yang JLJ, Bertolesi GE, Hehr CL, Johnston J, McFarlane S. Fibroblast growth factor receptor 1 signaling transcriptionally regulates the axon guidance cue slit1. Cell Mol Life Sci 2018; 75:3649-3661. [PMID: 29705951 PMCID: PMC11105281 DOI: 10.1007/s00018-018-2824-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Axons sense molecular cues in their environment to arrive at their post-synaptic targets. While many of the molecular cues have been identified, the mechanisms that regulate their spatiotemporal expression remain elusive. We examined here the transcriptional regulation of the guidance gene slit1 both in vitro and in vivo by specific fibroblast growth factor receptors (Fgfrs). We identified an Fgf-responsive 2.3 kb slit1 promoter sequence that recapitulates spatiotemporal endogenous expression in the neural tube and eye of Xenopus embryos. We found that signaling through Fgfr1 is the main regulator of slit1 expression both in vitro in A6 kidney epithelial cells, and in the Xenopus forebrain, even when other Fgfr subtypes are present in cells. These data argue that a specific signaling pathway downstream of Fgfr1 controls in a cell-autonomous manner slit1 forebrain expression and are novel in identifying a specific growth factor receptor for in vivo control of the expression of a key embryonic axon guidance cue.
Collapse
Affiliation(s)
- Jung-Lynn Jonathan Yang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie L Hehr
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Jillian Johnston
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
11
|
El-Dahr SS, Saifudeen Z. Epigenetic regulation of renal development. Semin Cell Dev Biol 2018; 91:111-118. [PMID: 30172047 DOI: 10.1016/j.semcdb.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Developmental changes in cell fate are tightly regulated by cell-type specific transcription factors. Chromatin reorganization during organismal development ensures dynamic access of developmental regulators to their cognate DNA sequences. Thus, understanding the epigenomic states of promoters and enhancers is of key importance. Recent years have witnessed significant advances in our knowledge of the transcriptional mechanisms of kidney development. Emerging evidence suggests that histone deacetylation by class I HDACs and H3 methylation on lysines 4, 27 and 79 play important roles in regulation of early and late gene expression in the developing kidney. Equally exciting is the realization that nephrogenesis genes in mesenchymal nephron progenitors harbor bivalent chromatin domains which resolve upon differentiation implicating chromatin bivalency in developmental control of gene expression. Here, we review current knowledge of the epigenomic states of nephric cells and current techniques used to study the dynamic chromatin states. These technological advances will provide an unprecedented view of the enhancer landscape during cell fate commitment and help in defining the complex transcriptional networks governing kidney development and disease.
Collapse
Affiliation(s)
- Samir S El-Dahr
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| | - Zubaida Saifudeen
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
13
|
From Flies to Mice: The Emerging Role of Non-Canonical PRC1 Members in Mammalian Development. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Polycomb group protein Suz12 is regulated by a novel miRNA-like small RNA. Sci Rep 2018; 8:1720. [PMID: 29379063 PMCID: PMC5788869 DOI: 10.1038/s41598-018-19989-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) provide support for cancer progression, partly through their secretome that includes extracellular vesicles (EVs). Based on deep-sequencing of small RNA from EVs of MSCs, we now report the characterization of novel small RNA, named n-miR-G665, which exhibits typical properties of miRNAs. n-miR-G665 sequence is conserved and expressed in most cell types. Knockdown studies using anti-agomirs and shRNA studies demonstrated that n-miR-G665 plays an important role in cell proliferation. Functional assays to reveal the targets of n-miR-G665 showed that polycomb protein Suz12 is regulated by n-miR-G665, which in turn regulates the expression of n-miR-G665 through feedback loop mechanism. These data shed light on a previously unknown novel feedback regulatory mechanism for controlling Suz12 expression regulated by previously not described miRNA, which may highlight a new therapeutic approach to control the polycomb repressor complex 2 activity in cancers.
Collapse
|
15
|
Fujimura N, Kuzelova A, Ebert A, Strnad H, Lachova J, Machon O, Busslinger M, Kozmik Z. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Dev Biol 2017; 433:47-60. [PMID: 29137925 DOI: 10.1016/j.ydbio.2017.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Polycomb repressive complexes maintain transcriptional repression of genes encoding crucial developmental regulators through chromatin modification. Here we investigated the role of Polycomb repressive complex 2 (PRC2) in retinal development by inactivating its key components Eed and Ezh2. Conditional deletion of Ezh2 resulted in a partial loss of PRC2 function and accelerated differentiation of Müller glial cells. In contrast, inactivation of Eed led to the ablation of PRC2 function at early postnatal stage. Cell proliferation was reduced and retinal progenitor cells were significantly decreased in this mutant, which subsequently caused depletion of Müller glia, bipolar, and rod photoreceptor cells, primarily generated from postnatal retinal progenitor cells. Interestingly, the proportion of amacrine cells was dramatically increased at postnatal stages in the Eed-deficient retina. In accordance, multiple transcription factors controlling amacrine cell differentiation were upregulated. Furthermore, ChIP-seq analysis showed that these deregulated genes contained bivalent chromatin (H3K27me3+ H3K4me3+). Our results suggest that PRC2 is required for proliferation in order to maintain the retinal progenitor cells at postnatal stages and for retinal differentiation by controlling amacrine cell generation.
Collapse
Affiliation(s)
- Naoko Fujimura
- Laboratory of Eye Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic
| | - Andrea Kuzelova
- Laboratory of Eye Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic; Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Anja Ebert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Jitka Lachova
- Laboratory of Eye Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic; Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Ondrej Machon
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, A-1030 Vienna, Austria
| | - Zbynek Kozmik
- Laboratory of Eye Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prumyslova 595, Vestec, Czech Republic; Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, Prague 4, Czech Republic.
| |
Collapse
|
16
|
Xue WZ, Gu X, Wu Y, Li D, Xu Y, Wang HL. Multiple regulatory aspects of histone methyltransferase EZH2 in Pb-induced neurotoxicity. Oncotarget 2017; 8:85169-85184. [PMID: 29156711 PMCID: PMC5689601 DOI: 10.18632/oncotarget.19615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 07/06/2017] [Indexed: 12/02/2022] Open
Abstract
Pb is a pervasive environmental threat to human health. Although remarkable progress has been made in its neurotoxicity, the precise molecular mechanisms underlying this widespread toxicant still remain elusive. In this study, the detailed roles of EZH2, a transcriptional repressor, in the regulation of Pb-led neurotoxicity were investigated, highlighting its sub-functionalization, compartmentalization, functional chaperones and downstream partners. Based on the findings, EZH2’s protein levels were significantly reduced in response to Pb treatment; EZH2’s gain-of-function trials recovered the dampened neurite outgrowth; EZH2’ recruitment to ploycomb complex, as well as its interaction with cytosolic Vav1, was altered in a distinct manner, suggesting that EZH2’s multiple roles were markedly redistributed in this context; EZH2’s cytosolic and nuclear presence differed in their respective response towards Pb treatment; EZH2 directly occupied the promoters of EGR2, NGFR and CaMKK2, genes responsible for various nerve functions and repair mechanisms, and essentially contributed to their aberrant expression. It indicated that EZH2 mediated the dynamic changes of a cascade of key molecules and consequently the related neurological impairments. In summary, EZH2 emerges as a central player to regulate Pb-led neurotoxicity in a transcriptionally dependent and independent manner, and thereby provided a promising molecular target for medical intervention.
Collapse
Affiliation(s)
- Wei-Zhen Xue
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Danyang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| |
Collapse
|
17
|
Imagawa E, Higashimoto K, Sakai Y, Numakura C, Okamoto N, Matsunaga S, Ryo A, Sato Y, Sanefuji M, Ihara K, Takada Y, Nishimura G, Saitsu H, Mizuguchi T, Miyatake S, Nakashima M, Miyake N, Soejima H, Matsumoto N. Mutations in genes encoding polycomb repressive complex 2 subunits cause Weaver syndrome. Hum Mutat 2017; 38:637-648. [PMID: 28229514 DOI: 10.1002/humu.23200] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/13/2017] [Accepted: 02/18/2017] [Indexed: 12/30/2022]
Abstract
Weaver syndrome (WS) is a rare congenital overgrowth disorder caused by heterozygous mutations in EZH2 (enhancer of zeste homolog 2) or EED (embryonic ectoderm development). EZH2 and EED are core components of the polycomb repressive complex 2 (PRC2), which possesses histone methyltransferase activity and catalyzes trimethylation of histone H3 at lysine 27. Here, we analyzed eight probands with clinically suspected WS by whole-exome sequencing and identified three mutations: a 25.4-kb deletion partially involving EZH2 and CUL1 (individual 1), a missense mutation (c.707G>C, p.Arg236Thr) in EED (individual 2), and a missense mutation (c.1829A>T, p.Glu610Val) in SUZ12 (suppressor of zeste 12 homolog) (individual 3) inherited from her father (individual 4) with a mosaic mutation. SUZ12 is another component of PRC2 and germline mutations in SUZ12 have not been previously reported in humans. In vitro functional analyses demonstrated that the identified EED and SUZ12 missense mutations cause decreased trimethylation of lysine 27 of histone H3. These data indicate that loss-of-function mutations of PRC2 components are an important cause of WS.
Collapse
Affiliation(s)
- Eri Imagawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yoshinori Sato
- Department of Molecular Biology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yui Takada
- Department of Pediatrics, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Huang Y, Tao T, Liu C, Guan H, Zhang G, Ling Z, Zhang L, Lu K, Chen S, Xu B, Chen M. Upregulation of miR-146a by YY1 depletion correlates with delayed progression of prostate cancer. Int J Oncol 2017; 50:421-431. [PMID: 28101571 PMCID: PMC5238785 DOI: 10.3892/ijo.2017.3840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 12/28/2016] [Indexed: 01/17/2023] Open
Abstract
Previously published studies explained that the excessive expression of miR-146a influences the prostate cancer (PCa) cells in terms of apoptosis, progression, and viability. Although miR-146a acts as a tumor suppressor, current knowledge on the molecular mechanisms that controls its expression in PCa is limited. In this study, gene set enrichment analysis (GSEA) showed negatively enriched expression of miR-146a target gene sets and positively enriched expression of gene sets suppressed by the enhancer of zeste homolog 2 (EZH2) after YY1 depletion in PCa cells. The current results demonstrated that the miR-146a levels in PCa tissues with high Gleason scores (>7) are significantly lower than those in PCa tissues with low Gleason scores (≤7), which were initially observed in the clinical specimens. An inverse relationship between YY1 and miR-146a expression was also observed. Experiments indicated the decrease in cell viability, proliferation, and promoting apoptosis after YY1 depletion, while through inhibiting miR-146a could alleviate the negative effect brought by YY1 depletion. We detected the reversed adjustment of YY1 to accommodate miR-146a transcriptions. On the basis of YY1 depletion, we determined that the expression of miR-146a increased after EZH2 knockdown. We validated the combination of YY1 and its interaction with EZH2 at the miR-146a promoter binding site, thereby prohibiting the transcriptional activity of miR-146a in PCa cells. Our results suggested that YY1 depletion repressed PCa cell viability and proliferation and induced apoptosis at least in a miR-146a-assisted manner.
Collapse
Affiliation(s)
- Yeqing Huang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tao Tao
- Department of Urology, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Han Guan
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Zhixin Ling
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Lei Zhang
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Kai Lu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
19
|
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 2016; 5. [PMID: 27848912 PMCID: PMC5135394 DOI: 10.7554/elife.20542] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI:http://dx.doi.org/10.7554/eLife.20542.001 The seeds of rice, wheat and other flowering plants store a variety of nutrients, largely in the form of sugars, proteins and oils. These stored reserves provide the main source of calories for humans and livestock all over the world, so they are of major social and economic importance. Seed development is an intricate process. It begins after male sperm cells fuse with female gametes inside the flower. This leads to the formation of the embryo, which will develop into a new plant, and a structure called the endosperm, which nourishes the growing embryo. A protective seed coat surrounds the embryo and endosperm, which develops from certain parts of the parent flower. In order for the seed to develop successfully, these three components have to communicate so they can coordinate their growth. Auxin is a key plant hormone that is needed for plants to grow and develop properly and is necessary for the endosperm to form. Previous research has shown that the endosperm is also required to trigger the formation of the seed coat, but the signal that triggers this process has not yet been identified. Figueiredo et al. now address this question in a small flowering plant called Arabidopsis thaliana. The experiments show that the endosperm produces auxin, which acts as a molecular signal for the seed coat to start forming. Exposing unfertilized flowers to auxin caused a seed coat to form even though the endosperm was absent. This suggests that this hormone alone is sufficient to trigger the formation of the seed coat without any other signals. Further analysis revealed that a protein called AGL62 regulates the movement of auxin to the parts of the flower that give rise to the seed coat. In the absence of AGL62, the hormone remains trapped in the endosperm and the seed coat fails to develop. The next step following on from this work is to understand how auxin moves from the endosperm to the parts of the flower that form the seed coat. DOI:http://dx.doi.org/10.7554/eLife.20542.002
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Pawel J Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
20
|
Picard MAL, Boissier J, Roquis D, Grunau C, Allienne JF, Duval D, Toulza E, Arancibia N, Caffrey CR, Long T, Nidelet S, Rohmer M, Cosseau C. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation. PLoS Negl Trop Dis 2016; 10:e0004930. [PMID: 27677173 PMCID: PMC5038963 DOI: 10.1371/journal.pntd.0004930] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function. Parasitic flatworms include more than 20,000 species that are classically hermaphrodites. Among them, the roughly hundred species of Schistosomatidae are intriguing because they are gonochoric. Schistosomes are responsible of the second most important parasitic disease worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the sexual reproduction mechanisms of schistosomes is of particular interest for drug development. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ in males or ZW in females. There is, however, no phenotypic dimorphism in the larval stages: sexual dimorphism appears only in the vertebrate host. In order to understand the molecular mechanisms underlying phenotypic sexual dimorphism, we performed a transcriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the adult differentiated stage, for males and females separately. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, developmental pathways and epigenetic regulators. Our sex-comparative approach provides therefore new potential therapeutic targets to affect development and sexual reproduction of parasite.
Collapse
Affiliation(s)
- Marion A. L. Picard
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Roquis
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
21
|
Ma KH, Hung HA, Svaren J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J Neurosci 2016; 36:9135-47. [PMID: 27581455 PMCID: PMC5005723 DOI: 10.1523/jneurosci.1370-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome after nerve injury, our results have highlighted a novel epigenomic pathway in which reversal of the Polycomb pathway of repressive histone methylation is required for activation of a significant number of injury-induced genes.
Collapse
Affiliation(s)
- Ki H Ma
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Holly A Hung
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - John Svaren
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
22
|
Liu K, Yu C, Xie M, Li K, Ding S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 2016; 23:893-916. [PMID: 27524294 DOI: 10.1016/j.chembiol.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine aims to repair and regenerate injured tissues and restore their impaired functions. Recent developments in stem cell biology have attracted significant interest in their applications in regenerative medicine. Chemical approaches using small molecules have yielded exciting results in induction and differentiation of pluripotent stem cells, lineage conversion of somatic cells, and ex vivo as well as in vivo modulation of adult stem cells. In this review, we discuss recent progress, new insights, and future challenges of the chemical approaches in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chen Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
23
|
Marchesi I, Bagella L. Targeting Enhancer of Zeste Homolog 2 as a promising strategy for cancer treatment. World J Clin Oncol 2016; 7:135-148. [PMID: 27081636 PMCID: PMC4826959 DOI: 10.5306/wjco.v7.i2.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in development regulation. In specific, they regulate the transition from proliferation to differentiation, contributing to stem-cell maintenance and inhibiting an inappropriate activation of differentiation programs. Enhancer of Zeste Homolog 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2, which induces transcriptional inhibition through the tri-methylation of histone H3, an epigenetic change associated with gene silencing. EZH2 expression is high in precursor cells while its level decreases in differentiated cells. EZH2 is upregulated in various cancers with high levels associated with metastatic cancer and poor prognosis. Indeed, aberrant expression of EZH2 causes the inhibition of several tumor suppressors and differentiation genes, resulting in an uncontrolled proliferation and tumor formation. This editorial explores the role of Polycomb repressive complex 2 in cancer, focusing in particular on EZH2. The canonical function of EZH2 in gene silencing, the non-canonical activities as the methylation of other proteins and the role in gene transcriptional activation, were summarized. Moreover, mutations of EZH2, responsible for an increased methyltransferase activity in cancer, were recapitulated. Finally, various drugs able to inhibit EZH2 with different mechanism were described, specifically underscoring the effects in several cancers, in order to clarify the role of EZH2 and understand if EZH2 blockade could be a new strategy for developing specific therapies or a way to increase sensitivity of cancer cells to standard therapies.
Collapse
|
24
|
Blum R. Stepping inside the realm of epigenetic modifiers. Biomol Concepts 2016; 6:119-36. [PMID: 25915083 DOI: 10.1515/bmc-2015-0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
The ability to regulate gene expression in response to environmental alterations is vital for the endurance of all cells. However, unlike bacteria and unicellular organisms, cells of multicellular eukaryotes have developed this competency in a highly sophisticated manner, which ultimately allows for multiple lineages of differentiated cells. To maintain stability and generate progeny, differentiated cells must remain lineage-committed through numerous cell generations, and therefore their transcriptional modus operandi ought to be memorized and transmittable. To preserve the specialized characteristics of differentiated cells, it is crucial that transcriptional alterations that are triggered by specific external or intrinsic stimuli can last also after stimuli fading and propagate onto daughter cells. The unique composition of DNA and histones, and their ability to acquire a variety of epigenetic modifications, enables eukaryotic chromatin to assimilate cellular plasticity and molecular memory. The most well-studied types of epigenetic modifiers are covalently modifying DNA or histones, mostly in a reversible manner. Additional epigenetic mechanisms include histone variant replacement, energy-utilizing remodeling factors, and noncoding transcripts assembled with modifying complexes. Working with multifunctional complexes including transcription factors, epigenetic modifiers have the potential to dictate a variety of transcriptional programs underlying all cellular lineages, while utilizing in each the same source DNA as their substrates.
Collapse
|
25
|
Khan A, Prasanth SG. BEND3 mediates transcriptional repression and heterochromatin organization. Transcription 2015; 6:102-5. [PMID: 26507581 DOI: 10.1080/21541264.2015.1100228] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.
Collapse
Affiliation(s)
- Abid Khan
- a Department of Cell and Developmental Biology ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Supriya G Prasanth
- a Department of Cell and Developmental Biology ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| |
Collapse
|
26
|
Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. J Neurosci 2015; 35:8640-52. [PMID: 26041929 DOI: 10.1523/jneurosci.2257-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury.
Collapse
|
27
|
Boyd NH, Morgan JE, Greer SF. Polycomb recruitment at the Class II transactivator gene. Mol Immunol 2015; 67:482-91. [PMID: 26283540 DOI: 10.1016/j.molimm.2015.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/04/2015] [Indexed: 12/29/2022]
Abstract
The Class II Transactivator (CIITA) is the master regulator of Major Histocompatibility Class II (MHC II) genes. Transcription of CIITA through the IFN-γ inducible CIITA promoter IV (CIITA pIV) during activation is characterized by a decrease in trimethylation of histone H3 lysine 27 (H3K27me3), catalyzed by the histone methyltransferase Enhancer of Zeste Homolog 2 (EZH2). While EZH2 is the known catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) and is present at the inactive CIITA pIV, the mechanism of PRC2 recruitment to mammalian promoters remains unknown. Here we identify two DNA-binding proteins, which interact with and regulate PRC2 recruitment to CIITA pIV. We demonstrate Yin Yang 1 (YY1) and Jumonji domain containing protein 2 (JARID2) are binding partners along with EZH2 in mammalian cells. Upon IFN-γ stimulation, YY1 dissociates from CIITA pIV while JARID2 binding to CIITA pIV increases, suggesting novel roles for these proteins in regulating expression of CIITA pIV. Knockdown of YY1 and JARID2 yields decreased binding of EZH2 and H3K27me3 at CIITA pIV, suggesting important roles for YY1 and JARID2 at CIITA pIV. JARID2 knockdown also results in significantly elevated levels of CIITA mRNA upon IFN-γ stimulation. This study is the first to identify novel roles of YY1 and JARID2 in the epigenetic regulation of the CIITA pIV by recruitment of PRC2. Our observations indicate the importance of JARID2 in CIITA pIV silencing, and also provide a novel YY1-JARID2-PRC2 regulatory complex as a possible explanation of differential PRC2 recruitment at inducible versus permanently silenced genes.
Collapse
Affiliation(s)
- Nathaniel H Boyd
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Julie E Morgan
- Division of Cellular Biology and Immunology, Department of Biology, Georgia State University, Atlanta, GA 30302, United States.
| | - Susanna F Greer
- Department of Biology, Georgia State University, Petit Science Center, 100 Piedmont Avenue, Suite 632, Atlanta, GA 30302-4010, United States.
| |
Collapse
|
28
|
Koh W, Park B, Lee S. A new kinetochore component CENP-W interacts with the polycomb-group protein EZH2 to promote gene silencing. Biochem Biophys Res Commun 2015; 464:256-62. [PMID: 26111449 DOI: 10.1016/j.bbrc.2015.06.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 12/26/2022]
Abstract
Polycomb recessive complex 2 (PRC2) plays a central roles in chromatin compaction and remodeling. EZH2, the catalytic subunit of PRC2, is frequently overexpressed in many human tumors. Together with another essential core component, SUZ12, EZH2 trimethylates histone H3 on lysine 27 (H3K27me3). CENP-W was originally identified as a putative oncogene overexpressed in various human tumors, and later characterized as an essential factor for the formation of functional kinetochore during mitosis. In this study, we found that CENP-W associates with EZH2 to subsequently enhance the protein stability of EZH2. Chromatin immunoprecipitation revealed that ectopically expressed CENP-W bound the promoter of EZH2 target genes to enhance EZH2-mediated transcriptional repression, possibly by facilitating the recruitment of EZH2 to its target genes. Collectively, this study suggests CENP-W is a novel kinetochore component that may be involved in the EZH2-mediated silencing machinery.
Collapse
Affiliation(s)
- Wansoo Koh
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Byoungwoo Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
29
|
Zhang J, Taylor RJ, La Torre A, Wilken MS, Cox KE, Reh TA, Vetter ML. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev Biol 2015; 403:128-38. [PMID: 25989023 DOI: 10.1016/j.ydbio.2015.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
Epigenetic regulation, including histone modification, is a critical component of gene regulation, although precisely how this contributes to the development of complex tissues such as the neural retina is still being explored. We show that during retinal development in mouse, there are dynamic patterns of expression of the polycomb repressive complex 2 (PRC2) catalytic subunit EZH2 in retinal progenitors and some differentiated cells, as well as dynamic changes in the histone modification H3K27me3. Using conditional knockout of Ezh2 using either Pax6-αCre or Six3-Cre, we find selective reduction in postnatal retinal progenitor proliferation, disruption of retinal lamination, and enhanced differentiation of several late born cell types in the early postnatal retina, including photoreceptors and Müller glia, which are ultimately increased in number and become reactive. RNA-seq identifies many non-retinal genes upregulated with loss of Ezh2, including multiple Hox genes and the cell cycle regulator Cdkn2a, which are established targets of EZH2-mediated repression. ChIP analysis confirms loss of the H3K27me3 modification at these loci. Similar gene upregulation is observed in retinal explants treated with an EZH2 chemical inhibitor. There is considerable overlap with EZH2-regulated genes reported in non-neural tissues, suggesting that EZH2 can regulate similar genes in multiple lineages. Our findings reveal a conserved role for EZH2 in constraining the expression of potent developmental regulators to maintain lineage integrity and retinal progenitor proliferation, as well as regulating the timing of late differentiation.
Collapse
Affiliation(s)
- Jianmin Zhang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Russell J Taylor
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Anna La Torre
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Matthew S Wilken
- Department of Biological Structure, University of Washington, Seattle, WA, United States; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - Kristen E Cox
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
30
|
Mayr C, Neureiter D, Wagner A, Pichler M, Kiesslich T. The role of polycomb repressive complexes in biliary tract cancer. Expert Opin Ther Targets 2014; 19:363-75. [PMID: 25424424 DOI: 10.1517/14728222.2014.986460] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Polycomb group proteins are major epigenetic regulators that modify histone tails. They are organized in two multi-protein complexes called polycomb repressive complex (PRC) 1 and 2. Aberrant PRC activity is known to contribute to the development and aggressiveness of many cancers. Biliary tract cancer (BTC) is a rare malignancy associated with high chemoresistance and poor clinical outcome. Here we review the role of the PRC complexes and the effects of RNAi and drug-mediated inhibition of PRC1 and PRC2 in BTC. AREAS COVERED This review gives a short overview of the composition, biochemical functions and oncogenic role of PRC complexes. We then focus on and summarize the results of current studies that address the role of PRC in BTC. Finally, we discuss options and results of therapeutic targeting of PRC in BTC. EXPERT OPINION Pharmacological inhibition of the two PRC complexes seems to be a promising strategy for treatment of BTC. To date, only few studies have addressed the therapeutic effect of PRC inhibition in BTC. Therefore, it will be important to test established PRC inhibitors, such as DZNep, as well as newly developed drugs, for example, PTC209, to gain more insight into the role of the PRC complexes in BTC and potentially to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Christian Mayr
- Department of Internal Medicine I, Paracelsus Medical University / Salzburger Landeskliniken and Laboratory for Tumor Biology and Experimental Therapies, Institute of Physiology and Pathophysiology, Paracelsus Medical University , Salzburg , Austria +43 662 4482 2795 ;
| | | | | | | | | |
Collapse
|
31
|
Mu W, Starmer J, Fedoriw AM, Yee D, Magnuson T. Repression of the soma-specific transcriptome by Polycomb-repressive complex 2 promotes male germ cell development. Genes Dev 2014; 28:2056-69. [PMID: 25228648 PMCID: PMC4173155 DOI: 10.1101/gad.246124.114] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, Mu et al. identified a requirement for PRC2 in both mitotic and meiotic germ cells. Mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. Polycomb-repressive complex 2 (PRC2) catalyzes the methylation of histone H3 Lys27 (H3K27) and functions as a critical epigenetic regulator of both stem cell pluripotency and somatic differentiation, but its role in male germ cell development is unknown. Using conditional mutagenesis to remove the core PRC2 subunits EED and SUZ12 during male germ cell development, we identified a requirement for PRC2 in both mitotic and meiotic germ cells. We observed a paucity of mutant spermatogonial stem cells (SSCs), which appears independent of repression of the known cell cycle inhibitors Ink4a/Ink4b/Arf. Moreover, mutant spermatocytes exhibited ectopic expression of somatic lamins and an abnormal distribution of SUN1 proteins on the nuclear envelope. These defects were coincident with abnormal chromosome dynamics, affecting homologous chromosome pairing and synapsis. We observed acquisition of H3K27me3 on stage-specific genes during meiotic progression, indicating a requirement for PRC2 in regulating the meiotic transcriptional program. Together, these data demonstrate that transcriptional repression of soma-specific genes by PRC2 facilitates homeostasis and differentiation during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Weipeng Mu
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Joshua Starmer
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Andrew M Fedoriw
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Della Yee
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Terry Magnuson
- Department of Genetics, Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
32
|
Morimoto-Suzki N, Hirabayashi Y, Tyssowski K, Shinga J, Vidal M, Koseki H, Gotoh Y. The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development 2014; 141:4343-53. [PMID: 25344075 DOI: 10.1242/dev.112276] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the developing neocortex, neural precursor cells (NPCs) sequentially generate various neuronal subtypes in a defined order. Although the precise timing of the NPC fate switches is essential for determining the number of neurons of each subtype and for precisely generating the cortical layer structure, the molecular mechanisms underlying these switches are largely unknown. Here, we show that epigenetic regulation through Ring1B, an essential component of polycomb group (PcG) complex proteins, plays a key role in terminating NPC-mediated production of subcerebral projection neurons (SCPNs). The level of histone H3 residue K27 trimethylation at and Ring1B binding to the promoter of Fezf2, a fate determinant of SCPNs, increased in NPCs as Fezf2 expression decreased. Moreover, deletion of Ring1B in NPCs, but not in postmitotic neurons, prolonged the expression of Fezf2 and the generation of SCPNs that were positive for CTIP2. These results indicate that Ring1B mediates the timed termination of Fezf2 expression and thereby regulates the number of SCPNs.
Collapse
Affiliation(s)
- Nao Morimoto-Suzki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kelsey Tyssowski
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Jun Shinga
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan
| | - Miguel Vidal
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Tao T, Liu D, Liu C, Xu B, Chen S, Yin Y, Ang L, Huang Y, Zhang X, Chen M. Autoregulatory feedback loop of EZH2/miR-200c/E2F3 as a driving force for prostate cancer development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:858-65. [DOI: 10.1016/j.bbagrm.2014.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022]
|
34
|
Hwang WW, Salinas RD, Siu JJ, Kelley KW, Delgado RN, Paredes MF, Alvarez-Buylla A, Oldham MC, Lim DA. Distinct and separable roles for EZH2 in neurogenic astroglia. eLife 2014; 3:e02439. [PMID: 24867641 PMCID: PMC4032491 DOI: 10.7554/elife.02439] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epigenetic mechanisms that enable specialized astrocytes to retain neurogenic competence throughout adult life are still poorly understood. Here we show that astrocytes that serve as neural stem cells (NSCs) in the adult mouse subventricular zone (SVZ) express the histone methyltransferase EZH2. This Polycomb repressive factor is required for neurogenesis independent of its role in SVZ NSC proliferation, as Ink4a/Arf-deficiency in Ezh2-deleted SVZ NSCs rescues cell proliferation, but neurogenesis remains defective. Olig2 is a direct target of EZH2, and repression of this bHLH transcription factor is critical for neuronal differentiation. Furthermore, Ezh2 prevents the inappropriate activation of genes associated with non-SVZ neuronal subtypes. In the human brain, SVZ cells including local astroglia also express EZH2, correlating with postnatal neurogenesis. Thus, EZH2 is an epigenetic regulator that distinguishes neurogenic SVZ astrocytes, orchestrating distinct and separable aspects of adult stem cell biology, which has important implications for regenerative medicine and oncogenesis. DOI:http://dx.doi.org/10.7554/eLife.02439.001 In addition to the billions of nerve cells called neurons, the brain and spinal cord also contain star-shaped cells called astrocytes. At first it was thought that all astrocytes were the same, but it later became clear that there are several different types of astrocytes that perform different functions. Most neurons are formed in the embryo, but some astrocytes that are found deep within the brain can act as ‘neurogenic stem cells’ and continue to produce new neurons during adult life. However, it was not clear how these neurogenic astrocytes were different from other astrocytes. Now Hwang et al. have found that neurogenic astrocytes contain a protein called EZH2 that is not found in other types of astrocyte in the adult brain. Researchers already knew that this protein, which acts to help keep DNA tightly packed inside the nucleus and to keep genes switched off, was important for brain development. EZH2 was also known to prevent stem cells from prematurely turning into specialized cell types. But, surprisingly, Hwang et al. found that EZH2 has two distinct roles in neurogenic astrocytes: it allows them to multiply to make more astrocytes, and it also helps guide astrocytes into becoming neurons. Hwang et al. showed that different sets of genes were involved in these two roles. DOI:http://dx.doi.org/10.7554/eLife.02439.002
Collapse
Affiliation(s)
- William W Hwang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Ryan D Salinas
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Jason J Siu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ryan N Delgado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Mercedes F Paredes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA Department of Neurology, University of California, San Francisco, San Francisco, United States
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, United States Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
35
|
Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA, Jacks T. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell 2014; 54:777-90. [PMID: 24857549 DOI: 10.1016/j.molcel.2014.04.025] [Citation(s) in RCA: 362] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
The p53-regulated long noncoding RNA lincRNA-p21 has been proposed to act in trans via several mechanisms ranging from repressing genes in the p53 transcriptional network to regulating mRNA translation and protein stability. To further examine lincRNA-p21 function, we generated a conditional knockout mouse model. We find that lincRNA-p21 predominantly functions in cis to activate expression of its neighboring gene, p21. Mechanistically, we show that lincRNA-p21 acts in concert with hnRNP-K as a coactivator for p53-dependent p21 transcription. Additional phenotypes of lincRNA-p21 deficiency could be attributed to diminished p21 levels, including deregulated expression and altered chromatin state of some Polycomb target genes, a defective G1/S checkpoint, increased proliferation rates, and enhanced reprogramming efficiency. These findings indicate that lincRNA-p21 affects global gene expression and influences the p53 tumor suppressor pathway by acting in cis as a locus-restricted coactivator for p53-mediated p21 expression.
Collapse
Affiliation(s)
- Nadya Dimitrova
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Jesse R Zamudio
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Robyn M Jong
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Dylan Soukup
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Rebecca Resnick
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Kavitha Sarma
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Amanda J Ward
- Isis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Phillip A Sharp
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Choukrallah MA, Matthias P. The Interplay between Chromatin and Transcription Factor Networks during B Cell Development: Who Pulls the Trigger First? Front Immunol 2014; 5:156. [PMID: 24782862 PMCID: PMC3990105 DOI: 10.3389/fimmu.2014.00156] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
All mature blood cells derive from hematopoietic stem cells through gradual restriction of their cell fate potential and acquisition of specialized functions. Lineage specification and cell commitment require the establishment of specific transcriptional programs involving the activation of lineage-specific genes and the repression of lineage-inappropriate genes. This process requires the concerted action of transcription factors (TFs) and epigenetic modifying enzymes. Within the hematopoietic system, B lymphopoiesis is one of the most-studied differentiation programs. Loss of function studies allowed the identification of many TFs and epigenetic modifiers required for B cell development. The usage of systematic analytical techniques such as transcriptome determination, genome-wide mapping of TF binding and epigenetic modifications, and mass spectrometry analyses, allowed to gain a systemic description of the intricate networks that guide B cell development. However, the precise mechanisms governing the interaction between TFs and chromatin are still unclear. Generally, chromatin structure can be remodeled by some TFs but in turn can also regulate (i.e., prevent or promote) the binding of other TFs. This conundrum leads to the crucial questions of who is on first, when, and how. We review here the current knowledge about TF networks and epigenetic regulation during hematopoiesis, with an emphasis on B cell development, and discuss in particular the current models about the interplay between chromatin and TFs.
Collapse
Affiliation(s)
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research , Basel , Switzerland ; Faculty of Sciences, University of Basel , Basel , Switzerland
| |
Collapse
|
37
|
Marchesi I, Giordano A, Bagella L. Roles of enhancer of zeste homolog 2: from skeletal muscle differentiation to rhabdomyosarcoma carcinogenesis. Cell Cycle 2014; 13:516-27. [PMID: 24496329 DOI: 10.4161/cc.27921] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polycomb group proteins represent a global silencing system involved in embryonic development and stem-cell maintenance that regulates the transition from proliferation to differentiation during organogenesis. Two main complexes have been discovered: the polycomb repressive complex (PRC) 1 and 2, able to induce gene silencing by a synergistic mechanism or independently by each other. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of PRC2, represses gene transcription through the tri-methylation of histone H3 lysine 27. EZH2 deregulation is frequently associated with tumorigenesis, metastatic character, and poor prognosis in various cancer types. This review explores the role of EZH2 in normal development and in carcinogenesis. We reviewed the polycomb-mediated silencing mechanisms, the regulation of EZH2 activity and its recruitment to target genes. We also analyzed the role of EZH2 in normal muscle differentiation and in rhabdomyosarcoma, considering EZH2 blockade as a new strategy for developing specific therapies.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences; Division of Biochemistry and National Institute of Biostructures and Biosystems; University of Sassari; Sassari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA; Human Pathology and Oncology Department; University of Siena; Siena, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences; Division of Biochemistry and National Institute of Biostructures and Biosystems; University of Sassari; Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia, PA USA
| |
Collapse
|
38
|
Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123:5009-22. [PMID: 24200695 PMCID: PMC3859423 DOI: 10.1172/jci70626] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 01/13/2023] Open
Abstract
Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte-induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Cycle
- Cytidine Deaminase/deficiency
- Cytidine Deaminase/genetics
- Cytidine Deaminase/physiology
- DNA Damage
- Enhancer of Zeste Homolog 2 Protein
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Silencing
- Germinal Center/enzymology
- Germinal Center/immunology
- Germinal Center/pathology
- Immunity, Humoral
- Immunologic Memory
- Lymphoma, Non-Hodgkin/enzymology
- Lymphoma, Non-Hodgkin/etiology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Lymphopoiesis
- Methylation
- Mice
- Mice, Transgenic
- Polycomb Repressive Complex 2/deficiency
- Polycomb Repressive Complex 2/genetics
- Polycomb Repressive Complex 2/physiology
- Positive Regulatory Domain I-Binding Factor 1
- Protein Processing, Post-Translational
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Marieta Caganova
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chiara Carrisi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Gabriele Varano
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Mainoldi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Zanardi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Pierre-Luc Germain
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Laura George
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Alberghini
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Luca Ferrarini
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Asoke K. Talukder
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Maurilio Ponzoni
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Giuseppe Testa
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Takuya Nojima
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Claudio Doglioni
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Daisuke Kitamura
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kai-M. Toellner
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - I-hsin Su
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stefano Casola
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
39
|
McLaughlin N, Wang F, Saifudeen Z, El-Dahr SS. In situ histone landscape of nephrogenesis. Epigenetics 2013; 9:222-35. [PMID: 24169366 DOI: 10.4161/epi.26793] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both "active" and "repressive" marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.
Collapse
Affiliation(s)
- Nathan McLaughlin
- Department of Pediatrics; Tulane University School of Medicine; New Orleans, LA USA; Biomedical Sciences Program; Tulane University School of Medicine; New Orleans, LA USA
| | - Fenglin Wang
- Department of Pediatrics; Tulane University School of Medicine; New Orleans, LA USA; Biomedical Sciences Program; Tulane University School of Medicine; New Orleans, LA USA
| | - Zubaida Saifudeen
- Department of Pediatrics; Tulane University School of Medicine; New Orleans, LA USA; The Renal and Hypertension Center of Excellence; Tulane University School of Medicine; New Orleans, LA USA
| | - Samir S El-Dahr
- Department of Pediatrics; Tulane University School of Medicine; New Orleans, LA USA; The Renal and Hypertension Center of Excellence; Tulane University School of Medicine; New Orleans, LA USA
| |
Collapse
|
40
|
PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1. Proc Natl Acad Sci U S A 2013; 110:14729-34. [PMID: 23959866 DOI: 10.1073/pnas.1216844110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) gene are associated to early-onset recessive forms of Parkinson disease. PINK1 function is related to mitochondria homeostasis, but the molecular pathways in which PINK1 is involved are largely unknown. Here, we report the identification of the embryonic ectoderm development polycomb histone-methylation modulator (EED/WAIT1) as a PINK1-interacting and -regulated protein. The PINK1:EED/WAIT1 physical interaction was mediated by the PINK1 kinase domain and the EED/WAIT1 40 amino acid ending with tryptophan and aspartate (WD40)-repeat region, and PINK1 phosphorylated EED/WAIT1 in vitro. PINK1 associated with EED/WAIT1 in cells and relocated EED/WAIT1 to the mitochondria. This interaction reduced the trimethylation of lysine 27 from histone H3, which affected polycomb-regulated gene transcription during RA differentiation of SH-SY5Y human neuroblastoma cells. Our findings unveil a pathway by which PINK1 regulates histone methylation and gene expression through the polycomb repressor complex.
Collapse
|
41
|
Lee JK, Kim KC. DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells. Biochem Biophys Res Commun 2013; 438:647-52. [PMID: 23933322 DOI: 10.1016/j.bbrc.2013.07.128] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 01/02/2023]
Abstract
3-Deazaneplanocin A (DZNep), an epigenetic anticancer drug, leads to the indirect suppression of S-adenosyl methionine-dependent cellular methylations by inhibiting S-adenosyl homocystein (AdoHcy) hydrolase. Although it is well known that DZNep targets the degradation of EZH2 protein, H3K27me3 HMTase, there are still uncertainties about the regulation of other types of HMTases during cell death. In this study, we describe that SETDB1 gene expression was regulated by DZNep treatment in human lung cancer cells. We confirm that DZNep induced growth inhibition and increased the dead cell population of lung cancer cells. DZNep treatment affected histone methylations, including H3K27me3 and H3K9me3, but not H3K4me3. Reduced levels of H3K27me3 and H3K9me3 were related with the decreased EZH2 and SETDB1 proteins. Real time PCR analysis showed that SETDB1 gene expression was decreased by DZNep treatment, but no effect was observed for EZH2 gene expression. We cloned the promoter region of SETDB1 and SUV39H1 genes, and performed luciferase assays. The promoter activity of SETDB1 gene was down regulated by DZNep treatment, whereas no effect on SUV39H1 promoter activity was observed. In conclusion, we suggest that DZNep regulates not only on H3K27me3 HMTase EZH2, but also H3K9 HMTase SETDB1 gene expression at the transcription level, implicating that the mechanism of action of DZNep targets multiple HMTases during the death of lung cancer cells.
Collapse
Affiliation(s)
- Ju-Kyung Lee
- Medical and Bio-Material Research Center, Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | |
Collapse
|
42
|
McLaughlin N, Yao X, Li Y, Saifudeen Z, El-Dahr SS. Histone signature of metanephric mesenchyme cell lines. Epigenetics 2013; 8:970-8. [PMID: 23867747 DOI: 10.4161/epi.25753] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The metanephric mesenchyme (MM) gives rise to nephrons, the filtering units of the mature kidney. The MM is composed of uninduced (Six2(high)/Lhx1(low)) and induced (Wnt-stimulated, Six2(low)/Lhx1(high)) cells. The global epigenetic state of MM cells is unknown, partly due to technical difficulty in isolating sufficient numbers of homogenous cell populations. We therefore took advantage of two mouse clonal cell lines representing the uninduced (mK3) and induced (mK4) metanephric mesenchyme (based on gene expression profiles and ability to induce branching of ureteric bud). ChIP-Seq revealed that whereas H3K4me3 active region "peaks" are enriched in metabolic genes, H3K27me3 peaks decorate mesenchyme and epithelial cell fate commitment genes. In uninduced mK3 cells, promoters of "stemness" genes (e.g., Six2, Osr1) are enriched with H3K4me3 peaks; these are lost in induced mK4 cells. ChIP-qPCR confirmed this finding and further demonstrated that G9a/H3K9me2 occupy the promoter region of Six2 in induced cells, consistent with the inactive state of transcription. Conversely, genes that mark the induced epithelialized state (e.g., Lhx1, Pax8), transition from a non-permissive to an active chromatin signature in mK3 vs. mK4 cells, respectively. Importantly, stimulation of Wnt signaling in uninduced mK3 cells provokes an active chromatin state (high H3K4me3, low H3K27me3), recruitment of β-catenin, and loss of pre-bound histone methyltransferase Ezh2 in silent induced genes followed by activation of transcription. We conclude that the chromatin signature of uninduced and induced cells correlates strongly with their gene expression states, suggesting a role of chromatin-based mechanisms in MM cell fate.
Collapse
Affiliation(s)
- Nathan McLaughlin
- Department of Pediatrics; The Renal and Hypertension Center of Excellence; Tulane University School of Medicine; New Orleans, LA USA; Department of Biomedical Sciences Program; The Renal and Hypertension Center of Excellence; Tulane University School of Medicine; New Orleans, LA USA
| | | | | | | | | |
Collapse
|
43
|
Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML. Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling. Development 2013; 140:2867-78. [PMID: 23739135 DOI: 10.1242/dev.088096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.
Collapse
Affiliation(s)
- Issam Aldiri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | |
Collapse
|
44
|
Peruzzi P, Bronisz A, Nowicki MO, Wang Y, Ogawa D, Price R, Nakano I, Kwon CH, Hayes J, Lawler SE, Ostrowski MC, Chiocca EA, Godlewski J. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro Oncol 2013; 15:1212-24. [PMID: 23733246 DOI: 10.1093/neuonc/not055] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Polycomb Repressor Complex (PRC) is an epigenetic regulator of transcription whose action is mediated by 2 protein complexes, PRC1 and PRC2. PRC is oncogenic in glioblastoma, where it is involved in cancer stem cell maintenance and radioresistance. METHODS We used a set of glioblastoma patient samples, glioma stem cells, and neural stem cells from a mouse model of glioblastoma. We characterized gene/protein expression and cellular phenotypes by quantitative PCR/Western blotting and clonogenic, cell-cycle, and DNA damage assays. We performed overexpression/knockdown studies by lentiviral infection and microRNA/small interfering RNA oligonucleotide transfection. RESULTS We show that microRNA-128 (miR-128) directly targets mRNA of SUZ12, a key component of PRC2, in addition to BMI1, a component of PRC1 that we previously showed as a target as well. This blocks the partially redundant functions of PRC1/PRC2, thereby significantly reducing PRC activity and its associated histone modifications. MiR-128 and SUZ12/BMI1 show opposite expression in human glioblastomas versus normal brain and in glioma stemlike versus neural stem cells. Furthermore, miR-128 renders glioma stemlike cells less radioresistant by preventing the radiation-induced expression of both PRC components. Finally, miR-128 expression is significantly reduced in neural stem cells from the brain of young, presymptomatic mice in our mouse model of glioblastoma. This suggests that loss of miR-128 expression in brain is an early event in gliomagenesis. Moreover, knockdown of miR-128 expression in nonmalignant mouse and human neural stem cells led to elevated expression of PRC components and increased clonogenicity. CONCLUSIONS MiR-128 is an important suppressor of PRC activity, and its absence is an early event in gliomagenesis.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hlawatsch J, Karlstetter M, Aslanidis A, Lückoff A, Walczak Y, Plank M, Böck J, Langmann T. Sterile alpha motif containing 7 (samd7) is a novel crx-regulated transcriptional repressor in the retina. PLoS One 2013; 8:e60633. [PMID: 23565263 PMCID: PMC3615016 DOI: 10.1371/journal.pone.0060633] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
Inherited retinal diseases are mainly caused by mutations in genes that are highly expressed in photoreceptors of the retina. The majority of these genes is under the control of the transcription factor Cone rod homeobox (Crx), that acts as a master transcription factor in photoreceptors. Using a genome-wide chromatin immunoprecipitation dataset that highlights all potential in vivo targets of Crx, we have identified a novel sterile alpha motif (SAM) domain containing protein, Samd7. mRNA Expression of Samd7 was confined to the late postnatal and adult mouse retina as well as the pineal gland. Using immunohistochemistry and Western blot, we could detect Samd7 protein in the outer nuclear layer of adult mouse retina. Ectopic over-expression in HEK293 cells demonstrated that Samd7 resides in the cytoplasm as well as the nucleus. In vitro electroporation of fluorescent reporters into living mouse retinal cultures revealed that transcription of the Samd7 gene depends on evolutionary conserved Crx motifs located in the first intron enhancer. Moreover, Crx knock-down with shRNA strongly reduced Samd7 reporter activity and endogenous Samd7 protein, indicating that Crx is required for retinal expression of Samd7. Finally, using co-transfections in luciferase reporter assays we found that Samd7 interferes with Crx-dependent transcription. Samd7 suppressed luciferase activity from a reporter plasmid with five Crx consensus repeats in a dose dependent manner and reduced Crx-mediated transactivation of regulatory sequences in the retinoschisin gene and the Samd7 gene itself. Taken together, we have identified a novel retinal SAM domain protein, Samd7, which could act as a transcriptional repressor involved in fine-tuning of Crx-regulated gene expression.
Collapse
Affiliation(s)
- Julia Hlawatsch
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Marcus Karlstetter
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Alexander Aslanidis
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Anika Lückoff
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yana Walczak
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Michael Plank
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Julia Böck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Thomas Langmann
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
46
|
Deregulation of epigenetic mechanisms by the hepatitis B virus X protein in hepatocarcinogenesis. Viruses 2013; 5:858-72. [PMID: 23507839 PMCID: PMC3705300 DOI: 10.3390/v5030858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the significance of deregulation of epigenetic mechanisms by the hepatitis B virus (HBV) X protein in hepatocarcinogenesis and HBV replication. Epigenetic mechanisms, DNA methylation, and specific histone modifications, e.g., trimethylation of H3 on lysine-27 or lysine-4, maintain ‘cellular memory’ by silencing expression of lineage-inducing factors in stem cells and conversely, of pluripotency factors in differentiated cells. The X protein has been reported to induce expression of DNA methyltransferases (DNMTs), likely promoting epigenetic changes during hepatocarcinogenesis. Furthermore, in cellular and animal models of X-mediated oncogenic transformation, protein levels of chromatin modifying proteins Suz12 and Znf198 are down-regulated. Suz12 is essential for the Polycomb Repressive Complex 2 (PRC2) mediating the repressive trimethylation of H3 on lysine-27 (H3K27me3). Znf198, stabilizes the LSD1-CoREST-HDAC complex that removes, via lysine demethylase1 (LSD1), the activating trimethylation of H3 on lysine-4 (H3K4me3). Down-regulation of Suz12 also occurs in liver tumors of woodchucks chronically infected by woodchuck hepatitis virus, an animal model recapitulating HBV-mediated hepatocarcinogenesis in humans. Significantly, subgroups of HBV-induced liver cancer re-express hepatoblast and fetal markers, and imprinted genes, suggesting hepatocyte reprogramming during oncogenic transformation. Lastly, down-regulation of Suz12 and Znf198 enhances HBV replication. Collectively, these observations suggest deregulation of epigenetic mechanisms by HBV X protein influences both the viral cycle and the host cell.
Collapse
|
47
|
|