1
|
Jeong PS, Kang HG, Cha D, Jeon SB, Kim MJ, Song BS, Sim BW, Lee S. Role of the Notch signaling pathway in porcine oocyte maturation. Cell Commun Signal 2025; 23:1. [PMID: 39748238 PMCID: PMC11697911 DOI: 10.1186/s12964-024-01996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs). In vitro maturation (IVM) and parthenogenetic activation of oocytes were employed to examine the effects of Notch signaling inhibition on meiotic progression and embryogenesis of COCs using RO4929097 (RO), an inhibitor of γ secretase. Various staining methods (TUNEL, Phalloidin-TRITC, MitoTracker, JC-1, BODIPY FL ATP, ER-Tracker, Fluo-3, and Rhod-2) and immunocytochemical and quantitative PCR assays were used to identify the effects of Notch signaling inhibition on meiotic progression, embryogenesis, cell cycle progression, spindle assembly, chromosome alignment, mitochondrial and endoplasmic reticulum distribution, and downstream pathway targets in COCs. RESULTS The RT-PCR and immunocytochemical analyses revealed the presence of Notch signaling-related receptors (NOTCH1-4) and ligands (JAG1 and 2 and DLL1, 3, and 4) at 0, 22, 28, and 44 h of IVM in the COCs. RO treatment during oocyte maturation markedly reduced meiotic maturation and embryogenesis, inhibiting the cell cycle progression, spindle assembly, and chromosome alignment processes that are important for meiotic maturation. Furthermore, RO significantly impaired the cellular distribution and functions of the mitochondria and endoplasmic reticula, which are important organelles for the cytoplasmic maturation of oocytes. Finally, the involvement of canonical Notch signaling in oocyte maturation was confirmed by the decreased expression of HES and HEY family transcripts and proteins in the RO-treated COCs. CONCLUSIONS It was first demonstrated that Notch signaling pathway-related transcripts and proteins were expressed during the meiotic maturation of porcine COCs. Furthermore, the inhibition of Notch signaling during IVM revealed the essential role of this signaling pathway during oocyte maturation in pigs.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Pöhland R, Vanselow J, Sterza FM. Translocation of Oocytic HES1 into Surrounding Cumulus Cells in Bovine: Mechanism of Cellular Interaction during IVM? Int J Mol Sci 2023; 24:11932. [PMID: 37569307 PMCID: PMC10418482 DOI: 10.3390/ijms241511932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
HES1 (hairy and enhancer of split-1, effector of the NOTCH pathway) plays a role in oocyte maturation and has been detected so far mainly in somatic follicular cells. In this study, we aimed to investigate whether HES1 is present in both compartments of bovine cumulus oocyte complexes (COCs) and whether in vitro maturation itself has an effect on its distribution. We investigated the abundance of HES1 mRNA and protein in bovine COCs characterized by Brilliant-Cresyl-Blue (BCB) stainability by RT-PCR and immunofluorescence before and after in vitro maturation (IVM). To study the interaction of the compartments and the possible translocation of HES1, we injected GFP-HES1 mRNA into oocytes before maturation and analyzed fluorescence recovery after photobleaching (FRAP). The results showed that HES1 mRNA was detectable in oocytes but not in cumulus cells. The number of transcripts increased with maturation, especially in BCB-positive oocytes. In contrast, the protein was mainly visible in cumulus cells both before and after maturation. After GFP-HES1-mRNA injection into oocytes, a signal could be detected not only in the oocytes but also in cumulus cells. Our result shows a nearly exclusive distribution of HES1 mRNA and protein in oocytes and cumulus cells, respectively, that might be explained by the transfer of the protein from the oocyte into cumulus cells.
Collapse
Affiliation(s)
- Ralf Pöhland
- Reproductive Biology Unit, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Jens Vanselow
- Reproductive Biology Unit, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Fabiana Melo Sterza
- Animal Science, State University of Mato Grosso do Sul (UEMS), Aquidauana 79200-000, MS, Brazil;
| |
Collapse
|
3
|
Li Y, Liu L, Zhang L, Wei H, Wu S, Liu T, Shu Y, Yang Y, Yang Z, Wang S, Bao Z, Zhang L. Dynamic transcriptome analysis reveals the gene network of gonadal development from the early history life stages in dwarf surfclam Mulinia lateralis. Biol Sex Differ 2022; 13:69. [PMID: 36461090 PMCID: PMC9716669 DOI: 10.1186/s13293-022-00479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Gonadal development is driven by a complex genetic cascade in vertebrates. However, related information remains limited in molluscs owing to the long generation time and the difficulty in maintaining whole life cycle in the lab. The dwarf surfclam Mulinia lateralis is considered an ideal bivalve model due to the short generation time and ease to breed in the lab. RESULTS To gain a comprehensive understanding of gonadal development in M. lateralis, we conducted a combined morphological and molecular analysis on the gonads of 30 to 60 dpf. Morphological analysis showed that gonad formation and sex differentiation occur at 35 and 40-45 dpf, respectively; then the gonads go through gametogenic cycle. Gene co-expression network analysis on 40 transcriptomes of 35-60 dpf gonads identifies seven gonadal development-related modules, including two gonad-forming modules (M6, M7), three sex-specific modules (M14, M12, M11), and two sexually shared modules (M15, M13). The modules participate in different biological processes, such as cell communication, glycan biosynthesis, cell cycle, and ribosome biogenesis. Several hub transcription factors including SOX2, FOXZ, HSFY, FOXL2 and HES1 are identified. The expression of top hub genes from sex-specific modules suggests molecular sex differentiation (35 dpf) occurs earlier than morphological sex differentiation (40-45 dpf). CONCLUSION This study provides a deep insight into the molecular basis of gonad formation, sex differentiation and gametogenesis in M. lateralis, which will contribute to a comprehensive understanding of the reproductive regulation network in molluscs.
Collapse
Affiliation(s)
- Yajuan Li
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Liangjie Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Lijing Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Huilan Wei
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shaoxuan Wu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Tian Liu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Ya Shu
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Yaxin Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Zujing Yang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China
| | - Shi Wang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Zhenmin Bao
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.4422.00000 0001 2152 3263Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lingling Zhang
- grid.4422.00000 0001 2152 3263MOE Key Laboratory of Marine Genetics and Breeding & Sars-Fang Centre, Ocean University of China, 5 Yushan Road, Qingdao, China ,grid.484590.40000 0004 5998 3072Laboratory for Marine Biology and Biotechnology & Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Zeng L, Ye J, Zhang Z, Liang Y, Li J, Zeng L, Cao L, Zhu L, Luo S. Zuogui pills maintain the stemness of oogonial stem cells and alleviate cyclophosphamide-induced ovarian aging through Notch signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153975. [PMID: 35217439 DOI: 10.1016/j.phymed.2022.153975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zuogui pills (ZGP), a classical prescription of traditional Chinese medicine, have been widely used in the treatment of ovarian aging. Previous studies have demonstrated its efficacy on protecting ovarian aging, and the mechanisms were mostly relevant to inhibiting the apoptosis of follicles and activating the primordial follicles. However, whether ZGP could stimulate the oogonial stem cells (OSCs) to refresh the follicle pool remains poorly understood. PURPOSE To investigate the effects of ZGP on the stemness of OSCs in cyclophosphamide (Cy)-induced ovarian aging. STUDY DESIGN AND METHODS Female Sprague-Dawley (SD) rats were randomly divided into 8 groups: control group, model group, ZGP groups (low / high dose groups), estradiol valerate (EV) groups (low / high dose groups), DAPT group and DAPT+ZGP-L group. After modeling with Cy, the ZGP groups and EV groups were treated with ZGP and EV for 8 weeks respectively. Meanwhile, the DAPT groups were treated with DAPT twice a week. Additionally, OSCs were also isolated after modeling, and then treated with drug serum containing ZGP or EV. Ovarian volume and the ratio of weight of total ovaries to the body weight were measured. The serum hormones were measured by ELISA. Quantities and location of OSCs in ovaries were detected by flow cytometry and immunofluorescence. Cell viability was measured by CCK8. And OSCs were identified by immunofluorescence. Biomarkers of germ cells, stem cells and associated to differentiation and meiosis were detected by qPCR and western blot. Proteins in Notch signaling pathway were detected by western blot and immunofluorescence. RESULTS After treating with ZGP, ovarian volume and the ratio of weight of total ovaries to the body weight increased. ZGP could increase serum AMH and E2 level and decrease serum FSH level. Quantities and cell viability of OSCs increased after ZGP treatment in vivo and in vitro. In addition, treatment with ZGP could increase not only the expression of MVH, Oct4 and DAZL, but also the expression of ZP1 and ZP2. Furthermore, ZGP could up-regulate the expression of Notch intracellular domain (NICD), HES1 and HES5. After blocking the Notch signaling pathway, ZGP could increase not only the expression of NICD, HES1 and HES5, but also the expression of MVH, Oct4, DAZL, ZP1 and ZP3. CONCLUSION In conclusion, the mechanism of ZGP on treating ovarian aging may be relevant to maintain the stemness of OSCs by up-regulating Notch signaling pathway, which added the mechanism of ZGP on the perspective of OSCs at first time.
Collapse
Affiliation(s)
- Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinfei Ye
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhaoping Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jing Li
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Zeng
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Cao
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Songping Luo
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Cross-talk between NOTCH2 and BMP4/SMAD signaling pathways in bovine follicular granulosa cells. Theriogenology 2022; 187:74-81. [DOI: 10.1016/j.theriogenology.2022.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/02/2023]
|
6
|
Effects of Notch2 on proliferation, apoptosis and steroidogenesis in bovine luteinized granulosa cells. Theriogenology 2021; 171:55-63. [PMID: 34023619 DOI: 10.1016/j.theriogenology.2021.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Notch signaling pathway plays an important regulatory role in the development of mammalian follicles. This study aimed to explore the effect of Notch2 on the function of bovine follicles luteinized granulosa cells (LGCs). We detected that the coding sequence (CDS) of bovine Notch2 gene is 7416 bp, encoding 2471 amino acids (AA). The homology of Notch2 AA sequence between bovine and other species is 86.04%-98.75%, indicating high conservatism. Immunohistochemistry found that Notch2 receptor and its ligand Jagged2 localize in granulosa cells (GCs) and theca cells in bovine antral follicles. And immunofluorescence found that positive signals of Notch2 and Jagged2 overlap in bovine LGCs, speculating that Notch2 receptor may react with Jagged2 ligand to activate Notch signaling pathway and play an important role in bovine LGCs. To further investigate the function of Notch2, Notch2 gene was silenced by short hairpin RNA (shRNA) and CCK-8 analysis showed that the proliferation rate of LGCs was downregulated significantly (P < 0.01). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the mRNA expression of apoptosis related gene Bcl-2/Bax decreased (P < 0.01) and Caspase3 increased (P < 0.05), cell cycle related gene CyclinD2/CDK4 complex decreased (P < 0.01) and P21 increased (P < 0.05), steroidogenesis gene STAR and 3β-HSD decreased (P < 0.01) while CYP19A1 and CYP11A1 had no significant difference (P > 0.05). In addition, Enzyme-linked immunosorbent assay (ELISA) showed that there was no difference in estradiol (E2) secretion (P > 0.05) while the progesterone (P4) secretion decreased (P < 0.01). In conclusion, Notch2 plays an important role in regulating bovine LGCs development.
Collapse
|
7
|
Yahaya TO, Liman UU, Abdullahi H, Koko YS, Ribah SS, Adamu Z, Abubakar S. Genes predisposing to syndromic and nonsyndromic infertility: a narrative review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:46. [DOI: 10.1186/s43042-020-00088-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
AbstractBackgroundAdvanced biological techniques have helped produce more insightful findings on the genetic etiology of infertility that may lead to better management of the condition. This review provides an update on genes predisposing to syndromic and nonsyndromic infertility.Main bodyThe review identified 65 genes linked with infertility and infertility-related disorders. These genes regulate fertility. However, mutational loss of the functions of the genes predisposes to infertility. Twenty-three (23) genes representing 35% were linked with syndromic infertility, while 42 genes (65%) cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphological abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common feature of male infertility was spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment.ConclusionsMutational loss of the functions of some genes involved in the development and maintenance of fertility may predispose to syndromic or nonsyndromic infertility via gene-specific mechanisms. A treatment procedure that targets the affected gene(s) in individuals expressing infertility may lead to improved treatment.
Collapse
|
8
|
Severance AL, Midic U, Latham KE. Genotypic divergence in mouse oocyte transcriptomes: possible pathways to hybrid vigor impacting fertility and embryogenesis. Physiol Genomics 2019; 52:96-109. [PMID: 31869285 DOI: 10.1152/physiolgenomics.00078.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes hybrid vigor phenotypes in mammalian oocytes and preimplantation embryos? Answering this question should provide new insight into determinants of oocyte and embryo quality and infertility. Hybrid vigor could arise through a variety of mechanisms, many of which must operate through posttranscriptional mechanisms affecting oocyte mRNA accumulation, stability, translation, and degradation. The differential regulation of such mRNAs may impact essential pathways and functions within the oocyte. We conducted in-depth transcriptome comparisons of immature and mature oocytes of C57BL/6J and DBA/2J inbred strains and C57BL/6J × DBA/2J F1 (BDF1) hybrid oocytes with RNA sequencing, combined with novel computational methods of analysis. We observed extensive differences in mRNA expression and regulation between parental inbred strains and between inbred and hybrid genotypes, including mRNAs encoding proposed markers of oocyte quality. Unique BDF1 oocyte characteristics arise through a combination of additive dominance and incomplete dominance features in the transcriptome, with a lesser degree of transgressive mRNA expression. Special features of the BDF1 transcriptome most prominently relate to histone expression, mitochondrial function, and oxidative phosphorylation. The study reveals the major underlying mechanisms that contribute to superior properties of hybrid oocytes in a mouse model.
Collapse
Affiliation(s)
- Ashley L Severance
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Uros Midic
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Genetics Graduate Program, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Animal Science, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
9
|
Hubbard N, Prasasya RD, Mayo KE. Activation of Notch Signaling by Oocytes and Jag1 in Mouse Ovarian Granulosa Cells. Endocrinology 2019; 160:2863-2876. [PMID: 31609444 PMCID: PMC6850001 DOI: 10.1210/en.2019-00564] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
The Notch pathway plays diverse and complex roles in cell signaling during development. In the mammalian ovary, Notch is important for the initial formation and growth of follicles, and for regulating the proliferation and differentiation of follicular granulosa cells during the periovulatory period. This study seeks to determine the contribution of female germ cells toward the initial activation and subsequent maintenance of Notch signaling within somatic granulosa cells of the ovary. To address this issue, transgenic Notch reporter (TNR) mice were crossed with Sohlh1-mCherry (S1CF) transgenic mice to visualize Notch-active cells (EGFP) and germ cells (mCherry) simultaneously in the neonatal ovary. To test the involvement of oocytes in activation of Notch signaling in ovarian somatic cells, we ablated germ cells using busulfan, a chemotherapeutic alkylating agent, or investigated KitWv/Wv (viable dominant white-spotting) mice that lack most germ cells. The data reveal that Notch pathway activation in granulosa cells is significantly suppressed when germ cells are reduced. We further demonstrate that disruption of the gene for the Notch ligand Jag1 in oocytes similarly impacts Notch activation and that recombinant JAG1 enhances Notch target gene expression in granulosa cells. These data are consistent with the hypothesis that germ cells provide a ligand, such as Jag1, that is necessary for activation of Notch signaling in the developing ovary.
Collapse
Affiliation(s)
- Nisan Hubbard
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Rexxi D Prasasya
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
| | - Kelly E Mayo
- Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, Evanston, Illinois
- Correspondence: Kelly E. Mayo, PhD, Department of Molecular Biosciences, Center for Reproductive Science, Northwestern University, 1115 Pancoe Pavilion, Evanston, Illinois 60208. E-mail:
| |
Collapse
|
10
|
Jia Y, Wang F, Zhang R, Liang T, Zhang W, Ji X, Du Q, Chang Z. Identification of suh gene and evidence for involvement of notch signaling pathway on gonadal differentiation of Yellow River carp (Cyprinus carpio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:375-386. [PMID: 29164452 DOI: 10.1007/s10695-017-0441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The suh gene is crucial in Notch pathway and regulates mammalian gonad development. In this study, the sequences of suh1 and suh2 genes in Yellow River carp (Cyprinus carpio) were verified. The partial 5'-flanking regions of suh1 and suh2 were analyzed and several potential transcription factor-binding sites were identified. Phylogenetic, gene structure, and chromosome synteny analyses revealed that carp suh1 and suh2 were orthologs and homologous to vertebrate suh. Investigation of the expression profiles of suh1 and suh2 with qPCR showed that these genes were abundant in the brain and gonad of carp, with suh1 exhibiting sexual dimorphism expression pattern in gonad. To study the relationship between gonad differentiation and Notch signaling, primordial gonads were exposed to DAPT, an inhibitor of Notch signaling, in vitro and in vivo. The results revealed a significant downregulation of suh1 and other Notch genes in vitro. In addition, expression of male-biased genes, such as amh, dmrt1, etc., was downregulated, whereas that of female-biased genes, such as foxl2, gdf9, etc., was upregulated. When the primordial gonads were subjected to long-term DAPT exposure, an increased proportion of ovary and delay in testis development were observed. These results suggest that suh gene may have a conservative function between teleosts and mammals. Furthermore, Notch signaling was found to be involved in gonad differentiation in Yellow River carp, and DAPT was noted to inhibit and enhance the expression of male- and female-biased genes, respectively, and induce the increase in number of females.
Collapse
Affiliation(s)
- Yongfang Jia
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Fang Wang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Ruihua Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Tingting Liang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - WanWan Zhang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Xiaolin Ji
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Qiyan Du
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
11
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
12
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Jing J, Jiang X, Chen J, Yao X, Zhao M, Li P, Pan Y, Ren Y, Liu W, Lyu L. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci 2017; 181:69-78. [PMID: 28400072 DOI: 10.1016/j.anireprosci.2017.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
The Notch signaling pathway regulates cell proliferation, differentiation and apoptosis involved in development of the organs and tissues such as nervous system, cartilage, lungs, kidneys and prostate as well as the ovarian follicles. This study aimed to investigate the mRNA expression and localization of NOTCH2, as the key factor in Notch signaling pathway. This was determined by PCR, real-time PCR and immunohistochemistry. Additionally, the effects of inhibiting Notch signaling pathway with different concentrations (5μM, 10μM and 20μM) of N-[N-(3, 5-Difuorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of Notch signaling pathway, on ovine granulosa cells was determined in vitro by detecting estradiol production using enzyme linked immunosorbent assay and expressions of the genes related to the cell cycle and apoptosis using real-time polymerase chain reaction (PCR). NOTCH2, the key member of Notch signaling pathway, was found in ovine follicles, and the expression of NOTCH2 mRNA was highest in the theca cells of the follicles in medium sizes (3-5mm in diameter) and granulosa cells of the follicles in large sizes (>5mm in diameter). Immunohistochemical results demonstrated that NOTCH2 protein was expressed in granulosa cells of preantral follicles, in both granulosa cells and theca cells of antral follicles. Compared with DAPT-treated groups, the control group had a higher number of granulosa cells (P<0.05) and a higher estradiol production (P<0.05). Compared with the control group, the mRNA abundances of HES1, MYC, BAX, BCL2 and CYP19A1 in DAPT-treated groups was lower (P<0.05), respectively; whereas, the expression of CCND2, CDKN1A and TP53 mRNA showed no remarkable difference compared with control group. Collectively, Notch signaling pathway could be involved in the ovine follicular development by regulating the growth and estradiol production of granulosa cells.
Collapse
Affiliation(s)
- Jiongjie Jing
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaolong Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianwei Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaolei Yao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Miaomiao Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Li
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yangyang Pan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Youshe Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenzhong Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lihua Lyu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
14
|
Vanorny DA, Mayo KE. The role of Notch signaling in the mammalian ovary. Reproduction 2017; 153:R187-R204. [PMID: 28283672 DOI: 10.1530/rep-16-0689] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
The Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization. These aberrations result in abnormal folliculogenesis and reduced fertility. The knowledge of the cellular interactions facilitated by the Notch pathway is an important area for continuing research, and future studies are expected to enhance our understanding of ovarian function and provide critical insights for improving reproductive health. This review focuses on the expression of Notch pathway components in the ovary, and on the multiple functions of Notch signaling in follicle assembly, maturation and development. We focus on the mouse, where genetic investigations are possible, and relate this information to the human ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| | - Kelly E Mayo
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| |
Collapse
|
15
|
Wang YY, Sun YC, Sun XF, Cheng SF, Li B, Zhang XF, De Felici M, Shen W. Starvation at birth impairs germ cell cyst breakdown and increases autophagy and apoptosis in mouse oocytes. Cell Death Dis 2017; 8:e2613. [PMID: 28182014 PMCID: PMC5386484 DOI: 10.1038/cddis.2017.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/12/2023]
Abstract
The female reproductive lifespan is largely determined by the size of primordial follicle pool, which is established following germ cell cyst breakdown around birth. Almost two-third of oocytes are lost during germ cell cysts breakdown, following autophagic and apoptosis mechanisms. To investigate a possible relationship between germ cell cyst breakdown and nutrition supply, we established a starvation model in mouse pups at birth and evaluated the dynamics of cyst breakdown during nutrient deprivation. Our results showed that after 36 h of starvation between 1.5 and 3 d.p.p., indicators of metabolism both at systemic and ovarian level were significantly altered and the germ cell cyst breakdown markedly decreased. We also found that markers of oxidative stress, autophagy and apoptosis were increased and higher number of oocytes in cyst showing autophagic markers and of TUNEL-positive oocytes and somatic cells were present in the ovaries of starved pups. Moreover, the proliferation of pre-granulosa cells and the expression of the oocyte-specific transcription factor Nobox were decreased in such ovaries. Finally, we observed that the ovaries of the starved pups could recover a normal number of follicles after about 3 weeks from re-feeding. In conclusion, these data indicate that nutrient deficiency at birth can generate a number of adaptive metabolic and oxidative responses in the ovaries causing increased apoptosis both in the somatic cells and oocyte and autophagy mainly in these latter and leading to a delay of germ cell cyst breakdown and follicle assembly.
Collapse
Affiliation(s)
- Yong-Yong Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.,College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Chao Sun
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.,College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shun-Feng Cheng
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bo Li
- Chengguo Station of Animal Husbandry and Veterinary, Laizhou 261437, China
| | - Xi-Feng Zhang
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Animal Science and Technology, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
16
|
York JP, Ren YA, Zeng J, Bin Zhang, Wang F, Chen R, Liu J, Xia X, Zhang P. Growth Arrest Specific 2 (GAS2) is a Critical Mediator of Germ Cell Cyst Breakdown and Folliculogenesis in Mice. Sci Rep 2016; 6:34956. [PMID: 27734842 PMCID: PMC5062118 DOI: 10.1038/srep34956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/21/2016] [Indexed: 01/25/2023] Open
Abstract
In the mouse ovary, the primordial follicle pool is established through a diverse array of signaling pathways and tissue remodeling events. Growth arrest specific gene two (GAS2) is a highly conserved cytoskeleton-associated protein whose in vivo function remains unclear. In Drosophila, loss of the GAS2 homolog, Pigs, results in infertility. We demonstrate herein that, in the mouse ovary, GAS2 is expressed in the stromal cells surrounding the oocyte cysts on 16.5 dpc, and in stromal cells surrounding growing follicles during juvenile and adult life. We have generated genetically engineered mice with inactivated Gas2. Gas2 homozygous mutant mice are viable but have severely impaired fertility in females, in which oocyte cyst breakdown is disrupted and follicle growth is impaired, with significantly reduced numbers of large antral follicles and corpora lutea. In these mutant mice, the organization of the basal lamina surrounding developing follicles is severely defective at multiple stages of folliculogenesis. We also found that Notch signaling activity was altered in ovaries from Gas2 null mice around the time of birth and during follicular development later in life. These results indicate that GAS2 is a critical and novel regulator of tissue remodeling in the ovary during oocyte cyst breakdown and folliculogenesis.
Collapse
Affiliation(s)
- J Philippe York
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yi Athena Ren
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jie Zeng
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Bin Zhang
- Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Fang Wang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Chen
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Jianqiao Liu
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xuefeng Xia
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.,Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA.,Biochemistry and Molecular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pumin Zhang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Biochemistry and Molecular Biology, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
17
|
Anesetti G, Chávez-Genaro R. Ovarian follicular dynamics after aromatizable or non aromatizable neonatal androgenization. J Mol Histol 2016; 47:491-501. [PMID: 27541036 DOI: 10.1007/s10735-016-9692-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/10/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Anesetti
- Histology and Embryology Department, School of Medicine, General Flores 2125, CP 11800, Montevideo, Uruguay.
| | - Rebeca Chávez-Genaro
- Histology and Embryology Department, School of Medicine, General Flores 2125, CP 11800, Montevideo, Uruguay
| |
Collapse
|
18
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015; 6:36713-36730. [PMID: 26452025 PMCID: PMC4742206 DOI: 10.18632/oncotarget.5457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
20
|
Wang SC, Lin XL, Wang HY, Qin YJ, Chen L, Li J, Jia JS, Shen HF, Yang S, Xie RY, Wei F, Gao F, Rong XX, Yang J, Zhao WT, Zhang TT, Shi JW, Yao KT, Luo WR, Sun Y, Xiao D. Hes1 triggers epithelial-mesenchymal transition (EMT)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the PTEN/AKT pathway. Oncotarget 2015. [PMID: 26452025 DOI: hes1 triggers epithelial-mesenchymal transition (emt)-like cellular marker alterations and promotes invasion and metastasis of nasopharyngeal carcinoma by activating the pten/akt pathway] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Overexpression of the transcriptional factor Hes1 (hairy and enhancer of split-1) has been observed in numerous cancers, but the precise roles of Hes1 in epithelial-mesenchymal transition (EMT), cancer invasion and metastasis remain unknown. Our current study firstly revealed that Hes1 upregulation in a cohort of human nasopharyngeal carcinoma (NPC) biopsies is significantly associated with the EMT, invasive and metastatic phenotypes of cancer. In the present study, we found that Hes1 overexpression triggered EMT-like cellular marker alterations of NPC cells, whereas knockdown of Hes1 through shRNA reversed the EMT-like phenotypes, as strongly supported by Hes1-mediated EMT in NPC clinical specimens described above. Gain-of-function and loss-of-function experiments demonstrated that Hes1 promoted the migration and invasion of NPC cells in vitro. In addition, exogenous expression of Hes1 significantly enhanced the metastatic ability of NPC cells in vivo. Chromatin immunoprecipitation (ChIP) assays showed that Hes1 inhibited PTEN expression in NPC cells through binding to PTEN promoter region. Increased Hes1 expression and decreased PTEN expression were also observed in a cohort of NPC biopsies. Additional studies demonstrated that Hes1-induced EMT-like molecular changes and increased motility and invasion of NPC cells were mediated by PTEN. Taken together, our results suggest, for what we believe is the first time, that Hes1 plays an important role in the invasion and metastasis of NPC through inhibiting PTEN expression to trigger EMT-like phenotypes.
Collapse
Affiliation(s)
- Sheng-Chun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Pathology, Guangdong Medical University, Dongguan 523808, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Fei Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wen-Tao Zhao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Ting-Ting Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jun-Wen Shi
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Ren Luo
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Joint Program in Transfusion Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
21
|
George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction 2015; 150:383-94. [PMID: 26183893 DOI: 10.1530/rep-15-0226] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022]
Abstract
Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to FSH and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including STAR protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway.
Collapse
Affiliation(s)
- Rajani M George
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Katherine L Hahn
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Alan Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4 School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Jeanne Wilson-Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
22
|
Murta D, Batista M, Trindade A, Silva E, Mateus L, Duarte A, Lopes-da-Costa L. Dynamics of Notch signalling in the mouse oviduct and uterus during the oestrous cycle. Reprod Fertil Dev 2015; 28:RD15029. [PMID: 25940784 DOI: 10.1071/rd15029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
The oviduct and uterus undergo extensive cellular remodelling during the oestrous cycle, requiring finely tuned intercellular communication. Notch is an evolutionarily conserved cell signalling pathway implicated in cell fate decisions in several tissues. In the present study we evaluated the quantitative real-time polymerase chain reaction (real-time qPCR) and expression (immunohistochemistry) patterns of Notch components (Notch1-4, Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged1-2) and effector (hairy/enhancer of split (Hes) 1-2, Hes5 and Notch-Regulated Ankyrin Repeat-Containing Protein (Nrarp)) genes in the mouse oviduct and uterus throughout the oestrous cycle. Notch genes are differentially transcribed and expressed in the mouse oviduct and uterus throughout the oestrous cycle. The correlated transcription levels of Notch components and effector genes, and the nuclear detection of Notch effector proteins, indicate that Notch signalling is active. The correlation between transcription levels of Notch genes and progesterone concentrations, and the association between expression of Notch proteins and progesterone receptor (PR) activation, indicate direct progesterone regulation of Notch signalling. The expression patterns of Notch proteins are spatially and temporally specific, resulting in unique expression combinations of Notch receptor, ligand and effector genes in the oviduct luminal epithelium, uterus luminal and glandular epithelia and uterine stroma throughout the oestrous cycle. Together, the results of the present study imply a regulatory role for Notch signalling in oviduct and uterine cellular remodelling occurring throughout the oestrous cycle.
Collapse
|
23
|
Wang J, Liu S, Peng L, Dong Q, Bao R, Lv Q, Tang M, Hu C, Li G, Liang S, Zhang C. Notch Signaling Pathway Regulates Progesterone Secretion in Murine Luteal Cells. Reprod Sci 2015; 22:1243-51. [PMID: 25701842 DOI: 10.1177/1933719115572480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway, which involves in various cell life activities. Other studies and our report showed that the Notch signaling plays very important role in follicle development in mammalian ovaries. In luteal cells, Notch ligand, delta-like ligand 4, is involved in normal luteal vasculature. In this study, murine luteal cells were cultured in vitro and treated with Notch signaling inhibitors, L-658,458 and N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester (DAPT). We found that L-658,458 and DAPT treatment decrease basal and human chorionic gonadotropin (hCG)-stimulated progesterone secretion. On the contrary, overexpression of intracellular domain of Notch3 increased basal and hCG-stimulated progesterone secretion. Further studies demonstrated that Notch signaling regulated the expression of steroidogenic acute regulatory protein and CYP11A, 2 key enzymes for progesterone synthesis. In conclusion, Notch signaling plays important role in regulating progesterone secretion in murine luteal cells.
Collapse
Affiliation(s)
- Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Lichao Peng
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiming Dong
- Joint Programme of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Riqiang Bao
- Joint Programme of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Qiulan Lv
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Min Tang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chuan Hu
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gang Li
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Teng Z, Li G, Mu X, Wang Z, Feng L, Niu W, Huang K, Xiang X, Wang C, Zhang H, Xia G. Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Development 2014; 142:343-51. [PMID: 25503411 DOI: 10.1242/dev.112755] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary.
Collapse
Affiliation(s)
- Yijing Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Zhen Teng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Ge Li
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Xinyi Mu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Zhengpin Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Lizhao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Wanbao Niu
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Kun Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Xi Xiang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM, Mayo KE. Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol Endocrinol 2014; 28:499-511. [PMID: 24552588 DOI: 10.1210/me.2013-1288] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis. This coincides with a significant increase in the expression of the ligands, Jagged1 and Jagged2; the receptor, Notch2; and the target genes, Hes1 and Hey2. Histological examination of ovaries from mice with conditional deletion of Jagged1 within germ cells (J1 knockout [J1KO]) or Notch2 within granulosa cells (N2 knockout [N2KO]) reveals changes in follicle dynamics, including perturbations in the primordial follicle pool and antral follicle development. J1KO and N2KO ovaries also contain multi-oocytic follicles, which represent a failure to resolve germ cell syncytia, and follicles with enlarged oocytes but lacking somatic cell growth, signifying a potential role of Notch signaling in follicle activation and the coordination of follicle development. We also observed decreased cell proliferation and increased apoptosis in the somatic cells of both conditional knockout lines. As a consequence of these defects, J1KO female mice are subfertile; however, N2KO female mice remain fertile. This study demonstrates important functions for Jagged1 and Notch2 in the resolution of germ cell syncytia and the coordination of somatic and germ cell growth within follicles of the mouse ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | |
Collapse
|
26
|
Jorgensen JS. Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle. Mol Reprod Dev 2013; 80:960-76. [PMID: 24105719 PMCID: PMC3980676 DOI: 10.1002/mrd.22232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 01/19/2023]
Abstract
The ovary functions to chaperone the most precious cargo for female individuals, the oocyte, thereby allowing the passage of genetic material to subsequent generations. Within the ovary, single oocytes are surrounded by a legion of granulosa cells inside each follicle. These two cell types depend upon one another to support follicle formation and oocyte survival. The infrastructure and events that work together to ultimately form these functional follicles within the ovary are unprecedented, given that the oocyte originates as a cell like all other neighboring cells within the embryo prior to gastrulation. This review discusses the journey of the germ cell in the context of the developing female mouse embryo, with a focus on specific signaling events and cell-cell interactions that escort the primordial germ cell as it is specified into the germ cell fate, migrates through the hindgut into the gonad, differentiates into an oocyte, and culminates upon formation of the primordial and then primary follicle.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
27
|
Abstract
Gonocytes (or prospermatogonia) are the precursors to spermatogonial stem cells (SSCs), which provide the foundation for spermatogenesis through their ability to both self-renew and generate daughter cells. Despite their relative importance, the regulatory mechanisms that govern gonocyte maintenance and transition to SSCs are poorly understood. Recently, we reported that constitutive activation of NOTCH1 signaling in Sertoli cells causes gonocyte exit from quiescence--the first suggestion of the potential role of this signaling pathway in the testis. This Extra View will review what is known about NOTCH signaling, particularly in Sertoli cells and germ cells in the testes, by providing a background on germ cell biology and a summary of our recently published data on NOTCH1 signaling in Sertoli cells. We also describe additional data showing that aberrant proliferation and differentiation of gonocytes in response to constitutive activation of NOTCH1 signaling in Sertoli cells involves de novo expression of cell cycle proteins and a marked upregulation of the KIT receptor. These data further suggest that NOTCH signaling orchestrates a dynamic balance between maintenance and differentiation of gonocytes in the perinatal testis.
Collapse
Affiliation(s)
- Thomas Xavier Garcia
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|