1
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe'er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. eLife 2025; 13:RP102819. [PMID: 40192104 PMCID: PMC11975377 DOI: 10.7554/elife.102819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R Brooks
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Andrew R Moorman
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Bhaswati Bhattacharya
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Ian S Prudhomme
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Max Land
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Heather L Alcorn
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Roshan Sharma
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Dana Pe'er
- Howard Hughes Medical Institute and Computational and Systems Biology Program, Sloan Kettering InstituteNew YorkUnited States
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering InstituteNew YorkUnited States
| |
Collapse
|
2
|
Masamsetti VP, Salehin N, Kim HJ, Santucci N, Weatherstone M, McMahon R, Marshall LL, Knowles H, Sun J, Studdert JB, Aryamanesh N, Wang R, Jing N, Yang P, Osteil P, Tam PPL. Lineage contribution of the mesendoderm progenitors in the gastrulating mouse embryo. Dev Cell 2025:S1534-5807(25)00120-0. [PMID: 40132585 DOI: 10.1016/j.devcel.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/08/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025]
Abstract
A population of putative mesendoderm progenitors that can contribute cellular descendants to both mesoderm and endoderm lineages is identified in the gastrulating mouse embryo. These progenitor cells are localized to the posterior epiblast, primitive streak, and nascent mesoderm of mid-streak- (E7.0) to late-streak-stage (E7.5) embryos. Lineage tracing in vivo identified that putative mesendoderm progenitors contribute descendants to the definitive endoderm and the axial mesendoderm of E7.75 embryos and to the endoderm of the foregut and hindgut of the E8.5-8.75 embryos. Differentiation of mouse epiblast stem cells identified that the choice between endoderm and mesoderm cell fates depends on the timing of Mixl1 activation upon exit from pluripotency. The knowledge gained on the spatiotemporal distribution of mesendoderm progenitors and the molecular drivers underpinning the divergence of cell lineages in these progenitors enriches our mechanistic understanding of the allocation of the tissue progenitors to germ layer derivatives in early development.
Collapse
Affiliation(s)
- V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Megan Weatherstone
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Lee L Marshall
- Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Josh B Studdert
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Nader Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Bioinformatics Group, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Ran Wang
- Biomedical Informatics & Genomics Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Pengyi Yang
- Computational Systems Biology Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Westmead, NSW, Australia; School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Brooks ER, Moorman AR, Bhattacharya B, Prudhomme IS, Land M, Alcorn HL, Sharma R, Pe’er D, Zallen JA. A single-cell atlas of spatial and temporal gene expression in the mouse cranial neural plate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.25.609458. [PMID: 39229123 PMCID: PMC11370589 DOI: 10.1101/2024.08.25.609458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
Collapse
Affiliation(s)
- Eric R. Brooks
- HHMI and Developmental Biology Program, Sloan Kettering Institute
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
| | - Andrew R. Moorman
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Ian S. Prudhomme
- HHMI and Developmental Biology Program, Sloan Kettering Institute
| | - Max Land
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | | - Roshan Sharma
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | - Dana Pe’er
- HHMI and Computational and Systems Biology Program, Sloan Kettering Institute
| | | |
Collapse
|
4
|
Bok S, Sun J, Greenblatt MB. Are osteoblasts multiple cell types? A new diversity in skeletal stem cells and their derivatives. J Bone Miner Res 2024; 39:1386-1392. [PMID: 39052334 PMCID: PMC11425698 DOI: 10.1093/jbmr/zjae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Only in the past decade have skeletal stem cells (SSCs), a cell type displaying formal evidence of stemness and serving as the ultimate origin of mature skeletal cell types such as osteoblasts, been defined. Here, we discuss a pair of recent reports that identify that SSCs do not represent a single cell type, but rather a family of related cells that each have characteristic anatomic locations and distinct functions tailored to the physiology of those sites. The distinct functional properties of these SSCs in turn provide a basis for the diseases of their respective locations. This concept emerges from one report identifying a distinct vertebral skeletal stem cell driving the high rate of breast cancer metastasis to the spine over other skeletal sites and a report identifying 2 SSCs in the calvaria that interact to mediate both physiologic calvarial mineralization and pathologic calvarial suture fusion in craniosynostosis. Despite displaying functional differences, these SSCs are each united by shared features including a shared series of surface markers and parallel differentiation hierarchies. We propose that this diversity at the level of SSCs in turn translates into a similar diversity at the level of mature skeletal cell types, including osteoblasts, with osteoblasts derived from different SSCs each displaying different functional and transcriptional characteristics reflecting their cell of origin. In this model, osteoblasts would represent not a single cell type, but rather a family of related cells each with distinct functions, paralleling the functional diversity in SSCs.
Collapse
Affiliation(s)
- Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Jun Sun
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York NY 10065, United States
- Skeletal Health and Orthopedic Research Program, Hospital for Special Surgery, New York NY 10065, United States
| |
Collapse
|
5
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
6
|
Quilez S, Dumontier E, Baim C, Kam J, Cloutier JF. Loss of Neogenin alters branchial arch development and leads to craniofacial skeletal defects. Front Cell Dev Biol 2024; 12:1256465. [PMID: 38404688 PMCID: PMC10884240 DOI: 10.3389/fcell.2024.1256465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
The formation of complex structures, such as the craniofacial skeleton, requires precise and intricate two-way signalling between populations of cells of different embryonic origins. For example, the lower jaw, or mandible, arises from cranial neural crest cells (CNCCs) in the mandibular portion of the first branchial arch (mdBA1) of the embryo, and its development is regulated by signals from the ectoderm and cranial mesoderm (CM) within this structure. The molecular mechanisms underlying CM cell influence on CNCC development in the mdBA1 remain poorly defined. Herein we identified the receptor Neogenin as a key regulator of craniofacial development. We found that ablation of Neogenin expression via gene-targeting resulted in several craniofacial skeletal defects, including reduced size of the CNCC-derived mandible. Loss of Neogenin did not affect the formation of the mdBA1 CM core but resulted in altered Bmp4 and Fgf8 expression, increased apoptosis, and reduced osteoblast differentiation in the mdBA1 mesenchyme. Reduced BMP signalling in the mdBA1 of Neogenin mutant embryos was associated with alterations in the gene regulatory network, including decreased expression of transcription factors of the Hand, Msx, and Alx families, which play key roles in the patterning and outgrowth of the mdBA1. Tissue-specific Neogenin loss-of-function studies revealed that Neogenin expression in mesodermal cells contributes to mandible formation. Thus, our results identify Neogenin as a novel regulator of craniofacial skeletal formation and demonstrates it impinges on CNCC development via a non-cell autonomous mechanism.
Collapse
Affiliation(s)
- Sabrina Quilez
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Emilie Dumontier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
| | - Christopher Baim
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Joseph Kam
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro—Montreal Neurological Institute and Hospital, 3801 University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
7
|
Haga CL, Booker CN, Carvalho A, Boregowda SV, Phinney DG. Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions. Stem Cells 2023; 41:1185-1200. [PMID: 37665974 PMCID: PMC10723815 DOI: 10.1093/stmcls/sxad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023]
Abstract
Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high-confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1-dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1-regulated genes identified herein may be prioritized for future mechanistic and functional studies.
Collapse
Affiliation(s)
- Christopher L Haga
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Cori N Booker
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Ana Carvalho
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Siddaraju V Boregowda
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| | - Donald G Phinney
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Department of Molecular Medicine, Jupiter, FL, USA
| |
Collapse
|
8
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
9
|
Tokita M, Sato H. Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms. Evol Dev 2023; 25:15-31. [PMID: 36250751 DOI: 10.1111/ede.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | - Hiromu Sato
- Department of Biology, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| |
Collapse
|
10
|
Whitman MC, Gilette NM, Bell JL, Kim SA, Tischfield M, Engle EC. TWIST1, a gene associated with Saethre-Chotzen syndrome, regulates extraocular muscle organization in mouse. Dev Biol 2022; 490:126-133. [PMID: 35944701 PMCID: PMC9765759 DOI: 10.1016/j.ydbio.2022.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022]
Abstract
Heterozygous loss of function mutations in TWIST1 cause Saethre-Chotzen syndrome, which is characterized by craniosynostosis, facial asymmetry, ptosis, strabismus, and distinctive ear appearance. Individuals with syndromic craniosynostosis have high rates of strabismus and ptosis, but the underlying pathology is unknown. Some individuals with syndromic craniosynostosis have been noted to have absence of individual extraocular muscles or abnormal insertions of the extraocular muscles on the globe. Using conditional knock-out alleles for Twist1 in cranial mesenchyme, we test the hypothesis that Twist1 is required for extraocular muscle organization and position, attachment to the globe, and/or innervation by the cranial nerves. We examined the extraocular muscles in conditional Twist1 knock-out animals using Twist2-cre and Pdgfrb-cre drivers. Both are expressed in cranial mesoderm and neural crest. Conditional inactivation of Twist1 using these drivers leads to disorganized extraocular muscles that cannot be reliably identified as specific muscles. Tendons do not form normally at the insertion and origin of these dysplastic muscles. Knock-out of Twist1 expression in tendon precursors, using scleraxis-cre, however, does not alter EOM organization. Furthermore, developing motor neurons, which do not express Twist1, display abnormal axonal trajectories in the orbit in the presence of dysplastic extraocular muscles. Strabismus in individuals with TWIST1 mutations may therefore be caused by abnormalities in extraocular muscle development and secondary abnormalities in innervation and tendon formation.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole M Gilette
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica L Bell
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seoyoung A Kim
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Max Tischfield
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elizabeth C Engle
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA; F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA, 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Bertol JW, Johnston S, Ahmed R, Xie VK, Hubka KM, Cruz L, Nitschke L, Stetsiv M, Goering JP, Nistor P, Lowell S, Hoskens H, Claes P, Weinberg SM, Saadi I, Farach-Carson MC, Fakhouri WD. TWIST1 interacts with β/δ-catenins during neural tube development and regulates fate transition in cranial neural crest cells. Development 2022; 149:dev200068. [PMID: 35781329 PMCID: PMC9440756 DOI: 10.1242/dev.200068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/30/2022] [Indexed: 08/10/2023]
Abstract
Cell fate determination is a necessary and tightly regulated process for producing different cell types and structures during development. Cranial neural crest cells (CNCCs) are unique to vertebrate embryos and emerge from the neural plate borders into multiple cell lineages that differentiate into bone, cartilage, neurons and glial cells. We have previously reported that Irf6 genetically interacts with Twist1 during CNCC-derived tissue formation. Here, we have investigated the mechanistic role of Twist1 and Irf6 at early stages of craniofacial development. Our data indicate that TWIST1 is expressed in endocytic vesicles at the apical surface and interacts with β/δ-catenins during neural tube closure, and Irf6 is involved in defining neural fold borders by restricting AP2α expression. Twist1 suppresses Irf6 and other epithelial genes in CNCCs during the epithelial-to-mesenchymal transition (EMT) process and cell migration. Conversely, a loss of Twist1 leads to a sustained expression of epithelial and cell adhesion markers in migratory CNCCs. Disruption of TWIST1 phosphorylation in vivo leads to epidermal blebbing, edema, neural tube defects and CNCC-derived structural abnormalities. Altogether, this study describes a previously uncharacterized function of mammalian Twist1 and Irf6 in the neural tube and CNCCs, and provides new target genes for Twist1 that are involved in cytoskeletal remodeling.
Collapse
Affiliation(s)
- Jessica W. Bertol
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Shelby Johnston
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Rabia Ahmed
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Victoria K. Xie
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Kelsea M. Hubka
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Lissette Cruz
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Larissa Nitschke
- Department of Pathology and Immunology,Baylor College of Medicine, Houston, TX 77030, USA
| | - Marta Stetsiv
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jeremy P. Goering
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Paul Nistor
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Little France Drive, Edinburgh EH16 4UU, UK
| | - Hanne Hoskens
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven 3000, Belgium
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven 3001, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of Pittsburgh, Pittsburgh, PA 15219
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mary C. Farach-Carson
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Walid D. Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
12
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
13
|
Studdert JB, Bildsoe H, Masamsetti VP, Tam PPL. Visualization of the Cartilage and Bone Elements in the Craniofacial Structures by Alcian Blue and Alizarin Red Staining. Methods Mol Biol 2022; 2403:43-50. [PMID: 34913115 DOI: 10.1007/978-1-0716-1847-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Craniofacial morphogenesis is underpinned by orchestrated growth and form-shaping activity of skeletal and soft tissues in the head and face. Disruptions during development can lead to dysmorphology of the skull, jaw, and the pharyngeal structures. Developmental disorders can be investigated in animal models to elucidate the molecular and cellular consequences of the morphogenetic defects. A first step in determining the disruption in the development of the head and face is to analyze the phenotypic features of the skeletal tissues. Examination of the anatomy of bones and cartilage over time and space will identify structural defects of head structures and guide follow-up analysis of the molecular and cellular attributes associated with the defects. Here we describe a protocol to simultaneously visualize the cartilage and bone elements by Alcian blue and Alizarin red staining, respectively, of wholemount specimens in mouse models.
Collapse
Affiliation(s)
- Joshua B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia.
| | - Heidi Bildsoe
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| |
Collapse
|
14
|
Romanelli Tavares VL, Guimarães-Ramos SL, Zhou Y, Masotti C, Ezquina S, Moreira DDP, Buermans H, Freitas RS, Den Dunnen JT, Twigg SRF, Passos-Bueno MR. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving TWIST1 regulatory elements. J Med Genet 2021; 59:895-905. [PMID: 34750192 PMCID: PMC9411924 DOI: 10.1136/jmedgenet-2021-107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Background Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. Methods We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. Results This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. Conclusion Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Cibele Masotti
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Suzana Ezquina
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Danielle de Paula Moreira
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| | - Henk Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal, Curitiba, Brazil
| | - Johan T Den Dunnen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Rita Passos-Bueno
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| |
Collapse
|
15
|
He Y, Fan Z, He L, Zhang C, Ping F, Deng M, Liu S, Wang Y, Cheng B, Xia J. Metformin Combined with 4SC-202 Inhibited the Migration and Invasion of OSCC via STAT3/TWIST1. Onco Targets Ther 2020; 13:11019-11029. [PMID: 33149616 PMCID: PMC7605634 DOI: 10.2147/ott.s268851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 01/27/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC), the most common epithelial malignant neoplasm in the head and neck, characterizes with local infiltration and metastasis of lymph nodes. The five-year survival rate of OSCC remains low despite the advances in clinical methods. Thus, it is necessary to develop a new effective therapeutic scheme for OSCC. Our previous results showed that metformin and 4SC-202 synergistically promoted the intrinsic apoptosis of OSCC in vitro and in vivo, but the effects on invasion and migration remained unclear. Methods Human OSCC cell lines HSC6 and CAL33 were cultured with metformin (16 mM) or/and 4SC-202 (0.4 μM) for 72 h. STAT3 inhibitor S31-201 was applied at concentration of 60 μM for 48 h. Wound-healing assays and transwell assays were used to determine the invasion and migration ability of OSCC. qRT-PCR and Western blot were performed to detect mRNA levels and protein levels. Results Metformin or/and 4SC-202 suppressed the migration and invasion of OSCC cells. Importantly, the expression of TWIST1 was suppressed by metformin and 4SC-202, while the invasion and migration inhibitory effects of metformin and 4SC-202 were countered by the overexpression of TWIST1. In addition, the phosphorylation level of STAT3 decreased after the administration of metformin or/and 4SC-202. Furthermore, inhibition of STAT3 by S31-201 suppressed the expression of TWIST1 and led to a decline in migration and invasion of OSCC, while overexpression of TWIST1 attenuated these effects. Conclusion Metformin and 4SC-202 suppressed the invasion and migration of OSCC through inhibition of STAT3/TWIST1, and this scheme can serve as a novel therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Yuan He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhaona Fan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lihong He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fan Ping
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Miao Deng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Suyang Liu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanting Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Siismets EM, Hatch NE. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis. J Dev Biol 2020; 8:jdb8030018. [PMID: 32916911 PMCID: PMC7558351 DOI: 10.3390/jdb8030018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Craniofacial anomalies are among the most common of birth defects. The pathogenesis of craniofacial anomalies frequently involves defects in the migration, proliferation, and fate of neural crest cells destined for the craniofacial skeleton. Genetic mutations causing deficient cranial neural crest migration and proliferation can result in Treacher Collins syndrome, Pierre Robin sequence, and cleft palate. Defects in post-migratory neural crest cells can result in pre- or post-ossification defects in the developing craniofacial skeleton and craniosynostosis (premature fusion of cranial bones/cranial sutures). The coronal suture is the most frequently fused suture in craniosynostosis syndromes. It exists as a biological boundary between the neural crest-derived frontal bone and paraxial mesoderm-derived parietal bone. The objective of this review is to frame our current understanding of neural crest cells in craniofacial development, craniofacial anomalies, and the pathogenesis of coronal craniosynostosis. We will also discuss novel approaches for advancing our knowledge and developing prevention and/or treatment strategies for craniofacial tissue regeneration and craniosynostosis.
Collapse
Affiliation(s)
- Erica M. Siismets
- Oral Health Sciences PhD Program, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA;
| | - Nan E. Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Correspondence: ; Tel.: +1-734-647-6567
| |
Collapse
|
17
|
Svandova E, Anthwal N, Tucker AS, Matalova E. Diverse Fate of an Enigmatic Structure: 200 Years of Meckel's Cartilage. Front Cell Dev Biol 2020; 8:821. [PMID: 32984323 PMCID: PMC7484903 DOI: 10.3389/fcell.2020.00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Meckel's cartilage was first described by the German anatomist Johann Friedrich Meckel the Younger in 1820 from his analysis of human embryos. Two hundred years after its discovery this paper follows the development and largely transient nature of the mammalian Meckel's cartilage, and its role in jaw development. Meckel's cartilage acts as a jaw support during early development, and a template for the later forming jaw bones. In mammals, its anterior domain links the two arms of the dentary together at the symphysis while the posterior domain ossifies to form two of the three ear ossicles of the middle ear. In between, Meckel's cartilage transforms to a ligament or disappears, subsumed by the growing dentary bone. Several human syndromes have been linked, directly or indirectly, to abnormal Meckel's cartilage formation. Herein, the evolution, development and fate of the cartilage and its impact on jaw development is mapped. The review focuses on developmental and cellular processes that shed light on the mechanisms behind the different fates of this cartilage, examining the control of Meckel's cartilage patterning, initiation and maturation. Importantly, human disorders and mouse models with disrupted Meckel's cartilage development are highlighted, in order to understand how changes in this cartilage impact on later development of the dentary and the craniofacial complex as a whole. Finally, the relative roles of tissue interactions, apoptosis, autophagy, macrophages and clast cells in the removal process are discussed. Meckel's cartilage is a unique and enigmatic structure, the development and function of which is starting to be understood but many interesting questions still remain.
Collapse
Affiliation(s)
- Eva Svandova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
| | - Neal Anthwal
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| |
Collapse
|
18
|
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation. Mol Cell Biol 2020; 40:MCB.00663-19. [PMID: 32179550 DOI: 10.1128/mcb.00663-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.
Collapse
|
19
|
Kindberg AA, Bush JO. Cellular organization and boundary formation in craniofacial development. Genesis 2019; 57:e23271. [PMID: 30548771 PMCID: PMC6503678 DOI: 10.1002/dvg.23271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Craniofacial morphogenesis is a highly dynamic process that requires changes in the behaviors and physical properties of cells in order to achieve the proper organization of different craniofacial structures. Boundary formation is a critical process in cellular organization, patterning, and ultimately tissue separation. There are several recurring cellular mechanisms through which boundary formation and cellular organization occur including, transcriptional patterning, cell segregation, cell adhesion and migratory guidance. Disruption of normal boundary formation has dramatic morphological consequences, and can result in human craniofacial congenital anomalies. In this review we discuss boundary formation during craniofacial development, specifically focusing on the cellular behaviors and mechanisms underlying the self-organizing properties that are critical for craniofacial morphogenesis.
Collapse
Affiliation(s)
- Abigail A. Kindberg
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
20
|
Kim T, Heo J, Jang DK, Sunwoo L, Kim J, Lee KJ, Kang SH, Park SJ, Kwon OK, Oh CW. Machine learning for detecting moyamoya disease in plain skull radiography using a convolutional neural network. EBioMedicine 2018; 40:636-642. [PMID: 30598372 PMCID: PMC6413674 DOI: 10.1016/j.ebiom.2018.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/01/2022] Open
Abstract
Background Recently, innovative attempts have been made to identify moyamoya disease (MMD) by focusing on the morphological differences in the head of MMD patients. Following the recent revolution in the development of deep learning (DL) algorithms, we designed this study to determine whether DL can distinguish MMD in plain skull radiograph images. Methods Three hundred forty-five skull images were collected as an MMD-labeled dataset from patients aged 18 to 50 years with definite MMD. As a control-labeled data set, 408 skull images of trauma patients were selected by age and sex matching. Skull images were partitioned into training and test datasets at a 7:3 ratio using permutation. A total of six convolution layers were designed and trained. The accuracy and area under the receiver operating characteristic (AUROC) curve were evaluated as classifier performance. To identify areas of attention, gradient-weighted class activation mapping was applied. External validation was performed with a new dataset from another hospital. Findings For the institutional test set, the classifier predicted the true label with 84·1% accuracy. Sensitivity and specificity were both 0·84. AUROC was 0·91. MMD was predicted by attention to the lower face in most cases. Overall accuracy for external validation data set was 75·9%. Interpretation DL can distinguish MMD cases within specific ages from controls in plain skull radiograph images with considerable accuracy and AUROC. The viscerocranium may play a role in MMD-related skull features. Fund This work was supported by grant no. 18-2018-029 from the Seoul National University Bundang Hospital Research Fund.
Collapse
Affiliation(s)
- Tackeun Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Jaehyuk Heo
- Department of Applied Statistics, The University of Suwon, 17, Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
| | - Dong-Kyu Jang
- Department of Neurosurgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 56, Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Joonghee Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Kyong Joon Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Si-Hyuck Kang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - Sang Jun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea
| | - O-Ki Kwon
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Republic of Korea; Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-Ro Jongno-Gu, Seoul 03080, Republic of Korea.
| |
Collapse
|
21
|
Sparks NRL, Martinez IKC, Soto CH, Zur Nieden NI. Low Osteogenic Yield in Human Pluripotent Stem Cells Associates with Differential Neural Crest Promoter Methylation. Stem Cells 2018; 36:349-362. [PMID: 29193426 DOI: 10.1002/stem.2746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
Abstract
Human pluripotent stem cell-derived osteoblasts possess great potential for use in bone disorder elucidation and repair; however, while the general ability of human pluripotent stem cells to differentiate into osteoblasts and lay down bone-specific matrix has been shown, previous studies lack the complete characterization of the process whereby such osteoblasts are derived as well as a comparison between the osteogenic efficiency of multiple cell lines. Here, we compared the osteogenic potential of two human induced pluripotent stem cell lines (RIV9 and RIV4) to human H9 embryonic stem cells. Generally capable of osteogenic differentiation, the overall osteogenic yield was lower in the RIV9 and RIV4 lines and correlated with differential expression of osteocalcin (OCN) in mature cultures and PAX7 and TWIST1 during early differentiation. In the undifferentiated cells, the promoters of the latter two genes were differentially methylated potentially explaining the variation in differentiation efficiency. Furthermore, the expression signatures of selected neural crest and mesodermal genes and proteins suggested that H9 cells preferentially gave rise to neural crest-derived osteoblasts, whereas the osteoblasts in the RIV9 cultures were generated both through a mesodermal and a neural crest route although each at a lower rate. These data suggest that epigenetic dissimilarities between multiple PSC lines may lead to differences in lineage derivation and mineralization. Since osteoblast progenitors from one origin inadequately repair a defect in the other, these data underscore the importance of screening human pluripotent stem cells lines for the identity of the osteoprogenitors they lay down. Stem Cells 2018;36:349-362.
Collapse
Affiliation(s)
- Nicole Renee Lee Sparks
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Ivann Kenneth Carvajal Martinez
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Cristina Helen Soto
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| | - Nicole Isolde Zur Nieden
- Department of Molecular, Cell and Systems Biology and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, 92521, USA
| |
Collapse
|
22
|
Sibbritt T, Ip CK, Khoo P, Wilkie E, Jones V, Sun JQJ, Shen JX, Peng G, Han JJ, Jing N, Osteil P, Ramialison M, Tam PPL, Fossat N. A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis 2018; 56:e23246. [DOI: 10.1002/dvg.23246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Chi K. Ip
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Poh‐Lynn Khoo
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- Bioinformatics Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Jane Q. J. Sun
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Joanne X. Shen
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
| | - Jing‐Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Naihe Jing
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute Monash University Melbourne Victoria Australia
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
23
|
Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Genetic and Evolutionary Studies. J Dev Biol 2018; 6:jdb6030022. [PMID: 30134561 PMCID: PMC6162505 DOI: 10.3390/jdb6030022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
The human neural tube defects (NTD), anencephaly, spina bifida and craniorachischisis, originate from a failure of the embryonic neural tube to close. Human NTD are relatively common and both complex and heterogeneous in genetic origin, but the genetic variants and developmental mechanisms are largely unknown. Here we review the numerous studies, mainly in mice, of normal neural tube closure, the mechanisms of failure caused by specific gene mutations, and the evolution of the vertebrate cranial neural tube and its genetic processes, seeking insights into the etiology of human NTD. We find evidence of many regions along the anterior–posterior axis each differing in some aspect of neural tube closure—morphology, cell behavior, specific genes required—and conclude that the etiology of NTD is likely to be partly specific to the anterior–posterior location of the defect and also genetically heterogeneous. We revisit the hypotheses explaining the excess of females among cranial NTD cases in mice and humans and new developments in understanding the role of the folate pathway in NTD. Finally, we demonstrate that evidence from mouse mutants strongly supports the search for digenic or oligogenic etiology in human NTD of all types.
Collapse
|
24
|
Abstract
Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.
Collapse
Affiliation(s)
- Kevin K L Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
25
|
Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 2018; 56:e23097. [PMID: 29659153 DOI: 10.1002/dvg.23097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/17/2022]
Abstract
Patterning of craniofacial muscles overtly begins with the activation of lineage-specific markers at precise, evolutionarily conserved locations within prechordal, lateral, and both unsegmented and somitic paraxial mesoderm populations. Although these initial programming events occur without influence of neural crest cells, the subsequent movements and differentiation stages of most head muscles are neural crest-dependent. Incorporating both descriptive and experimental studies, this review examines each stage of myogenesis up through the formation of attachments to their skeletal partners. We present the similarities among developing muscle groups, including comparisons with trunk myogenesis, but emphasize the morphogenetic processes that are unique to each group and sometimes subsets of muscles within a group. These groups include branchial (pharyngeal) arches, which encompass both those with clear homologues in all vertebrate classes and those unique to one, for example, mammalian facial muscles, and also extraocular, laryngeal, tongue, and neck muscles. The presence of several distinct processes underlying neural crest:myoblast/myocyte interactions and behaviors is not surprising, given the wide range of both quantitative and qualitative variations in craniofacial muscle organization achieved during vertebrate evolution.
Collapse
Affiliation(s)
- Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize the unique regenerative milieu within mature mammalian extraocular muscles (EOMs). This will aid in understanding disease propensity for and sparing of EOMs in skeletal muscle diseases as well as the recalcitrance of the EOM to injury. RECENT FINDINGS The EOMs continually remodel throughout life and contain an extremely enriched number of myogenic precursor cells that differ in number and functional characteristics from those in limb skeletal muscle. The EOMs also contain a large population of Pitx2-positive myogenic precursor cells that provide the EOMs with many of their unusual biological characteristics, such as myofiber remodeling and skeletal muscle disease sparing. This environment provides for rapid and efficient remodeling and regeneration after various types of injury. In addition, the EOMs show a remarkable ability to respond to perturbations of single muscles with coordinated changes in the other EOMs that move in the same plane. SUMMARY These data will inform Ophthalmologists as they work toward developing new treatments for eye movement disorders, new approaches for repair after nerve or direct EOMs injury, as well as suggest potential explanations for the unusual disease propensity and disease sparing characteristics of human EOM.
Collapse
Affiliation(s)
- Mayank Verma
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Krysta Fitzpatrick
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| | - Linda K McLoon
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Higashihori N, Lehnertz B, Sampaio A, Underhill T, Rossi F, Richman J. Methyltransferase G9A Regulates Osteogenesis via Twist Gene Repression. J Dent Res 2017. [DOI: 10.1177/0022034517716438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- N. Higashihori
- Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, Faculty of Medicine, The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
- Current address: Maxillofacial Orthognathics, Tokyo Medical and Dental University, Tokyo, Japan
| | - B. Lehnertz
- Department of Medical Genetics, Faculty of Medicine, The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
- Current address: Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - A. Sampaio
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - T.M. Underhill
- Department of Cellular and Physiological Sciences and Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - F. Rossi
- Department of Medical Genetics, Faculty of Medicine, The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | - J.M. Richman
- Department of Oral Health Sciences, Life Sciences Institute, Faculty of Dentistry, The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
28
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
29
|
Szumska D, Cioroch M, Keeling A, Prat A, Seidah NG, Bhattacharya S. Pcsk5 is required in the early cranio-cardiac mesoderm for heart development. BMC DEVELOPMENTAL BIOLOGY 2017; 17:6. [PMID: 28446132 PMCID: PMC5407003 DOI: 10.1186/s12861-017-0148-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/17/2017] [Indexed: 11/25/2022]
Abstract
Background Loss of proprotein convertase subtilisin/kexin type 5 (Pcsk5) results in multiple developmental anomalies including cardiac malformations, caudal regression, pre-sacral mass, renal agenesis, anteroposterior patterning defects, and tracheo-oesophageal and anorectal malformations, and is a model for VACTERL/caudal regression/Currarino syndromes (VACTERL association - Vertebral anomalies, Anal atresia, Cardiac defects, Tracheoesophageal fistula and/or Esophageal atresia, Renal & Radial anomalies and Limb defects). Results Using magnetic resonance imaging (MRI), we examined heart development in mouse embryos with zygotic and cardiac specific deletion of Pcsk5. We show that conditional deletion of Pcsk5 in all epiblastic lineages recapitulates all developmental malformations except for tracheo-esophageal malformations. Using a conditional deletion strategy, we find that there is an essential and specific requirement for Pcsk5 in the cranio-cardiac mesoderm for cardiogenesis, but not for conotruncal septation or any other aspect of embryonic development. Surprisingly, deletion of Pcsk5 in cardiogenic or pharyngeal mesodermal progenitors that form later from the cranio-cardiac mesoderm does not affect heart development. Neither is Pcsk5 essential in the neural crest, which drives conotruncal septation. Conclusions Our results suggest that Pcsk5 may have an essential and early role in the cranio-cardiac mesoderm for heart development. Alternatively, it is possible that Pcsk5 may still play a critical role in Nkx2.5-expressing cardiac progenitors, with persistence of mRNA or protein accounting for the lack of effect of deletion on heart development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorota Szumska
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Milena Cioroch
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Angela Keeling
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), 110 Pine Ave west, Montreal, QC, H2W1R7, Canada
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
30
|
Affiliation(s)
- Siddaraju V Boregowda
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute-Scripps Florida, USA
| |
Collapse
|
31
|
Bildsoe H, Fan X, Wilkie EE, Ashoti A, Jones VJ, Power M, Qin J, Wang J, Tam PP, Loebel DA. Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance. Dev Biol 2016; 418:189-203. [DOI: 10.1016/j.ydbio.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
32
|
Bildsoe H, Fan X, Wilkie EE, Ashoti A, Jones VJ, Power M, Qin J, Wang J, Tam PPL, Loebel DAF. Dataset of TWIST1-regulated genes in the cranial mesoderm and a transcriptome comparison of cranial mesoderm and cranial neural crest. Data Brief 2016; 9:372-375. [PMID: 27699189 PMCID: PMC5035339 DOI: 10.1016/j.dib.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 11/30/2022] Open
Abstract
This article contains data related to the research article entitled "Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance" by Bildsoe et al. (2016) [1]. The data presented here are derived from: (1) a microarray-based comparison of sorted cranial mesoderm (CM) and cranial neural crest (CNC) cells from E9.5 mouse embryos; (2) comparisons of transcription profiles of head tissues from mouse embryos with a CM-specific loss-of-function of Twist1 and control mouse embryos collected at E8.5 and E9.5; (3) ChIP-seq using a TWIST1-specific monoclonal antibody with chromatin extracts from TWIST1-expressing MDCK cells, a model for a TWIST1-dependent mesenchymal state.
Collapse
Affiliation(s)
- Heidi Bildsoe
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Xiaochen Fan
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie E Wilkie
- Bioinformatics Group, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Ator Ashoti
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia; Biomedical Sciences, Faculty of Mathematics and Natural Sciences, University of Groningen, The Netherlands
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - Jing Qin
- Centre for Genomic Sciences, Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Junwen Wang
- Centre for Genomic Sciences, Department of Biochemistry, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
33
|
Kague E, Roy P, Asselin G, Hu G, Simonet J, Stanley A, Albertson C, Fisher S. Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev Biol 2016; 413:160-72. [PMID: 26992365 DOI: 10.1016/j.ydbio.2016.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/16/2022]
Abstract
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures.
Collapse
Affiliation(s)
- Erika Kague
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Paula Roy
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Asselin
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Gui Hu
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Simonet
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Stanley
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Shannon Fisher
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Tam PPL, Fossat N, Wilkie E, Loebel DAF, Ip CK, Ramialison M. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network. Curr Top Dev Biol 2016; 117:497-521. [PMID: 26969997 DOI: 10.1016/bs.ctdb.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Bioinformatics Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Systems Biology Institute Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
35
|
Loebel DAF, Plageman TF, Tang TL, Jones VJ, Muccioli M, Tam PPL. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016; 5:130-9. [PMID: 26772200 PMCID: PMC4823982 DOI: 10.1242/bio.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. Summary: Conditional Cdc42 knockout revealed requirements for Cdc42 in endoderm polarity, and in thyroid apical constriction and morphogenesis. Shroom3 mutant embryos also displayed thyroid bud abnormalities, suggesting a possible functional interaction.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy F Plageman
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Theresa L Tang
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Maria Muccioli
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
36
|
Goodnough LH, Dinuoscio GJ, Atit RP. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn 2015; 245:144-56. [PMID: 26677825 DOI: 10.1002/dvdy.24367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β-catenin signaling-dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β-catenin signaling pathway and is expressed in cranial bone and dermal lineages. RESULTS Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β-catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. CONCLUSIONS Thus, Twist1, a target of canonical Wnt/β-catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation.
Collapse
Affiliation(s)
- L Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Gregg J Dinuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio
| | - Radhika P Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.,Department of Dermatology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Fossat N, Ip CK, Jones VJ, Studdert JB, Khoo PL, Lewis SL, Power M, Tourle K, Loebel DAF, Kwan KM, Behringer RR, Tam PPL. Context-specific function of the LIM homeobox 1 transcription factor in head formation of the mouse embryo. Development 2015; 142:2069-79. [DOI: 10.1242/dev.120907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/19/2015] [Indexed: 01/18/2023]
Abstract
ABSTRACT
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vanessa J. Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Joshua B. Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Poh-Lynn Khoo
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Samara L. Lewis
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
| | - David A. F. Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kin Ming Kwan
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Richard R. Behringer
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX 77005, USA
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
38
|
|
39
|
Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in development and cancer. Dev Dyn 2014; 244:311-22. [PMID: 25382669 DOI: 10.1002/dvdy.24226] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is a remarkable transient structure in the vertebrate embryo that gives rise to a highly versatile population of pluripotent cells that contribute to the formation of multiple tissues and organs throughout the body. In order to achieve their task, NC-derived cells have developed specialized mechanisms to promote (1) their transition from an epithelial to a mesenchymal phenotype, (2) their capacity for extensive migration and cell proliferation, and (3) their ability to produce diverse cell types largely depending on the microenvironment encountered during and after their migratory path. Following embryogenesis, these same features of cellular motility, invasion, and proliferation can become a liability by contributing to tumorigenesis and metastasis. Ample evidence has shown that cancer cells have cleverly co-opted many of the genetic and molecular features used by developing NC cells. This review focuses on tumors that arise from NC-derived tissues and examines mechanistic themes shared during their oncogenic and metastatic development with embryonic NC cell ontogeny.
Collapse
Affiliation(s)
- Lillias H Maguire
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
40
|
Heude É, Bellessort B, Fontaine A, Hamazaki M, Treier AC, Treier M, Levi G, Narboux-Nême N. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Hum Mol Genet 2014; 24:1670-81. [PMID: 25416281 DOI: 10.1093/hmg/ddu579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Blepharophimosis, ptosis, epicanthus-inversus syndrome (BPES) is an autosomal dominant genetic disorder characterized by narrow palpebral fissures and eyelid levator muscle defects. BPES is often associated to premature ovarian insufficiency (BPES type I). FOXL2, a member of the forkhead transcription factor family, is the only gene known to be mutated in BPES. Foxl2 is essential for maintenance of ovarian identity, but the developmental origin of the facial malformations of BPES remains, so far, unexplained. In this study, we provide the first detailed account of the developmental processes leading to the craniofacial malformations associated to Foxl2. We show that, during development, Foxl2 is expressed both by Cranial Neural Crest Cells (CNCCs) and by Cranial Mesodermal Cells (CMCs), which give rise to skeletal (CNCCs and CMCs) and muscular (CMCs) components of the head. Using mice in which Foxl2 is selectively inactivated in either CNCCs or CMCs, we reveal that expression of Foxl2 in CNCCs is essential for the development of extraocular muscles. Indeed, inactivation of Foxl2 in CMCs has only minor effects on muscle development, whereas its inactivation in CNCCs provokes a severe hypoplasia of the levator palpabrae superioris and of the superior and inferior oblique muscles. We further show that Foxl2 deletion in either CNCCs or CMCs prevents eyelid closure and induces subtle skeletal developmental defects. Our results provide new insights in the complex developmental origin of human BPES and could help to understand the origin of other ocular anomalies associated to this syndrome.
Collapse
Affiliation(s)
- Églantine Heude
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Brice Bellessort
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Anastasia Fontaine
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Manatsu Hamazaki
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Anna-Corina Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Mathias Treier
- Max-Delbrück Center for Molecular Medicine (MDC) - Genetics of Metabolic and Reproductive Disorders, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Giovanni Levi
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Nicolas Narboux-Nême
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum National d'Histoire Naturelle, Paris 75005, France,
| |
Collapse
|
41
|
Lee MP, Ratner N, Yutzey KE. Genome-wide Twist1 occupancy in endocardial cushion cells, embryonic limb buds, and peripheral nerve sheath tumor cells. BMC Genomics 2014; 15:821. [PMID: 25262113 PMCID: PMC4190347 DOI: 10.1186/1471-2164-15-821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background The basic helix-loop-helix transcription factor Twist1 has well-documented roles in progenitor populations of the developing embryo, including endocardial cushions (ECC) and limb buds, and also in cancer. Whether Twist1 regulates the same transcriptional targets in different tissue types is largely unknown. Results The tissue-specificity of Twist1 genomic occupancy was examined in mouse ECCs, limb buds, and peripheral nerve sheath tumor (PNST) cells using chromatin immunoprecipitation followed by sequencing (Chip-seq) analysis. Consistent with known Twist1 functions during development and in cancer cells, Twist1-DNA binding regions associated with genes related to cell migration and adhesion were detected in all three tissues. However, the vast majority of Twist1 binding regions were specific to individual tissue types. Thus, while Twist1 has similar functions in ECCs, limb buds, and PNST cells, the specific genomic sequences occupied by Twist1 were different depending on cellular context. Subgroups of shared genes, also predominantly related to cell adhesion and migration, were identified in pairwise comparisons of ECC, limb buds and PNST cells. Twist1 genomic occupancy was detected for six binding regions in all tissue types, and Twist1-binding sequences associated with Chst11, Litaf, Ror2, and Spata5 also bound the potential Twist1 cofactor RREB1. Pathway analysis of the genes associated with Twist1 binding suggests that Twist1 may regulate genes associated with the Wnt signaling pathway in ECCs and limb buds. Conclusions Together, these data indicate that Twist1 interacts with genes that regulate adhesion and migration in different tissues, potentially through distinct sets of target genes. In addition, there is a small subset of genes occupied by Twist1 in all three tissues that may represent a core group of Twist1 target genes in multiple cell types. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-821) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| |
Collapse
|
42
|
Timed deletion of Twist1 in the limb bud reveals age-specific impacts on autopod and zeugopod patterning. PLoS One 2014; 9:e98945. [PMID: 24893291 PMCID: PMC4044014 DOI: 10.1371/journal.pone.0098945] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
Twist1 encodes a transcription factor that plays a vital role in limb development. We have used a tamoxifen-inducible Cre transgene, Ubc-CreERT2, to generate time-specific deletions of Twist1 by inducing Cre activity in mouse embryos at different ages from embryonic (E) day 9.5 onwards. A novel forelimb phenotype of supernumerary pre-axial digits and enlargement or partial duplication of the distal radius was observed when Cre activity was induced at E9.5. Gene expression analysis revealed significant upregulation of Hoxd10, Hoxd11 and Grem1 in the anterior half of the forelimb bud at E11.5. There is also localized upregulation of Ptch1, Hand2 and Hoxd13 at the site of ectopic digit formation, indicating a posterior molecular identity for the supernumerary digits. The specific skeletal phenotypes, which include duplication of digits and distal zeugopods but no overt posteriorization, differ from those of other Twist1 conditional knockout mutants. This outcome may be attributed to the deferment of Twist1 ablation to a later time frame of limb morphogenesis, which leads to the ectopic activation of posterior genes in the anterior tissues after the establishment of anterior-posterior anatomical identities in the forelimb bud.
Collapse
|
43
|
Parsons TE, Weinberg SM, Khaksarfard K, Howie RN, Elsalanty M, Yu JC, Cray JJ. Craniofacial shape variation in Twist1+/- mutant mice. Anat Rec (Hoboken) 2014; 297:826-33. [PMID: 24585549 DOI: 10.1002/ar.22899] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022]
Abstract
Craniosynostosis (CS) is a relatively common birth defect resulting from the premature fusion of one or more cranial sutures. Human genetic studies have identified several genes in association with CS. One such gene that has been implicated in both syndromic (Saethre-Chotzen syndrome) and nonsyndromic forms of CS in humans is TWIST1. In this study, a heterozygous Twist1 knock out (Twist1(+/-) ) mouse model was used to study the craniofacial shape changes associated with the partial loss of function. A geometric morphometric approach was used to analyze landmark data derived from microcomputed tomography scans to compare craniofacial shape between 17 Twist1(+/-) mice and 26 of their Twist1(+/+) (wild type) littermate controls at 15 days of age. The results show that despite the purported wide variation in synostotic severity, Twist1(+/-) mice have a consistent pattern of craniofacial dysmorphology affecting all major regions of the skull. Similar to Saethre-Chotzen, the calvarium is acrocephalic and wide with an overall brachycephalic shape. Mutant mice also exhibited a shortened cranial base and a wider and shorted face, consistent with coronal CS associated phenotypes. The results suggest that these differences are at least partially the direct result of the Twist1 haploinsufficiency on the developing craniofacial skeleton. This study provides a quantitative phenotype complement to the developmental and molecular genetic research previously done on Twist1. These results can be used to generate further hypotheses about the effect of Twist1 and premature suture fusion on the entire craniofacial skeleton.
Collapse
Affiliation(s)
- Trish E Parsons
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
44
|
Rogers CD, Saxena A, Bronner ME. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. ACTA ACUST UNITED AC 2013; 203:835-47. [PMID: 24297751 PMCID: PMC3857483 DOI: 10.1083/jcb.201305050] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sip1 promotes the mesenchymalization stage of the neural crest epithelial-to-mesenchymal transition by inducing a transcriptional switch in cells from expression of E-cadherin to N-cadherin. The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT.
Collapse
Affiliation(s)
- Crystal D Rogers
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125
| | | | | |
Collapse
|
45
|
The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2013; 31:367-77. [PMID: 24158354 DOI: 10.1007/s10585-013-9621-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is presently recognized as an important event and the initiating stage for tumor invasion and metastasis. Several EMT inducers have been identified, among which the big family of helix-loop-helix (HLH) transcription factors are rising as a novel and promising family of proteins in EMT mediation, such as Twist1, Twist2, E47, and HIFs, etc. Due to the variety and complexities of HLH members, the pathways and mechanisms they employ to promote EMT are also complex and characteristic. In this review, we will discuss the roles of various HLH proteins in the regulation and sustenance of the EMT and multiple cellular mechanisms, attempting to provide a novel and broadened view towards the link between HLH proteins and EMT.
Collapse
|
46
|
Allais-Bonnet A, Grohs C, Medugorac I, Krebs S, Djari A, Graf A, Fritz S, Seichter D, Baur A, Russ I, Bouet S, Rothammer S, Wahlberg P, Esquerré D, Hoze C, Boussaha M, Weiss B, Thépot D, Fouilloux MN, Rossignol MN, van Marle-Köster E, Hreiðarsdóttir GE, Barbey S, Dozias D, Cobo E, Reversé P, Catros O, Marchand JL, Soulas P, Roy P, Marquant-Leguienne B, Le Bourhis D, Clément L, Salas-Cortes L, Venot E, Pannetier M, Phocas F, Klopp C, Rocha D, Fouchet M, Journaux L, Bernard-Capel C, Ponsart C, Eggen A, Blum H, Gallard Y, Boichard D, Pailhoux E, Capitan A. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS One 2013; 8:e63512. [PMID: 23717440 PMCID: PMC3661542 DOI: 10.1371/journal.pone.0063512] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/02/2013] [Indexed: 11/25/2022] Open
Abstract
Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Cécile Grohs
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Ivica Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anis Djari
- Institut National de la Recherche Agronomique, Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sébastien Fritz
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | | | - Aurélia Baur
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | - Stéphan Bouet
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sophie Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Per Wahlberg
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Diane Esquerré
- GeT-PlaGe, Genotoul, Castanet-Tolosan, France
- Institut National de la Recherche Agronomique, UMR444 Génétique Cellulaire, Castanet-Tolosan, France
| | - Chris Hoze
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Mekki Boussaha
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Bernard Weiss
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Dominique Thépot
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | | - Este van Marle-Köster
- Department of Animal & Wildlife Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Sarah Barbey
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Dominique Dozias
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Emilie Cobo
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | | | | | | | | | | | | | - Daniel Le Bourhis
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Laetitia Clément
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Laura Salas-Cortes
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - Eric Venot
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Maëlle Pannetier
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Florence Phocas
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Christophe Klopp
- Institut National de la Recherche Agronomique, Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Dominique Rocha
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | | | - Laurent Journaux
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | | | - Claire Ponsart
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
| | - André Eggen
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yves Gallard
- Institut National de la Recherche Agronomique, UE0326 Domaine expérimental du Pin-au-Haras, Exmes, France
| | - Didier Boichard
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Eric Pailhoux
- Institut National de la Recherche Agronomique, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | - Aurélien Capitan
- Institut National de la Recherche Agronomique, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
- National Association of Livestock & Artificial Insemination Cooperatives, Paris, France
- * E-mail:
| |
Collapse
|